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Accurate event detection has high priority in many technical applications. Events in acquired data series, their duration, and
statistical parameters provide useful information about the observed system and about its current state. 	is information can
be used for condition monitoring, state identi
cation, and many kinds of forecasting as well. In some cases background noise
covers the events and simple threshold or power monitoring methods cannot be used e�ectively. A novel method called Scaled
Sequential Probability Ratio Test (SSPRT) produces 2D array of data via special cumulative sum calculation. A peak determination
algorithm has also been developed to 
nd signi
cant peaks and to store the corresponding data for further evaluation.	emethod
provides straight information about the endpoints and possible duration of the detected events as well as shows their signi
cance
level.	e newmethod also gives representative visual information about the structure of detected events. Application example for
thermomechanical fatigue test monitoring and another for vibration based rotational speed estimation of a four-cylinder internal
combustion engine is discussed in this paper.

1. Introduction

Since the 18th century there has been a growing interest in
statistical hypothesis testing. In the literature, several theories
have been already proposed to extend the applicability of
the mathematical background or to optimize calculation.
However, new methodologies [1–4] and applications [5–
10] of statistical hypothesis tests are published every year.
	e so-called Bayes’ theorem in probability theory has been
established by	omas Bayes in the early 1700s. Jerzy Neyman
and Egon Pearson analysed the e�ciency of hypothesis tests
and have published their work in 1933 [11]. 	e Neyman-
Pearson lemma o�ers a rule of thumb when all the data
have been already collected. 	e lemma states that when
performing a hypothesis test between two simple hypotheses�0 : � = �0 and �1 : � = �1, the likelihood ratio
test which rejects �0 in favour of �1 when Λ(�) = �(� |�0)/�(� | �1) ≤ � where 	(Λ(�) ≤ � | �0) = 
 is the
most powerful test at signi
cance level
 for a threshold �.	e
results ofNeyman andPearson inspiredAbrahamWald in the

mid-1940s to reformulate it as a sequential analysis problem
[12]. A test can solely be called sequential, if the number of
observations is not predetermined, but it is dependent on
the outcome of the observations. A great summary about the
evolution of sequential hypotheses tests and the early stages of
the development can be found inWalds paper [12] in Chapter
B.

In the last decades, there have been a surge of practical
applications of the SPRTmethodology in many areas includ-
ing low frequency sonar detection, passive acoustic detection
of marine mammals, tracking of signals, target tracking,
early detection of changes in signals, computer simulations,
data mining, clinical trials, gene ordering, agricultural sci-
ences, horticulture, pest management, educational testing,
economics and 
nance [13].	e latest published applications
of SPRT focus for example on human core temperature
prediction to prevent hyperthermia [5], diagnostics of the
COMPASS tokamak [6], and W7X stellarator [10]; further-
more, many vibration measurement based applications of
the methodology can be found in the literature [7, 8].
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Some practical technical applications of SPRT have been
also published by the authors. In these cases SPRT has been
used for malfunction detection [14], place identi
cation [15],
or AE (acoustic emission) event detection [16]. However
in the case of the referenced fusion diagnostic [6, 10] and
AE applications [16] the duration of events seems to be a
critically important information. Based on this information
burst events derived from the test material could be separated
fromother types of events. Also in the case of vibration signal
analysis of an internal combustion engine, setting limits for
the length of detected events can help to make determination
of cylinder activities more accurate. 	is paper discusses an
AE application where ultrasonic burst events can be localised
in noisy environment using the newmethodology.	e rate of
hits shows clear correlation to the applied pulling force to the
test specimen. Tachometerless speed estimation possibility of
an internal combustion engine is also demonstrated.

In the following we introduce a novel extension to the
classic SPRTmethod which produces a probability space and
can help to get straight information about the most probable
duration of detected events. In this paper a suggested peak
detection method is also introduced which has been devel-
oped especially to evaluate the data resulted by the presented
test method.

2. Scaled Sequential Probability Ratio Test

Introducing the Scaled Sequential Probability Ratio Test
(SSPRT), it is an extended version of the classic SPRTmethod,
which provides straight information about the endpoint and
the duration of subsections of a signal with changed statistical
distributions. In the following we refer to these changed
subsections as events. 	e discussed methodology can be
applied on discrete data series and the output data also stays
discrete in time.

	e methodology of the SSPRT can be separated into
three main steps. First the likelihood ratio is calculated point
by point via SPRT. Second a series of 
xed size cumulative
sums (cumulative sum array, CSA) are calculated sequentially
with di�erent prede
ned sizes. 	e range and the desired
resolution of the observed event duration must be de
ned
before the calculation starts. 	is way the method produces
a 1D numeric array as output for every single numeric
input value. A�er concatenating these 1D arrays the result
changes into a 2D numeric array. 	is partial result of the
SSPRT is quiet representative when displayed in a colormap,
waterfall diagram, contour map, or as a 3D surface. 	e
resulting surface shows a probability space, where the peaks
determines the main properties (endpoint location and event
duration) of the most possible event types. 	e third step of
the SSPRT is the localisation of these local maximum points
and selection of the most relevant ones.

