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Abstract—Differential evolution (DE) is a stochastic 

population-based optimization algorithm first introduced 

in 1995. It is an efficient search method that is widely 

used for solving global optimization problems. It has 

three control parameters: the scaling factor (F), the 

crossover rate (CR), and the population size (NP). As any 

evolutionary algorithm (EA), the performance of DE 

depends on its exploration and exploitation abilities for 

the search space. Tuning the control parameters and 

choosing a suitable mutation strategy play an important 

role in balancing the rate of exploration and exploitation. 

Many variants of the DE algorithm have been introduced 

to enhance its exploration and exploitation abilities. All 

of these DE variants try to achieve a good balance 

between exploration and exploitation rates. In this paper, 

an enhanced DE algorithm with multi-mutation strategies 

and self-adapting control parameters is proposed. We use 

three forms of mutation strategies with their associated 

self-adapting control parameters. Only one mutation 

strategy is selected to generate the trial vector. Switching 

between these mutation forms during the evolution 

process provides dynamic rates of  exploration and 

exploitation. Having different rates of exploration and 

exploitation through the optimization process enhances 

the performance of DE in terms of accuracy and 

convergence rate. The proposed algorithm is evaluated 

over 38 benchmark functions: 13 traditional functions, 10 

special functions chosen from CEC2005, and 15 special 

functions chosen from CEC2013. Comparison is made in 

terms of the mean and standard deviation of the error 

with the standard "DE/rand/1/bin" and five state-of-the-

art DE algorithms. Furthermore, two nonparametric 

statistical tests are applied in the comparison: Wilcoxon 

signed-rank and Friedman tests. The results show that the 

performance of the proposed algorithm is better than 

other DE algorithms for the majority of the tested 

functions. 

 

Index Terms—Differential evolution, Global 

optimization, Multi-mutation strategies, Self-adapting 

control parameters, Evolutionary algorithms. 

 

 

I.  INTRODUCTION 

In 1995, Storn and Price presented the first differential 

evolution (DE) algorithm for global optimization 

problems [1]. It is a stochastic population-based 

optimization algorithm used to optimize real-parameter, 

real-valued functions [2]. The DE is a simple and effective 

algorithm that has a small number of adjustable control 

parameters. It has been successfully used in many 

engineering applications of several fields such as neural 

networks, signal processing, pattern recognition, image 

processing, bioinformatics, control systems, robotics, 

wireless communications, and semantic web [2-8]. 

Exploration and exploitation abilities of any population-

based optimization algorithm play a vital role in 

enhancing its accuracy and convergence speed [9]. In 

exploration, an optimization algorithm explores the search 

space of the problem globally in order to find new 

solutions and perform coarse refinements of the candidate 

solutions. In exploitation, on the other hand, it performs 

fine refinements in the neighborhoods of the existing 

solutions locally to improve the current solutions [9].  

Recently, various variants of the DE algorithm have 

been introduced to improve its exploration and 

exploitation abilities. The changes of these variants are 

based on designing new mutation strategies and self-

adapting control parameters [9-15]. However, the 

performance of the recent DE variants is still dependent to 

a great extent on the particulars of the optimization 

problem at hand [4, 12]. This means that one algorithm 

can succeed with certain problems but it may fail with 

other problems, implying that the algorithm lacks the 

required generality [4, 12]. This represents an open 

research point for promising attempts to devise more 

general optimization algorithms. A self-adapting DE 

algorithm (SaDE) is introduced in [3], where the selection 

of the strategy and the value of control parameters F and 

CR are not required to be pre-defined. In [10], a mutation 

strategy denoted by "DE/current-to-pbest" with optional 

external archive and adapting control parameters is 

proposed to form a new variant of DE called JADE. It 

represents a generalization of the classic "DE/current-to-
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best". The authors in [4] propose to employ an ensemble 

of mutation strategies and control parameters for the DE 

algorithm (EPSDE). In EPSDE, multi-mutation strategies 

and control parameter values with diverse characteristics 

are collected in a pool. An improved version of JADE, 

named success-history based adaptive DE algorithm 

(SHADE), is presented in [16]. It uses a different 

parameter adaptation mechanism for DE based on a 

history of successful control parameter settings. In [17], a 

competitive variant of adaptive DE, called b6e6rl, is 

proposed to solve the set of benchmark functions of the 

CEC 2013 competition. In this variant, the competitive 

adaptation is performed through twelve different mutation 

strategies and parameter settings. A modified adaptive 

differential evolution (ADE) is developed in [18]. It 

adopts the quasi-oppositional probability based on 

population’s variance information to tune the scaling 

factor (F) and the crossover rate (CR). In [19], a modified 

mutation strategy and a fitness induced parent selection 

scheme for the binomial crossover of DE with self-

adapting control parameters are adopted. The proposed 

mutation strategy is based on the classic variant 

"DE/current-to-best/1" with some modifications. It is 

referred to as MDE_pBX. In [20], an auto-enhanced 

population diversity mechanism (AEPD) is proposed to be 

used with DE. The population diversity is enhanced by 

measuring the population distribution in each dimension 

to avoid stagnation and premature convergence issues of 

the DE algorithm. The authors in [11] introduce a new DE 

algorithm with a hybrid mutation operator and self-

adapting control parameters (HSDE). The population is 

classified into two groups; each group has different 

mutation operators and self-adapting control parameters. 

In [21], an abstract convex underestimation-assisted multi-

stage DE is presented. In this algorithm, the supporting 

vectors of some neighboring individuals are used to 

calculate the underestimation error. The variation of the 

average underestimation error is used to perform three 

stages of the evolutionary process with a pool of suitable 

candidate strategies for each stage. In [12], a DE 

algorithm with improved individual-based parameter 

setting and selection strategy is suggested. Hybrid 

mutation strategies with a prescribed probability and a 

selection strategy based on the diversity of a weighted 

fitness value are used. An enhanced fitness-adapting DE 

algorithm with a modified mutation (EFADE) is given in 

[22]. A triangular mutation operator is used in EFADE to 

achieve a good balance between exploration and 

exploitation.  

Although there are many versions of the DE algorithm, 

they have many drawbacks related to their performance [4, 

22]. Firstly, they are good at global exploration, but they 

exhibit a slow convergence at local exploitation. Secondly, 

they are sensitive to the choice of the mutation strategy 

and control parameter values; that is, they are problem 

dependent. Thirdly, the DE performance degrades in high-

dimensional optimization problems.  

In the present paper, we propose a further 

improvement to the basic variants of DE that 

enhances its performance in terms of the 

convergence speed and accuracy, simplicity being 

preserved. A combination of three mutation 

strategies and their corresponding self-adapting 

control parameters is employed. The first and 

second mutation strategies are taken to be 

"DE/rand/1" and "DE/best/1". The third mutation 

strategy is chosen to be the average between the 

previous two mutation strategies. During the 

evolutionary process, the locations of the current, 

best, and worst individuals are utilized to determine 

a suitable mutation strategy. 

This paper is organized as follows: Section II 

reviews the basic variants of DE. Section III 

presents the proposed DE algorithm. In Section IV 

the proposed algorithm is tested through a variety of 

well-known benchmark optimization functions. 

Finally, Section V concludes the paper. 

 

II.  BASIC DIFFERENTIAL EVOLUTION ALGORITHM 

The procedure of the basic DE algorithm is 

outlined in the following four sequential phases: 

initialization, mutation, crossover, and selection [23-

25]. 

A.  Initialization Phase 

In this phase, a population of NP D-dimensional 

real-valued vectors (NP is the population size) is 

randomly chosen within the search space DR of the 

optimization problem [2]. Let G

iX be the target 

vector that minimizes the objective function f(X). It 

can be represented as[25]:  

 

 1, 2, ,,G G G G

i i i D iX x x x                       (1) 

 

where
 ,

G

j ix  is the j
th
 ( j=1, 2,. . . , D) component of the i

th
 

(i = 1, 2, . . . ,NP ) population vector at the current 

generation G (G = 0, 1, . . . ,Gmax). Gmax is the maximum 

number of generations. The initial population at 

generation G=0 can be generated as: 

 

   0

, , , , ,0,1j i j min j i j max j minX x rand x x         (2) 

 

where
,j minx and

,j maxx are the minimum and maximum 

bounds of the j
th
 component in the search space, 

respectively, and
 

 , 0,1j irand  is a uniformly distributed 

random number within the range [0,1]. 

B.  Mutation Phase 

In the mutation phase, the mutant (or donor) vector 
1G

iV  is created for each target vector G

iX . The most 

common mutation strategies are generated using the 

following equations [26, 27]: 

"DE/best/1" 

 

 1

1 2 G G G G

i best r rV X F X X                      (3)
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"DE/rand/1" 

 

 1

1 2 3   G G G G

i r r rV X F X X                       (4) 

 

"DE/best/2" 

 

   1

1 2 3 4     G G G G G G

i best r r r rV X F X X F X X             (5) 

 

"DE/rand /2" 

 

   1

1 2 3 4 5     G G G G G G

i r r r r rV X F X X F X X       
     

 (6) 

 

"DE/current-to-best /1" 

 

   1

1 2     G G G G G G

i i best i r rV X F X X F X X             (7) 

 

where F   [0, 2] is a control parameter called the 

mutation scaling factor. r1, r2, r3, r4 and r5 are random 

integers within the range [1, NP], such that r1 ≠ r2 ≠ r3 ≠ 

r4 ≠ r5 ≠ i. 
G

bestX is the best individual that has a minimum 

objective function value at the current generation G. 

C.  Crossover Phase 

In this phase, the trial vector
 

1G

iU  is generated by 

exchanging the elements of the target vector
 

G

iX with the 

elements of the mutant vector 1G

iV   as [24, 28]: 

 

 1

1  , 0,1

,

G

G i j rand

i G

i

V if rand CR or j j
U

X otherwise




  

 


       (8) 

 

where CR   [0, 1] is a control parameter called the 

crossover rate and 
randj   [0, D] is a random integer used 

to ensure that the trial vector
 

1G

iU  and the target 

vector G

iX are different. 

D.  Selection Phase 

In this phase, the target vector G

iX  is compared with 

the trial vector 1G

iU  , and the fittest one that has a lower 

objective function value will be chosen to represent the 

target vector 1G

iX  in the next generation. The selection 

phase is performed using Equation (9) [2]: 

 

   1 1

1
,

,

G G G

i i iG

i G

i

U if f U f X
X

X otherwise

 


 

 


              (9) 

 

where f is the objective function to be optimized. 

 

III.  PROPOSED APPROACH 

The performance of a DE algorithm depends on two 

issues. The first issue is concerned with the choice of a 

suitable mutation strategy for the optimization problems 

that have distinct properties. The second issue is 

concerned with the adaptation of the control parameters 

that affect the behavior of the mutation strategy and the 

crossover phase [4]. Therefore, the basic DE algorithm 

with a single mutation strategy and fixed control 

parameters can be modified to be more flexible and 

efficient [12]. This enhancement can be achieved using 

multi-mutation strategies and self-adapting control 

parameters to make a balance between the exploration and 

exploitation abilities.  

Motivated by these facts, we propose an enhanced DE 

algorithm, denoted by MSaDE, with multi-mutation 

strategies and self-adapting control parameters. The 

proposed algorithm makes use of three mutation strategies 

with their associated self-adapting control parameters. The 

first one increases the exploration ability which is related 

to the global search. The second mutation strategy 

increases the exploitation ability which is related to the 

local search. The third one achieves a balance between the 

exploration and exploitation abilities. Selection between 

these three strategies is done automatically with the help 

of the current, best, and worst individuals at the current 

generation. 

A.  Proposed Multi-mutation Strategies  

The location of the current individual in the search 

space is a good guide metric to determine if this individual 

is to be assigned to the mutation strategy at high rates of 

exploration or exploitation.  

Two absolute differences are calculated: (1) the 

absolute difference between the objective function of the 

current and worst individuals 

   G G G

i i worstCW f X f X  , (2) the absolute difference 

between the objective function of current and best 

individuals
 

    G G G

i i bestCB f X f X . According to 

the result, the current individual will be assigned to one of 

three mutation strategies: "DE/rand/1", "DE/best/1", or the 

average mutation. Five randomly chosen individuals 

(
1 2 3 4, , ,G G G G

r r r rX X X X , and 5

G

rX ) in addition to the best 

individual (
G

bestX ) are used to form the proposed mutation 

strategies.
 1

G

rX and 
G

bestX are used as the base vectors of 

the first two mutations "DE/rand/1" and "DE/best/1", 

respectively. The other individuals are used to create two 

difference vectors:
 2 3( )G G

r rX X and
4 5( )G G

r rX X . The 

difference vector with a higher objective function value is 

assigned to the first mutation "DE/rand/1" to improve the 

exploration search ability. It increases the ability for 

searching new regions over a large search volume. The 

difference vector with a lower objective function value is 

assigned to the second mutation "DE/best/1" to improve 

the exploitation search ability. It increases the ability for 

searching new solutions in a small or immediate 

neighborhood. The average of the two difference vectors 

is assigned to the third mutation to balance the exploration 

and exploitation abilities. The proposed three mutation 

strategies to generate the mutant vector 1G

iV  (i = 1, 2, . . . , 

NP) are defined as: 
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 

 

 

1 ,1

1
,2

1 ,3

, 0,1

 , 0,1

( , ) , ,

G G G G G

r i i i i i

G G G G GG
best i i i i ii

G G G G G

r best i i i

X F HDF if CB CW and rand T

X F LDF if CB CW and rand TV

mean X X F mean HDF LDF otherwise





 

   


  






(10) 

 

where G

iHDF and G

iLDF are the two difference vectors 

with higher and lower objective function values, 

respectively. 