2.1. Calculation of the Sequential Probability Ratio Test. 	is
paper just gives a general overview about the background of
SPRT. For de
nitions and detailed discussion of the theory
please see [12]. We consider a simple hypothesis �0 : � = �0

against a simple alternative �1 : � = �1. 	e SPRT for testing�0 against�1 is given as

�� = log
� (��, �1)� (��, �0) (1)

where �� denotes the �th observation on �. According to the
original method two constants are chosen where � < � and
both are dependent on the size of the acceptable decision
errors. 	e errors are speci
ed by 	(�1 | �0) ≤ 
 and	(�0 | �1) ≤ � where 
 and � are small constants. 	e
Cumulative Sum (CUSUM) of �� is calculated based on

�� = �1 + ⋅ ⋅ ⋅ + �� (2)

	en the rule of decision is made as follows:

(i) if log� < �� < log� �→ take another observation,

(ii) if �� ≥ log� �→ reject�0,
(iii) if �� ≤ log� �→ accept�0.

	e threshold values � and � and the error probabilities 

and � are connected in the following way:

� = (1 − �)
 (3)

� = �(1 − 
) (4)

Although Wald has shown that the SPRT procedure will stop
with a decision with a 
nite number of observations, in some
practical cases it is necessary to de
ne amaximum test length.
	e procedure is then called the Truncated SPRT (TSPRT)
[4, 7]. By truncating if the sequential process does not lead
to a 
nal decision a�er a given number of observation, an
additional rule is given for the acceptance of hypothesis:

(i) If �� > 0, accept�1.
(ii) If �� ≤ 0, accept�0.

However in this manner we change the probabilities of 
 and�. In the literature applications of 
xed sample size tests can
be also found. Other interesting extensions of the classical
method are for multihypothesis testing [3, 17].

	e 
rst step of the SSPRT data evaluation is a special
SPRT evaluation method, where parallel calculation of sev-
eral SPRTs has to be done. 	e main idea of the algorithm

is that if the �� value has already been calculated in the �th
iteration, it can be reused for multiple hypothesis testing. 	e
only criteria are that the di�erent SPRT processes must be
based on same hypothesis and the only di�erence between
them is in the 
xed run length. In our application at this 
rst
stage of calculation the lower and upper decision levels have
been le� out of consideration. In this manner the evaluation
process always continues and never stops or restarts. 	is is
because the SSPRT was developed for real-time applications
and must be insensitive for initial value problems. For
evaluation of the SPRT with 
xed size log likelihood ratio
(LLR) summation, a suitable method is the later discussed
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CUSUMalgorithm. Tomake the 
nal decision, one can easily
use the rules of TSPRT already discussed before or de
ne
alternative decision methods and apply them in a later step.

During the tests of the implementedmethodswe used test
signalsmostlywith normal distribution and zeromean.	ese
terms makes the SPRT equations much simpler. 	e point-
by-point formula is shown by (5):

�� = log
� (��, �1)� (��, �0) =

�21 − �202�21�20 �
2
� − log �1�0 (5)

We can take somemore simpli
cations if we introduce a new
variable � which marks the prior knowledge about the ratio
of the deviations a�er and before the change point.

� = �1�0 (6)

where �0 is the standard deviation of the whole signal and�1 is the standard deviation of the changed subsections. If
there are rare and relatively short events in the signal, we can
say that �0 is the standard deviation of the background noise,
because of the negligible e�ect of the rare events. If we reorder
the equation for �, we get �1 = ��0. Equation (7) shows the
reordered form of (5).

�� = �2�20 − �202�2�20�20 �
2
� − log (�) = �2 − 12�2

�2��20 − log (�) (7)

where (�2 − 1)/(2�2) and (− log(�)) are constants and can
be signed as �� and ��� respectively. 	ese constants can be
computed and prede
ned. Equation (8) is the 
nal equation
for ��.