 

   2 3 2 3 4 5

4 5

,

,

G G G G G G

r r r r r rG

i
G G

r r

X X if f X X f X X
HDF

X X otherwise

    
 



   (11) 

 

 

   4 5 2 3 4 5

2 3

    

 

,

,

G G G G G G

r r r r r rG

i
G G

r r

X X if f X X f X X
LDF

X X otherwise

    
 

    

(12) 

 

,1

G

iF , ,2

G

iF , and ,3

G

iF are the scaling factors of the 

proposed mutation strategies. Each scaling factor is 

randomly chosen for every mutant vector from a 

predefined range of values. These ranges suit the 

exploration and exploitation abilities of the selected 

mutation strategy. T is a predefined threshold, and 

  mean is the arithmetic mean. The mutant vector is 

generated using only one mutation of the three mutation 

strategies depending on the values of the absolute 

differences G

iCB and 
G

iCW with a probability threshold 

condition T . 

B.  Parameter Adaptation Strategy  

The control parameter values of the scaling factor F and 

the crossover rate CR affect the performance of the DE 

algorithm. For the same optimization problem, different 

rates of exploration and exploitation are required during 

the optimization process [9]. Therefore, it is recommended 

to tune the values of the control parameters at every 

generation to guide the search direction.   

The proposed mutation strategies have three directions 

of search: (1) search with a high exploration rate that is 

achieved through the first mutation strategy, (2) search 

with a high exploitation rate that is achieved through the 

second mutation strategy, (3) search with a balanced rate 

between them that is achieved through the third mutation 

strategy. For each target vector
 

G

iX at the current 

generation G, one of the three mutation strategies is 

selected with suitable values of the scaling factor and 

crossover rate.  

So, we choose the values of these control parameters 

randomly from three predefined ranges. Several trials over 

a large number of benchmark functions with different 

characteristics are made to determine these ranges. The 

first range of the control parameters is taken as F1 = [0.7 

0.8 0.9 0.95 1.0] and CR1 = [0.05 0.1 0.2 0.3 0.4] which is 

suitable when choosing the first mutation strategy (i.e. 

,1

G

iF   F1 and ,1

G

iCR   CR1). The second range is taken as
 

F2 = [0.1 0.2 0.3 0.4 0.5] and
 
CR2 = [0.8 0.85 0.9 0.95 1.0] 

which is suitable when choosing the second mutation 

strategy (i.e. 
,2

G

iF   F2 and ,2

G

iCR CR2). The third range 

is taken as
 
F3 = [0.3 0.4 0.5 0.6 0.7] and

 
CR3 = [0.4 0.5 0.6 

0.7 0.8] which is suitable when choosing the third 

mutation strategy (i.e. 
,3

G

iF   F3 and 
,3

G

iCR   CR3). 

During the evolution process, the values of the control 

parameters that will be used in the next generation are 

updated or remain unchanged according to the result of 

the selection phase. If the trial vector is fitter than the 

target vector (i.e.
 

   1  G G

i if U f X  ), the control 

parameters remain the same without change. The updating 

is done randomly from the proposed ranges when the 

target vector is fitter than the trial vector (i.e. 

   1 G G

i if X f U  ). Algorithm 1 illustrates a pseudo-

code of the proposed MSaDE algorithm. 

 

IV.  EXPERIMENTAL STUDY AND DISCUSSION 

Our algorithm MSaDE is applied to minimize three sets 

of well-known benchmark functions with different 

characteristics. The first set of benchmark functions 

consists of 13 traditional functions, named f1, f2, …, f13. 

These functions are the first thirteen functions chosen 

from [11], and they are called Sphere, Schwefel 2.22, 

Schwefel 1.2, Schwefel 2.21, Rosenbrock, Step, Quartic 

with noise, Schwefel 2.26, Rastrigin, Ackley, Griewank, 

Generalized Penalized Function 1, and Generalized 

Penalized Function 2, respectively. The optimal value of 

the function f8 is −12569.5, and the remaining functions 

have optimal values equal to zero. Functions f8 - f13 are 

multimodal, the Rosenbrock function (f5) is unimodal for 

D = 2 and 3 but multimodal in higher dimensions [29]. 

The other functions are unimodal.  

The second set of benchmark functions consists of 10 

special functions, named fc1, fc2 …, fc10. These functions 

are the first ten functions from CEC2005 [30, 31]. 

Functions fc1 - fc5 are unimodal and functions fc6 - fc10 are 

multimodal.  The third set of benchmark functions 

consists of 15 special functions chosen from CEC2013 [31, 

32], named fcc1, fcc2, …, fcc10,  fcc21, fcc22, …, fcc25.  The 

subscript number of the function name refers to its order 

according to the CEC2013 benchmark functions. 

Functions fcc1 - fcc5 are unimodal, functions fcc6 - fcc10 are 

multimodal, and functions fcc21 - fcc25 are compositions.  

MSaDE is compared with the standard "DE/rand/1/bin" 

and some efficient state-of-the-art DE algorithms with a 

hybrid mutation operator and self-adapting control 

parameters (HSDE) [11] over the first and second set of 

benchmark functions with dimension D = 30. The third set 

of benchmark functions with dimension D = 30 and 50 is 

used to compare MSaDE with four state-of-the-art DE 

algorithms: a competitive variant of adaptive DE (b6e6rl) 

[17], an enhanced fitness-adapting DE algorithm with a 

modified mutation (EFADE) [22], Success-History based 

Adaptive DE algorithm (SHADE) [16], and a modified 

adaptive differential evolution (ADE) [18].  

All comparisons are made in terms of the mean and 

standard deviation (STD) of the error. The error in a run is 

calculated as f (xbest) −     f (x
*
), where xbest is the best 
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solution in a run and x
*
 is the global minimum of the 

function. We use the same results of the mean and 

standard deviation (STD) of the error for the other DE 

algorithms as in their papers. Furthermore, the 

convergence rate for some selected functions is illustrated.  

To achieve a fair comparison between MSaDE and the 

other DE algorithms, we use two nonparametric statistical 

tests in the comparisons: Wilcoxon signed-rank and 

Friedman tests [33]. Wilcoxon signed-rank test computes 

R
+
, R

-
, and p-value, where R

+ 
is the sum of ranks that 

MSaDE performs better than the other algorithm, R
- 
is the 

sum of ranks that MSaDE performs worse than the other 

algorithm, and p-value refers to the significant difference 

between each pair of algorithms (MSaDE and one of the 

other algorithms) with a significance level α. The 

considerable difference exists only if p-value < α. 

Friedman test is used to rank all algorithms from best to 

worst over all the tested functions. The algorithm that has 

a minimum rank value is the best and the one that has a 

maximum rank value is the worst.  

Algorithm 1. Pseudo-code of the proposed MSaDE algorithm 

 
 

A.  Test Setup 

The simulation results are obtained using a digital 

computer with CPU core i3 (2.4 GHz, 3M cache) and 4 

GB of RAM in MATLAB R2007b Runtime Environment. 

The maximum number of evaluations of the objective 

function (FEs) = 10,000×D for all sets of benchmark 

functions. The population size (NP) of MSaDE in the first, 

second, and third sets of benchmark functions is NP = 50, 

100, and 100, respectively. The threshold T is set as 0.4 

for MSaDE algorithm in each set of the benchmark 

functions.  

The average of the results is obtained over 30 

independent runs for the first set of benchmark functions, 

25 independent runs for the second set, and 51 

independent runs for the third  set. For the third set, we set 

all values of the error that is less than 10
-8

 to zero as in 

CEC2013. In order to achieve a fair comparison as in [34], 

we use two different settings of the control parameters NP, 

F, and CR for the "DE/rand/1/bin" algorithm that is used 

in the first set of benchmark functions. In the first setting, 



 An Enhanced Differential Evolution Algorithm with Multi-mutation Strategies  31 

and Self-adapting Control Parameters 

Copyright © 2019 MECS                                                             I.J. Intelligent Systems and Applications, 2019, 4, 26-38 

the control parameters are fixed to NP=30, CR=0.9, and 

F=0.9 for all functions in this set, and we refer to the 

"DE/rand/1/bin" algorithm as DE1. In the second setting, 

NP is fixed to 25 while F and CR are tuned from one 

function to another to suit the different properties of 

functions.  

We refer to the "DE/rand/1/bin" algorithm of the 

second setting as DE2, and we use the best values for F 

and CR that are reached in [34]. In the second set of 

benchmark functions, the control parameter settings of DE 

are fixed to NP=30, CR=0.9, and F=0.9 as in CEC2005, 

and also we refer to it as DE1. The settings for the other 

DE algorithms are the same as in their papers. We use the 

arithmetic signs "+", "=", and "-" in the results to show 

that MSaDE performs better than, similar to, or worse 

than the other variant of DE, respectively. Wilcoxon 

signed-rank test is applied at a significance level of 

α=0.05 and α=0.1. 

B.  Results of First Set of Benchmark Functions 

For the 13 benchmark functions of the first set, the 

results of the mean and STD of the error for MSaDE, DE1, 

DE2 and HSDE are listed in Table 1. 

Table 1. Mean and STD of error for the first set of benchmark functions with D=30 

f(x) 

DE1 DE2 HSDE MSaDE 

Mean 

(STD) 
F CR 

Mean 

(STD) 

Mean 

(STD) 

Mean 

(STD) 

Unimodal 

Functions 

f1 
6.57E -15 

(1.13E -14) 
+ 0.5 0.3 

0.00E+00 

(0.00E+00) 
= 

6.08E -52 

(8.33E -52) 
+ 

0.00E+00 

(0.00E+00) 

f2 
5.13E -09 

(5.33E -09) 
+ 0.5 0.3 

1.74E-108 

(2.23E-108) 
+ 

5.82E -38 

(6.18E -38) 
+ 

0.00E+00 

(0.00E+00) 

f3 
2.39E -01 

(2.77E -01) 
+ 0.9 0.9 

1.20E -03 

(1.40E -03) 
+ 

7.41E -33 

(2.52E -32) 
+ 

0.00E+00 

(0.00E+00) 

f4 
1.88E+00 

(4.54E -01) 
+ 0.6 0.6 

6.66E -14 
(3.53E -14) 

+ 
5.01E -19 

(1.11E -18) 
+ 

0.00E+00 
(0.00E+00) 

f5 
2.97E+01 

(2.82E+01) 
+ 0.6 0.8 

4.66E+00 
(3.06E+00) 

+ 
0.00E+00 

(0.00E+00) 
- 

5.40E -29 
(0.00E+00) 

f6 
5.14E -15 

(7.20E -15) 
+ 0.5 0.3 

0.00E+00 

(0.00E+00) 
= 

0.00E+00 

(0.00E+00) 
= 

0.00E+00 

(0.00E+00) 

f7 
1.75E -02 

(5.80E -03) 
+ 0.3 0.3 

1.80E -03 

(1.10E -03) 
+ 

2.27E -03 

(1.06E -03) 
+ 

3.00E -05 

(2.83E -05) 

Multimodal 

Functions 

f8 
2.77E+02 

(1.62E+02) 
+ 0.9 0.3 

0.00E+00 
(0.00E+00) 

= 
0.00E+00 

(0.00E+00) 
= 

0.00E+00 
(0.00E+00) 

f9 
2.39E+01 

(6.97E+00) 
+ 0.9 0.1 

0.00E+00 

(0.00E+00) 
= 

0.00E+00 

(0.00E+00) 
= 

0.00E+00 

(0.00E+00) 

f10 
1.06E -08 

(8.00E -09) 
+ 0.5 0.3 

2.67E -15 

(0.00E+00) 
+ 

1.44E -14 

(3.78E -15) 
+ 

1.42E -15 

(0.00E+00) 

f11 
3.90E -03 

(6.10E -03) 
+ 0.5 0.3 

0.00E+00 

(0.00E+00) 
= 

7.22E -03 

(8.30E -03) 
+ 

0.00E+00 

(0.00E+00) 

f12 
4.10E -03 

(2.05E -02) 
+ 0.5 0.3 

0.00E+00 

(0.00E+00) 
= 

1.57E -32 

(1.11E -47) 
+ 

0.00E+00 

(0.00E+00) 

f13 
5.54E+01 

(2.41E+01) 
+ 0.5 0.3 

0.00E+00 
(0.00E+00) 

= 
7.39E -53 

(3.10E -52) 
+ 

0.00E+00 
(0.00E+00) 