�� = �� �2��20 + �
�� (8)

where �� is the �th sample in the source data series. 	e�0 parameter can be a prede
ned value or a sequentially
computed parameter which can be easily refreshed using
the �� observation. 	is way the SPRT will be an adaptive
hypothesis test, which can change its sensitivity according to
the background noise level. 	is implementation needs a few
learning samples at the beginning of any evaluation to get the
output with acceptable reliability.

2.2. Calculation of the Cumulative Sum Array. Many kind
of sequential change point detection methods are available
in the literature. 	ese are usually called control charts
or process-behaviour charts, but they are also known as
Shewhart charts. Such elementary algorithms are for example
the Combined Adaptive (CA) chart, Fixed Sampling Dis-
tance (FSD) chart, Fixed Sample Size (FSS) chart, Variable
Sampling Distance (VSD) chart, Variable Sample Size (VSS)
chart, Cumulative Sum (CUSUM) chart, FiniteMoving Aver-
age (FMA) chart, and the Exponentially Weighted Moving
Average (EWMA) chart. Most of the algorithms are used in
practice work on samples of data with 
xed size window or
moving 
xed size window.

	e idea of the LLR-based CUSUM algorithm is that the
prechange mean of the LLR is negative and the postchange
mean is positive. If the analysed signal contains a changed
subsection with a given length, the local result of the CUSUM
[16] will be the highest at the end of the changed subsection
if the cumulative calculation has been started just before
the 
rst change. In the case of our application a special
implementation of the CUSUM chart has been used. 	e
SSPRT algorithm realizes parallel sequential hypothesis tests.
In this case the same hypothesis must be supposed for
parallel threads. Only the probabilities of 
 and � of parallel
TSPRTs varies because of the di�erence between the 
xed
numbers of summed LLR values. 	is way the LLR value
must be calculated only once for a given sample in the source
data series. 	e same value can be used to perform the
actual iteration of the 
xed size rolling CUSUM calculations.
Henceforth the evaluation of a given data series using parallel
CUSUM algorithms with di�erent parameters is noted as
CSA (Cumulated Sum Array). 	e CSA can be calculated
in several ways and it results in a numeric array for every
single numeric input. 	e calculation methodology will be
discussed in later sections.

	e CUSUM step of the SSPRT slightly di�ers from the
conventional way of calculation. Many improved CUSUM
methods are available in the literature. An interesting sequen-
tial solution has been called one-sided process inspection
scheme or the extended two-sided version of it introduced
by Page [18] has already much less sensitivity to the initial
score because of the applied adaptive threshold. 	e one-
sided version computes the cumulative sum as �� = ∑��=1 ��
and takes action if �� − min0≤�<��� ≥ ℎ. 	e rule can be
reformulated as a sequential problem as follows in (9). 	e

method takes action a�er the �th observation if ��� ≥ ℎ.
��� = max (���−1 + ��, 0) (� ≥ 1)
��0 = 0 (9)

	is method is sometimes called CUSUM Algorithm as a
Repeated SPRT [17]. However in the SSPRT we need the
“repeated” property of such algorithms but do not need the
adaptive threshold because of using the decision rules of
the TSPRT methodology discussed before. 	e SSPRT is a
sequential algorithm which analyses the input series and
makes decisions point by point. It must be totally insensitive
to initial value settings and should never reset the CUSUM
procedure because of special rules.

During SSPRT we take parallel CUSUM procedures
simultaneously. One of these parallel processes can also be
introduced as a special 
xed sample size elementary change
point detection algorithm which works on samples of data
with 
xed size sliding window.

Many publications show novel methods for optimized
change detection using CUSUM as can be seen in references
[2, 19] or analyse work e�cient parallel scan solutions to get
CUSUM values [20]. As in the case of these papers, the focus
of our work has been to develop a general framework that
o�ers scalable performance and operates in limited memory
and in real-time. We supposed in the previous section that
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the events buried in the background noise are short and
rare enough to keep the rolling �0 parameter unbiased. We
also suppose that the minimum and maximum length of the
signi
cant events are known and signed as ���� and ���	
respectively. 	e SSPRT use a sliding window over the data
stream. Its length is the amount of historical data that an
algorithm stores and considers during the computation. 	e
SSPRT method contains several parallel CUSUM processes,
where only the length of the sliding window is di�erent. 	e
numeric results of these CUSUMs are the rows of the SSPRT
output data. 	ey operate with  
 : { 0,  1, . . . ,  �−1}
window sizes, where! is a user de
ned parameter and notes
the number of rows. 	e  
 parameters must be chosen
and ���� ≤  0 ≤  1 ≤ ⋅ ⋅ ⋅ ≤  �−1 ≤ ���	. If a
single number from the source data stream at time instant� is �� and  
 is the length of the sliding window, then the
algorithm considers only the data points {��−��+1, . . . , ��}. As
new data become available, the sliding window slides by one
element, discarding the oldest and incorporating the latest
data element. Now we show how to compute one row of the
SSPRT if the  
 parameter has been already chosen. If we
follow a naive way to implement this algorithm, the equation
will be as