 +/-/= 13/0/0 6/0/7 9/1/3  

 

Table 2. Average ranks of MSaDE and other algorithms using 

Friedman's test for the first set of benchmark functions with D = 30 

f(x) Rank Algorithm Average Rank 

Unimodal 

Functions 

1 MSaDE 1.36 

2 DE2 2.36 

3 HSDE 2.43 

4 DE1 3.86 

Multimodal 

Functions 

1 MSaDE 1.58 

2 DE2  1.75 

3 HSDE 2.83 

4 DE1 3.83 

All 

Functions 

1 MSaDE 1.46 

2 DE2 2.08 

3 HSDE 2.62 

4 DE1 3.85 

 

 

Compared to DE1, the accuracy of MSaDE is the best 

for all tested functions in this set. Compared to DE2, the 

accuracy of MSaDE is the best for the six functions f2-f5, f7, 

and f10 of the set and the same for the seven functions f1, f6, 

f8, f9, and f11-f13. Compared to HSDE, the accuracy of 

MSaDE is the best for the nine functions f1-f4, f7, and f10-

f13 of the set and the same for the three functions f6, f8, and 

f9. The accuracy of HSDE for the function f5 is better than 

MSaDE. The average ranks using Friedman's test for 

MSaDE, DE1, DE2 and HSDE are listed in Table 2. This 

test is applied to three cases: (1) only the unimodal 

functions are considered, (2) only the multimodal 

functions are considered, (3) all of the functions are 

considered. According to the results of Friedman's test for 

all the three cases, the other algorithms are ordered from 

best to worst: MSaDE is the first, DE2 is the second, 

HSDE is the third, and DE1 is the last.  

 

The results of Wilcoxon’s test are listed in Table 3. 

Comparing MSaDE to all other DE algorithms as two 
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pairs, the results show that its values of R
+
 > R

-
 for all the 

pairs at the significance levels α=0.05 and α=0.1. This 

means that MSaDE accuracy is significantly better than 

the accuracy of the other DE algorithms. The convergence 

curves for functions f7 and f11 are shown in Fig.1. The 

mean of error over 30 runs is plotted in a log scale on the 

vertical axis for each number of function evaluations FEs 

of the horizontal axis.  

Table 3. Results of Wilcoxon’s test for the first set of benchmark 

functions with D = 30 

Algorithm +/-/= R+ R- p value α=0.05 α=0.1 

MSaDE 

 versus  
DE1 

13/0/0 91 0 0.000 Yes Yes 

MSaDE  

Versus 
 DE2 

6/0/7 21 0 0.028 Yes Yes 

MSaDE 

 versus 

HSDE 

9/1/3 50 5 0.022 Yes Yes 

 

As shown in Fig.1, MSaDE reaches very fast the 

optimal solution with large differences than the other DE 

algorithms. 
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Fig.1. Convergence curves for functions f7 and f11 

 

 

C.  Results of Second Set of Benchmark Functions 

The results of the mean and STD of the error for 

MSaDE, DE1, and HSDE, over the 10 benchmark 

functions of the second set, are listed in Table 4. HSDE 

has the same accuracy as MSaDE for fc1 and has the best 

accuracy for fc2, and fc9. For the remaining functions, the 

accuracy of MSaDE is the best among DE1 and HSDE. 

The average ranks for MSaDE, DE1, and HSDE using 

Friedman's test are listed in Table 5. Three cases are 

considered in this test: (1) only the unimodal functions are 

considered, (2) only the multimodal functions are 

considered, (3) all of the functions are considered. 

According to the results of Friedman's test for all the three 

cases, the other algorithms are ordered from best to worst: 

MSaDE is the first, HSDE is the second, and DE1 is the 

last. The results of Wilcoxon’s test are listed in Table 6. 

Comparing MSaDE to DE1 and HSDE as two pairs, the 

results show that its values of R
+
 > R

-
 for all of the two 

pairs.  

According to Wilcoxon’s test, the pair algorithms 

MSaDE versus HSDE have a considerable difference at 

levels α=0.05 and α=0.1. For the pair MSaDE versus DE1, 

the considerable difference exists only at the significance 

level α=0.1. This means that MSaDE is considerably more 

accurate than the other algorithms. The convergence 

curves for functions fc4 and fc7 are shown in Fig.2. The 

mean of error over 25 runs is plotted in a log scale on the 

vertical axis for each number of function evaluations FEs 

of the horizontal axis. As shown in Fig.2, MSaDE has the 

fastest convergence rate with a high accuracy compared to 

the other algorithms. 

Table 4. Mean and STD of error for the second set of benchmark 

functions (CEC2005) with D=30 

f(x) 
DE1 HSDE MSaDE 

Mean 
(STD) 

Mean 
(STD) 

Mean 
(STD) 

Unimodal 

Functions 

fc1 
5.11E -14 

(1.72E -14) 
+ 

0.00E+00 

(0.00E+00) 
= 

0.00E+00 

(0.00E+00) 

fc2 
2.54E -01 

(2.70E -01) 
+ 

2.29E -22 
(5.32E -22) 

- 
1.13E -13 

(4.97E -14) 

fc3 
9.65E+05 

(5.11E+05) 
+ 

5.37E+04 

(2.33E+04) 
+ 

1.36E+04 

(8.87E+03) 

fc4 
3.18E+01 

(3.21E+01) 
+ 

1.50E -04 
(7.11E -04) 

+ 
4.34E -12 

(4.29E -12) 

fc5 
2.49E+02 

(1.77E+02) 
+ 

5.33E+02 

(3.90E+02) 
+ 

1.87E -05 

(2.37E -05) 

Multimodal 
Functions 

fc6 
2.82E+01 

(2.63E+01) 
+ 

1.59E -01 

(7.97E -01) 
+ 

3.06E -13 

(5.77E -13) 

fc7 
3.60E -03 

(6.10E -03) 
+ 

1.00E -02 

(1.13E -02) 
+ 

7.39E -04 

(2.30E -03) 

fc8 
2.09E+01 

(6.54E -02) 
+ 

2.09E+01 
(3.37E -02) 

+ 
2.08E+01 

(5.65E -02) 

fc9 
2.11E+01 

(6.96E+00) 
- 

0.00E+00 

(0.00E+00) 
- 

2.30E+01 

(1.50E+01) 

fc10 
1.92E+02 

(5.88E+01) 
+ 

4.70E+01 
(1.16E+01) 

+ 
4.26E+01 

(1.06E+01) 

 +/-/= 9/1/0 7/2/1  
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(a) Function fc4                                                                                (b) Function fc7 