"�� #.: �
� = ��−��+1 + ⋅ ⋅ ⋅ + �� =
�∑

�=�−��+1
�� (10)

	is algorithm needs  
 addition operation for every single

�
� , i.e., to get one column of the SSPRT at time instant� ∑�−1
=0  
; addition operations have to be done.	ismethod

needs to store the most recent  �−1 pieces of input data in
a bu�er. 	e advantages of this algorithm are the simplicity

and that using this it is not necessary to calculate all of the �
�
values in prede
ned order. One can easily skip unnecessary
points or can also calculate the output values as independent
processes via multicore processor system. 	e disadvantage
is that this algorithm needs in normal continuous operation
a very large number of addition operations and the number
of operation depends on the chosen 
 parameters. Another
bad property is that the same data samples must be read from
the bu�er more times during the same iteration.

It must be noted that for example the corresponding

subsections of the source data series of �
�−1 and �
� have
huge ( 
 − 1 samples) overlap. If it is wanted to ful
l much
less operation steps, one can easily reuse the outputs of the
previous iteration. Now we show the recursive equation for�
� calculation in (11).

"�� ##.: �
� = �
�−1 − ��−�� + �� (11)

	is implementation contains only one subtraction and one
addition, i.e., to get one column of the SSPRT only 2!
numeric operations have to be done contrary to the previous
algorithm. However it requires almost the same bu�er size to
store input data temporarily, and it also needs another bu�er
for the outputs of the previous iteration. It means one bu�er
of size �−1 + 1 and another of size!.

We can take similar simpli
cation if we take notice of the

overlap of the corresponding subsection of �
−1� and �
� . Since 
−1 ≤  
, �
� can also be computed as follows:

"�� ###.: �
� = (��−��−1+1 + ⋅ ⋅ ⋅ + ��)
+ (��−��+1 + ⋅ ⋅ ⋅ + ��−��−1)

= �
−1� + �−��−1∑
�=�−��+1

��
(12)

In this case the overall process needs the same bu�er size for
the input elements. 	e advantage of this algorithm is that it
does not need to store an array of previous output data. It uses
only one output data from the previous CUSUM row instead.

In the next session two suggested scale types and the
corresponding equations are shown. First of all we have to

x some basic parameters which de
ne the properties of
the chosen scale. 	ese parameters are the minimum and
maximum length of the sliding window expressed in number
of samples (���� and ���	 respectively) and the number of
scales (!). All of these parameters are positive integers and
must be greater than zero: 1 ≤ ���� ≤ ���	 and 1 ≤ !.
2.2.1. Linear Scaled CSA. First we show a basic implemen-
tation where the ���� parameter has to be ignored and! = ���	. Now the only available setting is ���	 and the
resolution of the output will be this way the highest because 
 = ' + 1 for ' : 0, . . . , ! − 1.

Using one of the above described CSA equations we get
an output array for every single input data, and the sequence
evaluates the presence of subsections that have been changed
in the input data series and have got the given  
 length.
	e resolution of the observed length is this way the best,
equaling the sampling rate of the input data series. When
using the default ���� = 1, both of the CSA II and the CSA
III algorithms can be used easily. If an alternative ���� is
required, the CSA II seems to be practical, because in the
case of the CSA III the rows that correspond to window sizes
below ���� must be also computed to get the 
nal result.
	ese additional output values can be released a�er the actual
column has been completely calculated.

	e duration of the detected events are o�en less impor-
tant as the accurate localisation. To decrease the bu�er sizes
and to get an output via less overlapped calculations, a
possible way is choosing ! less than the observed range of
length.

A modi
ed parameter!� can be de
ned as!� = min(!,*), where * = ���	 − ���� + 1. 	is is the feasible resolution
according to the chosen parameters. 	e slight modi
cation
of the ! parameter also modi
es the feasible range (*�) of
the analysis as *� = (!� − 1)-. First, we have to compute
(13) for the optimal distance between two windows that are
neighbours.

- = ⌊ *!� ⌋ (13)
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N6=7

N3=4

N1=2

Figure 1: Example for linear scaled CSA calculation.

	e array of the length of all used windows can be now
expressed as

 
 = ���� + '- for ' : 0, . . . , (!� − 1) (14)

Let see an example to show how this scaling method works.
Let the basic parameters be ���� = 1, ���	 = 8, m=8. 	e
input data is generated as a series of negative and positive
units.	enegative units illustrate the LLRwhich corresponds
to the background noise and the positive values show where
the statistic has been changed. Two events are simulated
in this example. 	e 
rst one starts at the second sample
and has only two samples. 	e other one starts at the 
�h
sample of the series and has four samples. It can happen that
the classi
cation of some samples, which has been acquired
during an event, is incorrect. If two or more detected short
events are near enough to each other, that they also can be
parts of a more dominant long change must be analysed.

Figure 1 shows the output data array (�
� ), where the

bottom row (�0� ) equals to the input data series because  0 =1. In the 
gure the white cells indicate negative data points.
According to the decision rules of the TSPRT method, in
the case of grey or black cells the alternative hypothesis is
accepted; i.e., the signal has been changed. 	e SSPRT can
be a special decision procedure, which results in point-by-
point! decisions corresponding to the most recent 
 input
samples. On the other hand the output can be seen as a special
probability space, where local peaks show the most probable
parameter combinations (location and duration) of a possible
event.

As it can be seen in the presented example, two changed
subsections are in the input data series. Two of the three
highlighted local peaks are at the same location. It means that
the last four samples are parts of a changed subsection, but it
is also possible that these points are parts of a longer event
which contains seven data points before the time instant. In
a later chapter it will be discussed how is it possible to locate
the most relevant peaks in this data array in a sequential way.

2.2.2. Logarithmic Scaled CSA. In the case of many applica-
tions logarithmic scaling makes the result much informative.
In the case of the lower section of the logarithmic scale, short
changes can be observed much better because of the better
resolution.

Let us introduce a new parameter 5which is quite similar
to the parameter - in the case of linear scales. Here 5 shows

the ratio of the window length of two neighbour scales and 0 = ����. If the number of requested CSA rows (!) and���	 are also prede
ned input parameters, one have to 
nd
the optimal 5 value:

5 = �−1√���	���� (15)

Based on the latter (16) de
nes the 
 array for a logarithmic
scale.

 
 = [����5
] for ' : 0 . . . (! − 1) (16)

2.3. Peak Detection. Several mathematical methods are avail-
able to detect peaks in data series. It is a di�cult question,
which one is the best choice to use in our application. We
chose a specialised method. In the case of the SSPRT it is a
special property that the neighbour rows in the output are
results of overlapped sum calculation with di�erent window
sizes. Because of the applied rectangular windows another
important property is that all rows are scaled, delayed, and
low-pass 
ltered versions of the original input data. 	e pre-
sented 2D output data of SSPRT can be also computed as an
output array of a special low-pass 
ltering 
lter bank. CSA I
and CSA III, which have been presented in a previous section
of this paper, represent di�erent ways of calculation to get
the same result. 	ese two methods follows the same logic of
calculation as techniques for FIR (Finite Impulse Response)
and IIR (In
nite Impulse Response) 
ltering respectively.	e
CSA II method is also similar to FIR techniques as CSA I.
	e former represents just an optimized way to get the same
output.

Another important question may arise if one develops
a peak detection method for 2D data arrays. Do we need
all local peaks? In our case there is a time instant where
two peaks can be found in the same column. 	e value of
these peaks represents the probability of the corresponding
subsections to be an event, while unchanged sections of the
input (contains only background noise) result in negative
LLRs and events (changed subsections) result in positive
LLRs. If a peak has higher maximum value than another, the
applied window has longer overlap to the detected event. In
such cases the longer event with higher peak value has to be
stored and lower peaks in the same column can be ignored.

In the case of our example series illustrated by Figure 1,
three local maximum points can be found. 	e coordinates
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of these points in the three-dimensional Descartes coordinate
system are [12; 1; 2], [17; 3; 4], [17; 6; 5]. Based on the
latter considerations just two of the peaks are relevant[12; 1; 2] and [17; 6; 5]. 	ese points correspond to over-
lapping subsections of the original signal so we should decide
which one to store as a 
nal decision. Similarly to the case
of overlapped subsections which have been detected at the
same time instance, now we can do the same comparison
and decision procedure for the applied window length and
the peak magnitude. Based on probability ratio test the 
nal
decision is that the signal contains a changed subsection

which starts at the 11th time instance and has a length of seven
samples.

Now let us see some mathematical equations and how
this logic has been implemented as a sequential evaluation
method. In the following the methodology is discussed in
four main steps.