Fig.2. Convergence curves for functions fc4 and fc7 

Table 5. Average ranks of MSaDE and other algorithms using 

Friedman's test for the second set of benchmark  
functions (CEC2005) with D = 30 

f(x) Rank Algorithm Average Rank 

Unimodal 

Functions 

1 MSaDE 1.30 

2 HSDE 1.90 

3 DE1 2.80 

Multimodal 
Functions 

1 MSaDE 1.40 

2 HSDE 2.00 

3 DE1 2.60 

All Functions 

1 MSaDE 1.35 

2 HSDE 1.95 

3 DE1 2.70 

Table 6. Results of Wilcoxon’s test for the second set of benchmark 

functions (CEC2005) with D = 30 

Algorithm +/-/= R+ R- p value α=0.05 α=0.1 

MSaDE 

versus  

DE1 

9/1/0 50 5 0.06 No Yes 

MSaDE 

versus 

HSDE 

7/2/1 38 7 0.02 Yes Yes 

D.  Results of Third Set of Benchmark Functions  

The third set of benchmark functions contains 15 

special functions with dimensions D = 30 and 50, chosen 

from CEC2013. The results of this set for D = 30 are 

explained as follows. The mean and STD of the error for 

MSaDE, b6e6rl, EFADE, SHADE, and ADE are listed in 

Table 7. Among all DE algorithms, the performance of 

MSaDE in terms of accuracy is the best for the functions 

fcc2 - fcc4, fcc6, fcc7, fcc10, fcc21 and fcc23. MSaDE and ADE 

have the same best value of the mean error over the 

function fcc24.  

The performance over the two functions fcc1 and fcc5 is 

nearly the same for all other algorithms. For the remaining 

functions of the set, MSaDE performance is slightly less 

than the other algorithms. The results of Wilcoxon’s test 

are listed in Table 8. Comparing MSaDE to all other DE 

algorithms pairwise, the results show that its values of 

R
+
 > R

-
 for all of the four pairs with a significance level 

α=0.05 and α=0.1. These results ensure that MSaDE is 

considerably more accurate than the other DE algorithms. 

The convergence curves for functions fcc3, fcc10, and fcc23 

are shown in Fig.3.  

The mean of error over 51 runs is plotted in a log scale 

on the vertical axis for each number of function 

evaluations FEs of the horizontal axis. Fig.3 shows that 

MSaDE converges very fast to the optimal solution when 

compared to the other DE algorithms.  

The results of this third set for D = 50 are explained as 

follows. The mean and STD of the error for MSaDE, 

b6e6rl, EFADE, SHADE, and ADE are listed in Table 9. 

Among all DE algorithms, the accuracy of MSaDE is the 

best for functions fcc2-fcc4, fcc7, fcc9, fcc10, and fcc23-fcc25. The 

best value of the mean error for functions fcc6, fcc8, and fcc22 

is achieved by SHADE with a slighter difference than 

MSaDE. EFADE has the best accuracy over the function 

fcc21. The performance over the two functions fcc1 and fcc5 

is nearly the same for all other algorithms. The results of 

Wilcoxon’s test are listed in Table 10. Comparing MSaDE 

to b6e6rl, EFADE, SHADE, and ADE pairwise, the 

results show that its values of R
+
 > R

-
 for all of the four 

pairs. For the pair MSaDE versus SHADE, a considerable 

difference exists only at the significance level α=0.1. The 

other remaining pairs have a considerable difference at 

levels α=0.05 and α=0.1. These results show that MSaDE 

is considerably more accurate than the other DE 

algorithms. The convergence curves for functions fcc4, fcc7, 

and fcc25 are shown in Fig.4. The mean of error over 51 

runs is plotted in a log scale on the vertical axis for each 

number of function evaluations (FEs) of the horizontal 

axis. Fig.4 shows that MSaDE achieves a high 

convergence rate with more accuracy over the other DE 

algorithms. Friedman's test is applied to the functions of 

the third set through three cases of these functions. The 

first case uses the functions of the set with D=30, the 

second case uses the functions with D=50, and the last 

case uses the functions with D=30 and D=50. According 

to these three cases, the average ranks for MSaDE, b6e6rl, 

EFADE, SHADE, and ADE using Friedman's test are 

listed in Tables 11, 12, and 13, respectively. The results 

for each case of the test are obtained considering four 

classifications of the tested functions: unimodal, 

multimodal, composition, and all functions. For all cases 

and classifications of the third set of functions, MSaDE 

has the first rank among all other DE algorithms. 
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Table 7. Mean and STD of error for the third set of benchmark functions (CEC2013) with D=30 

f(x) 

b6e6rl EFADE SHADE ADE MSaDE 

Mean 

(STD) 

Mean 

(STD) 

Mean 

(STD) 

Mean 

(STD) 

Mean 

(STD) 

Unimodal 

functions 

fcc1 
0.00E+00 

(0.00E+00) 
= 

0.00E+00 

(0.00E+00) 
= 

0.00E+00 

(0.00E+00) 
= 

0.00E+00 

(0.00E+00) 
= 

0.00E+00 

(0.00E+00) 

fcc2 
6.99E+04 

(4.41E+04) 
+ 

2.67E+04 

(1.53E+04) 
+ 

9.00E+03 

(7.47E+03) 
+ 

2.11E+06 

(1.55E+06) 
+ 

7.60E+03 

(9.31E+03) 

fcc3 
4.36E+03 

(1.35E+03) 
+ 

9.10E+05 

(2.41E+06) 
+ 

4.02E+01 

(2.13E+02) 
+ 

1.64E+03 

(2.83E+03) 
+ 

4.09E -05 

(1.26E -04) 

fcc4 
1.80E -02 

(2.88E -02) 
+ 

3.37E+00 

(3.78E+00) 
+ 

1.92E -04 

(3.01E -04) 
+ 

1.69E+04 

(2.84E+03) 
+ 

2.74E -07 

(5.44E -07) 

fcc5 
0.00E+00 

(0.00E+00) 
= 

0.00E+00 
(0.00E+00) 

= 
0.00E+00 

(0.00E+00) 
= 

1.39E -07 
(1.86E -07) 

+ 
0.00E+00 

(0.00E+00) 

Multimodal 

functions 

fcc6 
5.24E+00 

(9.90E+00) 
+ 

6.59E+00 

(4.19E+00) 
+ 

5.96E -01 

(3.73E+00) 
+ 

8.29E+00 

(5.81E+00) 
+ 

2.65E -04 

(8.35E -04) 

fcc7 
2.44E+01 

(8.96E+00) 
+ 

5.07E+00 
(3.62E+00) 