Step 1. At 
rst step, the maximum points of the sequentially
calculated columns of CSA have to be found. At all time
instances, the maximum values are searched and the coor-
dinates of the resulting maximum point are stored in a new
array. 	ese parameter sets (time instance or column index;
row index;maximumvalue of the analysed column) are noted
asD�[�, E�, V�].

�� �→ D� [�, E�, V�] (17)

max
0≤�≤�−1

��� = ��� = V� (18)

In theD� series the coordinates of the maximum point and
the corresponding value can be stored. However it is practical
to drop the row index and use the corresponding sliding
window size instead.	is parameter describes the calculation
process better and can be useful in later steps if already has
been stored. During sequential event detection methods the
length of an event can only be determined when the event has
already ended and the used window size is a key parameter at
this point if the start date of the event (H�) is needed.

D� [�, E�, V�] �→ D̂� [H�, J�, V�] (19)

H� = � − (J� − 1) (20)

J� =  � (21)

Step 2. 	e decision logic has to be sequential. It means
we only know the values before and at the examined time
instance. First, possible local maximum points in the series
of the cumulated LLR values have to be determined. If the
current value is greater than or equal to the value of the
previous iteration, a partial decision can be stated that the
point can be a local maximum (LM) point of the series.

-��� = {{{
1 �� V� ≥ V�−1

0 �� V� < V�−1
(22)

where -��� is the Boolean result of the decision about the �th
input data which could be a local maximum. Boolean outputs
as 0 and 1 represent false and true values respectively.

Second, the evaluation of the applied SPRT rules should
be an alert if the analysed subset of the data series could
correspond to an event.

-���� = {{{
1 �� V� ≥ �
0 �� V� < � (23)

where -���� is the result of the local decision of the applied
SPRT logic. 	e threshold parameter � discussed earlier at
the introduction of SPRT can be con
gured to zero if one
follows the evaluation methodology of TSPRT but can also
be chosen to any positive value, which a�ects the accuracy
and the sensitivity of the classical SPRT methodology.

If both partial decisions result true, the actual D̂� data
cluster has to be stored for later use. 	e -�� as the holding

decision at time instance � can be determined as -�� = -���� ∙-��� .�D� is a new series, which holds D̂� according to the -��
decision. �D� can be determined point by point using the
following equations:

D̂� [H�, J�, V�] �→ �D� [ℎH�, ℎJ�, ℎV�] (24)

�D� = {{{
�D�−1 �� -�� = 0
D̂� �� -�� = 1 (25)

Step 3. 	e goal of this step is to 
nd the endpoint of the
detected events. Now the decision result at time instance �will
be signed as O�.

O� = {{{
-��−1 �� -�� = 0
0 �� -�� = 1 (26)

Any time if theO� results true, it can be stated that a detected
event or statistical change just ended. 	is is not the 
nal
decision yet, because these alerts can also sign tiny event
parts, which can also be a part of a long change. It must be
cleared that the possible correspondence to a longer event can
only be determined later.

�D� [ℎH�, ℎJ�, ℎV�] �→ OD� [-H�, -J�, -V�] (27)

OD� = {{{
OD�−1 �� -�� = 0
�D� �� -�� = 1 (28)

Step 4. In this step the previously detected possible events
are evaluated. 	ese events can correspond to the same event
or they can be registered as individual events. To determine
this property, a watchdog logic has been used. 	e watchdog

must restart its operation if the actual -�� becomes true. 	e
initial value when restart is needed equals always the actualℎH� value. 	e watchdog (J-5�) decrements its stored value

by one if -�� false and alerts if the stored value reaches the
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Figure 2: Time signal of the generated Gaussian background noise with additional Gaussian noise between 10 and 10.2 seconds.
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Figure 3: Lambda values resulted by the common SPRT evaluation method.

zero level. 	is alert is signed now as PO� which means the

nal decision at time instance �.

J-5� = {{{
J-5�−1 − 1 �� -�� = 0
ℎJ� �� -�� = 1 (29)

PO� = {{{
1 �� J-5� = 0
0 �� J-5� ̸= 0 (30)

Once a 
nal decision result has been determined as true, the
actual property values stored inOD� correspond to the most
possible event detected in the last section of the source signal.
	ese results are signed as 	� as event properties a�er 
nal
decision at time instance �.

OD� [-H�, -J�, -V�] �→ 	� [RH�, RJ�, RV�] (31)

	� = {{{
��VST�- �� PO� = 0
OD� �� PO� = 1 (32)

In the case of the example series shown in Figure 1, the 
nal
decision about the detected event parameters is as follows:

	� [RH�, RJ�, RV�] = 	24 [11, 7, 5] (33)

	is means that a decision could be made at the 24th time
instance, that a statistical change has been occurred in the

source signal starting at the 11th time instance, and its most
probable duration is seven samples.