+ 
4.60E+00 

(5.39E+00) 
+ 

1.29E+00 
(1.21E+00) 

+ 
5.61E -01 

(7.57E -01) 

fcc8 
2.09E+01 

(4.72E -02) 
= 

2.10E+01 

(4.65E -02) 
+ 

2.07E+01 

(1.76E -01) 
- 

2.09E+01 

(4.81E -02) 
= 

2.09E+01 

(3.58E -02) 

fcc9 
2.86E+01 

(1.15E+00) 
+ 

1.51E+01 
(3.63E+00) 

+ 
2.75E+01 

(1.77E+00) 
+ 

6.29E+00 
(3.27E+00) 

- 
1.15E+01 

(1.34E+01) 

fcc10 
1.91E -02 

(1.33E -02) 
+ 

3.48E -02 

(2.04E -02) 
+ 

7.69E -02 

(3.58E -02) 
+ 

2.16E -02 

(1.35E -02) 
+ 

7.90E -03 

(9.30E -03) 

Composition 
functions 

fcc21 
2.96E+02 

(8.55E+01) 
+ 

3.38E+02 
(8.93E+01) 

+ 
3.09E+02 

(5.65E+01) 
+ 

3.19E+02 
(6.26E+01) 

+ 
2.70E+02 

(4.83E+01) 

fcc22 
1.23E+02 

(1.63E+01) 
- 

2.56E+02 

(1.46E+02) 
- 

9.81E+01 

(2.52E+01) 
- 

2.49E+03 

(3.86E+02) 
+ 

1.03E+03 

(3.27E+02) 

fcc23 
5.00E+03 

(4.06E+02) 
+ 

3.84E+03 
(1.08E+03) 

+ 
3.51E+03 

(4.11E+02) 
+ 

5.80E+03 
(5.04E+02) 

+ 
3.38E+03 

(4.07E+02) 

fcc24 
2.51E+02 

(1.38E+01) 
+ 

2.13E+02 

(7.74E+00) 
+ 

2.05E+02 

(5.29E+00) 
+ 

2.02E+02 

(1.39E+00) 
= 

2.02E+02 

(5.48E+00) 

fcc25 
2.75E+02 

(1.76E+01) 
+ 

2.61E+02 
(6.95E+00) 

+ 
2.59E+02 

(1.96E+01) 
+ 

2.29E+02 
(2.07E+01) 

- 
2.44E+02 

(3.74E+00) 

 +/-/= 11/1/3 12/1/2 11/2/2 10/2/3  

 

Table 8. Results of Wilcoxon’s test for the third set of benchmark 

functions (CEC2013) with D = 30 

Algorithm +/-/= R+ R- p value α=0.05 α=0.1 

MSaDE 

versus 
b6e6rl 

11/1/3 69 9 0.019 Yes Yes 

MSaDE 

versus 

EFADE 

12/1/2 80 11 0.016 Yes Yes 

MSaDE 

versus 

SHADE 

11/2/2 76 15 0.033 Yes Yes 

MSaDE 
Versus 

ADE 

10/2/3 68 10 0.023 Yes Yes 
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Fig.3. Convergence curves for functions fcc3, fcc10 and fcc23 (D=30) 
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Table 9. Mean and STD of error for the third set of benchmark functions (CEC2013) with D=50 

f(x) 

b6e6rl EFADE SHADE ADE MSaDE 

Mean 

(STD) 

Mean 

(STD) 

Mean 

(STD) 

Mean 

(STD) 

Mean 

(STD) 

Unimodal 
functions 

fcc1 
0.00E+00 

(0.00E+00) 
= 

0.00E+00 
(0.00E+00) 

= 
0.00E+00 

(0.00E+00) 
= 

0.00E+00 
(0.00E+00) 

= 
0.00E+00 

(0.00E+00) 

fcc2 
3.23E+05 

(1.56E+05) 
+ 

1.72E+05 

(5.48E+04) 
+ 

2.65E+04 

(1.13E+04) 
+ 

2.04E+05 

(7.67E+04) 
+ 

1.95E+04 

(7.96E+04) 

fcc3 
8.61E+06 

(2.33E+07) 
+ 

5.70E+06 
(6.70E+06) 

+ 
8.79E+05 

(1.96E+06) 
+ 

7.47E+06 
(7.59E+06) 

+ 
5.15E+05 

(6.68E+05) 

fcc4 
2.32E-01 

(3.12E-01) 
+ 

6.16E+00 

(5.24E+00) 
+ 

1.61E -03 

(1.41E -03) 
+ 

2.20E+02 

(9.58E+01) 
+ 

4.59E -04 

(3.63E -04) 

fcc5 
0.00E+00 

(0.00E+00) 
= 

0.00E+00 
(0.00E+00) 

= 
0.00E+00 

(0.00E+00) 
= 

1.39E -03 
(1.86E -03) 

+ 
0.00E+00 

(0.00E+00) 

Multimodal 

functions 

fcc6 
4.34E+01 

(1.43E-14) 
= 

4.34E+01 

(7.83E-10) 
= 

4.28E+01 

(5.52E+00) 
- 

7.35E+01 

(2.80E+01) 
+ 

4.34E+01 

(4.75E -13) 

fcc7 
8.26E+01 

(1.55E+01) 
+ 

1.80E+01 

(7.26E+00) 
+ 

2.33E+01 

(9.32E+00) 
+ 

2.07E+01 

(9.15E+00) 
+ 

1.33E+01 

(8.52E+00) 

fcc8 
2.11E+01 

(4.65E-02) 
= 

2.11E+01 

(3.68E-02) 
= 

2.09E+01 

(1.68E -01) 
- 

2.11E+01 

(3.53E -02) 
= 

2.11E+01 

(4.52E -02) 

fcc9 
5.67E+01 

(2.57E+00) 
+ 

3.28E+01 
(4.67E+00) 

+ 
5.54E+01 

(1.98E+00) 
+ 

2.60E+01 
(3.04E+00) 

+ 
1.58E+01 

(1.88E+00) 

fcc10 
3.54E-02 

(1.85E-02) 
+ 

6.98E-02 

(3.74E-02) 
+ 

7.36E-02 

(3.67E-02) 
+ 

5.98E -01 

(3.42E -01) 
+ 

3.23E -02 

(2.25E -02) 

Composition 

functions 

fcc21 
4.60E+02 

(4.10E+02) 
- 

3.53E+02 
(3.19E+02) 

- 
8.45E+02 

(3.63E+02) 
+ 

9.65E+02 
(1.43E+02) 

+ 
6.19E+02 

(4.82E+02) 

fcc22 
3.60E+01 

(2.44E+01) 
+ 

8.84E+02 

(5.22E+02) 
+ 

1.33E+01 

(7.12E+00) 
- 

7.72E+03 

(8.46E+02) 
+ 

2.37E+01 

(5.80E+02) 

fcc23 
9.77E+03 

(5.33E+02) 
+ 

7.35E+03 

(1.53E+03) 
+ 

7.63E+03 

(6.58E+02) 
+ 

1.17E+04 

(1.47E+03) 
+ 

6.60E+03 

(7.29E+02) 

fcc24 
3.33E+02 

(1.54E+01) 
+ 

2.45E+02 

(1.10E+01) 
+ 

2.34E+02 

(1.01E+01) 
+ 

2.78E+02 

(1.82E+01) 
+ 

2.33E+02 

(1.16E+01) 

fcc25 
3.64E+02 

(2.08E+01) 
+ 

3.27E+02 

(1.15E+01) 
+ 

3.40E+02 

(3.08E+01) 
+ 

3.53E+02 

(1.71E+01) 
+ 

2.91E+02 

(4.43E+00) 

 +/-/= 10/1/4 10/1/4 10/3/2 13/0/2  

 

Table 10. Results of Wilcoxon’s test for the third set of benchmark 
functions (CEC2013) with D = 50 

Algorithm +/-/= R+ R- p value α=0.05 α=0.1 

MSaDE  

versus  
b6e6rl 

10/1/4 58 8 0.012 Yes Yes 

MSaDE  

Versus 

 EFADE 

10/1/4 59 7 0.012 Yes Yes 

MSaDE  

Versus 

 SHADE 

10/3/2 77 14 0.092 No Yes 

MSaDE  
versus  

ADE 

13/0/2 91 0 0.000 Yes Yes 
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Fig.4. Convergence curves for functions fCC4, fCC7 and fCC25 (D=50) 

Table 11. Average ranks of MSaDE and other algorithms using 
Friedman's test for the third Set of benchmark functions (CEC2013) 

with D = 30 

f(x) Rank Algorithm Average Rank 

Unimodal 

Functions 

1 MSaDE 1.7 

2 SHADE 2.3 

3 b6e6rl 3.3 

4 EFADE 3.5 

5 ADE 4.2 

Multimodal 

Functions 

1 MSaDE 1.6 

2 ADE  2.8 

3 SHADE 3.0 

4 b6e6rl 3.6 

5 EFADE  4.0 

Composition 

Functions 

1 MSaDE 1.9 

2 SHADE 2.4 

3 ADE 3.3 

4 b6e6rl 3.6 

5 EFADE 3.8 

All Functions 

1 MSaDE 1.73 

2 SHADE 2.57 

3 ADE 3.43 

4 b6e6rl 3.50 

5 EFADE 3.77 

Table 12. Average ranks of MSaDE and other algorithms using 
Friedman's test for the third set of benchmark functions (CEC2013) 

with D = 50 

f(x) Rank Algorithm Average Rank 

Unimodal 
Functions 

1 MSaDE 1.7 

2 SHADE 2.3 

3 EFADE 3.1 

4 b6e6rl 3.7 

5 ADE 4.2 

Multimodal 
Functions 

1 MSaDE 1.9 

2 SHADE 2.8 

3 EFADE  2.9 

4 ADE 3.7 

4 b6e6rl 3.7 

Composition 

Functions 

1 MSaDE 1.6 

2 EFADE  2.4 

3 SHADE 2.6 

4 b6e6rl 3.8 

5 ADE 4.6 

All Functions 

1 MSaDE 1.73 

2 SHADE 2.57 

3 EFADE 2.80 

4 b6e6rl 3.73 

5 ADE 4.17 

Table 13. Average ranks of MSaDE and other algorithms using 
Friedman's test for the third set of benchmark functions (CEC2013) 

with D = 30 and 50 

f(x) Rank Algorithm D=30 D=50 
Average 

Rank 

Unimodal 

Functions 

1 MSaDE 1.7 1.7 1.7 

2 SHADE 2.3 2.3 2.3 

3 EFADE 3.5 3.1 3.3 

4 b6e6rl 3.3 3.7 3.5 

5 ADE 4.2 4.2 4.2 

Multimodal 

Functions 

1 MSaDE 1.6 1.9 1.65 

2 SHADE 3.0 2.8 2.9 

3 ADE 2.8 3.7 3.25 

4 EFADE 4.0 2.9 3.45 

5 b6e6rl 3.6 3.7 3.65 

Composition 

Functions 

1 MSaDE 1.9 1.6 1.75 

2 SHADE 2.4 2.6 2.5 

3 EFADE 3.8 2.4 3.1 

4 b6e6rl 3.6 3.8 3.7 

5 ADE 3.3 4.6 3.95 

All 
Functions 

1 MSaDE 1.73 1.73 1.73 

2 SHADE 2.57 2.57 2.57 

3 EFADE  3.77 2.80 3.28 

4 b6e6rl 3.50 3.73 3.61 

5 ADE 3.43 4.17 3.80 

 

V.  CONCLUSIONS 

In this paper, an enhanced DE algorithm with multi-

mutation strategies and self-adapting control parameters is 

developed. The enhancement aims to improve the 

exploration and exploitation abilities of the DE algorithm 

and achieve an automatic better balance between them. 

Three forms of mutation strategies with their associated 
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self-adapting control parameters are proposed in the 

mutation process. The first one increases the exploration 

rate of the global search. The second one increases the 

exploitation rate of the local search. The third one takes 

the average of the other two mutations to balance the rates 

of exploration and exploitation. For every target vector of 

the population at a current generation G, one of the three 

mutations is selected to generate the corresponding trial 

vector. This selection is basically based on the values of 

the current, best, and worst individuals at the current 

generation G. The values of the control parameters, the 

scaling factor F and the crossover rate CR are randomly 

tuned from three predefined ranges. These ranges are 

related to the proposed three mutation strategies. The 

proposed algorithm is tested on a total of 38 benchmark 

functions: 13 traditional functions, 10 special functions 

chosen from CEC2005, and 15 special functions chosen 

from CEC2013. Comparison is made in terms of the mean 

and standard deviation of the error with the standard 

"DE/rand/1/bin" as well as other five state-of-the-art DE 

algorithms. Moreover, Wilcoxon and Friedman tests are 

used as nonparametric statistical tests. According to the 

results of Friedman's test, the proposed algorithm has the 

first rank among all other DE algorithms. Also the results 

of Wilcoxon's test show that our algorithm is considerably 

more accurate than the other algorithms with an 

acceptable significance level. 
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