3. Using the SSPRT Method for Analysing
Generated Test Signal

	e applicability of the developed SSPRT methodology has
been tested on several types of test signals. 	e method
seemed to be working as expected in the case of generated
test signals and on real life measurement signals as well. 	e
following data series and 
gures are just representative exam-
ples for the evaluation of a generated test signal. Detailed
discussion of applications will be topics for later publication.

	e following example in Figure 2 shows a tiny section
of the generated signal that contains Gaussian white noise
with unit RMS (Root Mean Square) as constant background
and periodically contains additional Gaussian noise with the
same power and 0.2 seconds duration. 	e sections with
additional noise are the simulated events which have to be
detected using the SSPRTmethodology. 	e additional noise
results slightly in increased power of the signal between
10 and 10.2 seconds, and it still have Gaussian distribution
during the event. If one takes a look at the generated time
signal which is shown by Figure 2, it can be stated for the

rst sight that a common threshold test cannot be used for
reliable event detection and also the start and end points of
the events cannot be determined accurately. If the common
SPRT evaluation method has been chosen we get the data
series as Lambda values shown by Figure 3. 	e common
SPRT is able to detect the simulated event as the decision
function has reached the level of 6.9 more times. It can be
seen that event detection works well, if LLR values have been
processed using the common evaluation method, but how to
get exact duration of the event remains a question. In the case
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Figure 4: Linear scaled CSA output. Peak coordinates: [10.191; 0.192; 28.622].

of the novel SSPRT evaluation method we need to apply one
of the above suggested CSA calculation methods to the LLR
values. 	e 
xed size cumulative sum calculation results in
the highest value, if the length of the applied window 
ts to
the event duration and if these two have full overlap. It can
be easily demonstrated. In the case of a too short window,
not all event-related positive LLR values are used for sum
calculation, and too long windows occur that background
noise related negative LLR values are taken into account.

Figure 4 illustrates the resulting probability surface where
the highest peak shows the most probable duration end
endpoint of the detected event. Determined duration of the
statistical change has been 192 ms and its probable start time
9.999 s. 	ese are extremely good estimations for the 200 ms
long simulated event beginning at 10 s.

Local maximum points of the resulting three-dimen-
sional surface can be easily found by several peak searching
algorithms which can be applied to the presented data of
the above colormap. 	e previously described mathematical
background gives a possible solution to realize an e�ective
peak searching method especially for the CSA output.

4. Practical Applications of SSPRT

SSPRT can be a versatile tool for any applications, where
changes of the noisy input signal have to be detected accu-
rately and the length of events is a key parameter for further
evaluation. In the case of any practical applications where
common SPRT evaluation has been applied successfully on
sampled data series, the novel SSPRT methodology will
provide at least that accurate event detection. Furthermore
SSPRT shows directly the most probable duration which can
help in event classi
cation or source identi
cation.

In the case of AE applications only well optimized
sequential algorithms can be used for real-time evaluation.
Steel under heat or pressure stresses emits AE signals, which
can be detected using AE sensors. Experiments have been
planned and carried out using a material testing simulator
shown in Figure 5. Detailed description of the experimental
setup and the PXIe-6363 based data acquisition system can be
found in reference [16, 21]. 	e results showed that the SPRT
method is absolutely suitable for AE event detection during

Figure 5: 	e Gleeble 3800 thermomechanical simulator [6].

fatigue test. Figure 6 clearly demonstrates the relationship
between the applied loading force and the rate of detected
AE events.	e test specimenproducedmuchmore ultrasonic
bursts during pulling forces than in the case of compression.

One of the detected bursts can be seen in Figure 7 and
the corresponding CSA result of the SSPRT evaluation in
Figure 8. In the case of the evaluation methodology intro-
duced by reference [16] smoothing was applied to the LLR
values before locating start and end time of events. It seems
to work well, but this way averaging parameters must be 
xed
before evaluation. 	e disadvantage of the moving average
method is that rapid internal changes during an event cannot
be observed; this is also mentioned in that article. SSPRT
could be a better tool for analysing such events’ internal
structure. If we take a look at the colormap, the highest
peak shows that the detected event is 237.8Vs long, starts
at 264.9Vs, and lasts for 502.7Vs. 	e resulting data can be
also displayed as a three-dimensional surface, which provide
new opportunities for further studies. Other AE applications
are for example failure-monitoring of slide bearings [22] or
localisation of initial cracks in windscreen glass [23], where
SSPRT could be a great tool for accurate event detection,
localisation, and analysis.

Based on the above, SSPRT is well suited for detection
of rare events in noisy environment. 	is is guaranteed by
the hypothesis test theory, and it is possible to calculate
the probability of correct and incorrect decisions. If events
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Figure 7: One of the detected ultrasonic bursts detected during fatigue test.
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Figure 8: CSA result of detected AE event [502.7; 237.8; 490.4].

occur more frequently than expected by the theory or if
the distribution does not match the hypotheses, the SSPRT
will still be able to detect events. It remains also possible
to analyse internal structure of events. 	e disadvantage of
periodically appearing changes is that decision making can
be done at a lower signi
cance level. By SSPRT evaluation
of vibration acceleration of an internal combustion engine,
it is easy to detect combustion processes of the cylinders. If
the SSPRT method can reliably detect all cylinder activities,

further conclusions can be drawn. For example combus-
tion frequency is proportional to the engines rotational
speed. By displaying and processing the resulting three-
dimensional data, detailed information can be obtained about
the performance of combustion processes in each cylinder.
Knowing the exact position of the cranksha� gives the
possibility of resampling signals by angular rotation and
then cyclostationary diagnostic tools can be easily applied.
	e results of such algorithms can be displayed in polar



10 Mathematical Problems in Engineering

E
ve

n
t 

d
u

ra
ti

on
 [

s]

8m

7m

6m

5m

4m

3m

2m

1m

0

9m

10m

Time [s]

E
ve

n
t 

d
u

ra
ti

on
 [

s]
A

cc
el

er
at

io
n

 [
g]

8m

6m

2m

100

50

0

-50

L
am

b
d

a

3333

77

55
55

333

77 77 77 77

44

8888

66

55

10m

88

3 4 21 3 4 21 3 4 21 3 41

0

C
o

m
b

u
st

. f
re

q
. [

H
z]

52

50

48

46

54

44

56

Cylinder
Number:

6

4

2

0

−2

−4

−6

8

10

−8

0,3 0,32 0,34 0,36 0,38 0,4 0,42 0,44 0,46 0,48 0,5 0,52 0,54 0,56 0,58 0,6

(a)

(b)

(c)

(d)

4m

Figure 9: Synchronous display of a four-cylinder gas motor measurement and SSPRT results: measured vibration acceleration of the engines
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diagrams, which o�er further possibilities of measurement
evaluation.

In Figure 9 the raw vibration acceleration data series
and the derived results appear simultaneously. Event lengths
resulted by SSPRT are illustrated as transparent vertical bars.
Depending on the event length, di�erent colored bars appear
in the graph: short events are green (2 to 5 ms); yellow bars
sign medium length (6 to 7 ms); the longest ones appear
in red (8 ms). In the (c) graph the determined combustion
frequency can be seen.	is frequency can be easily converted
to rotational speed. 	e experimental setup contained a high
precision encoder as reference sensor. Average speed of the
gas motor was 1455 rpm which equals the 48.5 Hz average
combustion frequency resulted by SSPRT.

5. Conclusions

	is article presents a new technique, which enhances the
evaluation method of the classical sequential probability ratio
test.	is novelmethod is based on realization of parallel 
xed
size cumulative sum calculations with di�erent prede
ned
sizes on the calculated log likelihood ratio. 	e resulting
data is called cumulative sum array and the values can be
visualized as a three-dimensional surface. 	is paper has
shown three alternative ways, how the same cumulative
sum array values can be calculated. Some special advan-
tages and disadvantages of these alternative ways of the
calculation have been also discussed. Many peak detection
methods could be used to evaluate the resulting data of
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the cumulative sum array; however, the authors suggest
specialised peak detection algorithm. It has been devel-
oped to evaluate the log likelihood ratio based cumulative
sum array sequentially. If a local peak has been found,
the coordinates of the peak show the queried properties
of the event. Rows correspond to a given event length,
columns show when an event has been ended. Maximum
values of the peaks give information about strength and
signi
cance. 	e proposed method can be readily used in
practice. 	e successful applicability of the novel evaluation
method has been 
rst demonstrated on generated test signals
where the noisy background contained short sections with
additional noise. 	erea�er, practical examples have been
presented through acoustic emission and vibration diagnostic
applications. 	e method can also be useful by cumulated
sum array visualization on color maps. Graphical represen-
tation makes it much easier to compare detected events
via giving a good visual overlook of the events’ internal
structure.
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