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Abstract. In this study we evaluate different HMM topologies in terms of
recognition of handwritten numeral strings by considering the framework
of the Level Building Algorithm (LBA). By including an end-state in a
left-to-right HMM structure we observe a significant improvement in the
string recognition performance since it provides a better definition of the
segmentation cuts by the LBA. In addition, this end-state allows us the
use of a two-step training mechanism with the objective of integrating
handwriting-specific knowledge into the numeral models to obtain a more
accurate representation of numeral strings. The contextual information
regarding the interaction between adjacent numerals in strings (spaces,
overlapping and touching) is modeled in a pause model built into the
numeral HMMs. This has shown to be a promising approach even though
it is really dependent on the training database.
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1. Introduction

Hidden Markov models have been successfully applied to various pattern
recognition environments. Specially to handwriting recognition, in which the HMM
approach provides a way of avoiding the prior segmentation of words into characters
usually found in OCR systems. This has shown to be a promising strategy, since
often word segmentation without the help of a recognizer is difficult or impossible.
In this context, the Level Building Algorithm (LBA) [1] is fundamental, since it
allows to match models against an observation sequence, without having to first
segment the sequence into subsequences that may have been produced by different
models.

In this study the LBA is used to recognize handwritten numeral strings using an
implicit segmentation-based approach. In this framework we focus on the HMM
topology, which is very important in providing a precise matching of the numeral
models against the observation sequence representing a numeral string. In addition,



we investigate a way of integrating in the numeral models some contextual
information regarding the interaction between adjacent numerals in strings. For this
purpose, we use a two-step training mechanism, in which numeral models
previously trained on isolated digits are submitted to a string-based training. In the
second step of this training mechanism a pause model is built into the numeral
models. Cho, Lee and Kim [2] also use pauses in off-line word recognition and show
some significant improvement on the recognition accuracy depending on the
dictionary size.  They use a number of pause models in order to describe categories
of character transitions depending on the neighboring characters. In contrast to their
approach, Dolfing [3] assumes that the number of ligatures is limited and models all
ligatures with the same pause model. In our work we evaluate two strategies: 1)
constructing one pause model by numeral class; 2) constructing one pause model
representing all numeral classes.

This work is organized into 6 sections. Section 2 describes our system for the
recognition of handwritten numeral strings. Section 3 presents the HMM topologies
evaluated in this work. The experiments and discussions are summarized,
respectively, in Section 4 and 5. Finally, we draw a conclusion in Section 6.

2. System Outline

The system architecture is shown in Figure 1. In the first module, a word slant
normalization method has been modified by considering the slant and contour length
of each connected component to estimate the slant of handwritten numeral strings. A
detailed description of this process is presented in [4].

In the Segmentation-Recognition module, the string recognition is carried out
using an implicit segmentation-based method. This module matches numeral HMMs
against the string using LBA. To this end, the numeral string is scanned from left-to-
right, while local and global features are extracted from each column. The local
features are based on transitions from background to foreground pixels and vice
versa. For each transition, the mean direction and corresponding variance are
obtained by means of the statistic estimators defined in [5].

Figure 1. System architecture
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Figure 2. Circular mean direction α and variance Sα for  a distribution ( )α iF

Let ααα Ni ...,,...,,1  be a set of directional observations with distribution ( )α iF

and size N. Figure 2 shows that α i represents the angle between the unit vector OPi

and the horizontal axis, while Pi is the intersection point between OPi and the unit

circle. The cartesian coordinates of Pi  are defined as:
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These coordinates are used to estimate the mean size of R , as:

( )SCR 22 += (8)

Then, the circular mean direction can be obtained by solving one of the following
equations:
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Finally, the circular variance of α is calculated as:

RS −= 1α 10 ≤≤ S α (10)

To estimate α  and Sα  for each transition of a numeral image, we have

considered }{ 31527022518013590450 00000000 ,,,,,,,  as the set of directional



observations, while ( )α iF  is computed by counting the number of successive black

pixels over the direction α i from a transition until the encounter of a white pixel. In
Figure 3 the transitions in a column of numeral 5 are enumerated from 1 to 6, and
the possible directional observations from transitions 3 and 6 are shown.

In addition to this directional information, we have calculated two other local
features: a) relative position of each transition [6], taking into account the top of the
digit bounding box, and b) whether the transition belongs to the outer or inner
contour, which shows the presence of loops in the numeral image. Since for each
column we consider 8 possible transitions, at this point our feature vector is
composed of 32 features. The global features are based on horizontal projection
(HP) of black pixels for each column, and the derivative of HP between adjacent
columns. This constitutes a total of 34 features extracted from each column image
and normalized between 0-1. A codebook with 128 entries is created using the LBG
algorithm [7].

The last system module is based on an isolated digit classifier, which is under
construction. This verification module was not used in the experiments described in
this paper.

Figure 3.  Transitions in a column image of numeral 5, and the directional observations used
to estimate the mean direction for transitions 3 and 6

3. Topology of the Numeral HMMs

The topology of the numeral models is defined taking into account the feature
extraction method and considering the use of the LBA. The number of states is
experimentally defined based on the recognition of isolated numerals. The HMM
topology used in the baseline system is shown in Figure 4.

Figure 4. Left-to-right HMM model with 5 states
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Figure 5. Distributions of observations among the HMM states computed during model
training
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The same or similar topology can be found in related works. In [8] the authors
use it to model character classes to recognize fax printed words. The same structure
is used for modeling numeral classes to recognize handwritten numeral strings in
[9]. Similar HMM topology, with additional skip transitions, is used for modeling
airlines vocabulary in [10]. In all these works the LBA is used as a recognition
algorithm.

As we can see the HMM topology used in our baseline system does not present
additional states or transitions to allow the concatenation of numeral models, since
they are not necessary in the LBA framework. In this system 10 numeral models
independently trained on isolated numerals are used to recognize strings, and the
LBA is responsible for finding the best sequence of these models for a given
numeral string. However, this kind of topology does not allow us to model the
interaction between adjacent numerals in strings. Moreover, in the experiments on
numeral strings we have observed a significant loss in terms of recognition
performance as the string length increases. In order to better understand the behavior
of these numeral models, we compute the distribution of observations among the
HMM states during the training of them on 50,000 isolated numerals (5,000 samples
per class).

We can see the corresponding distributions in Figure 5 as 5-state HMM without
end-state. These unbalanced distributions of observations among the states,
associated with the presence of a self-transition with probability value equal to 1.0 in
the last state (s5), have a negative impact on the system segmentation performance.
To better explain, let us consider the paths A and B in the LBA trellis in Figure 6,
which share the same way until time t=4. Path A reaches the state 5 (s5) first (at time
t=6). From this time path B may not reach the last state even being a promising path.
This may happen because the transition probability from state 4 to 5 (a45) (a small
value because of the nature of the distributions observed), must compete with the
self-transition probability on state 5 (equal to 1.0 since there is no transition going
out of this state). Under this condition the numeral recognition at this level may
succeed, however without representing the best segmentation path. This non-
optimum matching can bring problems to the next levels. This explains why, in the
baseline system, the recognition of numeral strings drops drastically as their length
increases (see Section 4).

Figure 6. Paths A and B in an LBA level considering model λ1

To deal with this problem and also adapt the numeral models to a string-based
training, we include an end-state in the HMM topology (see Figure 7). The new
models show a better distribution of the observations among their states, as we can
see in Figure 5 (5-state HMM with end-state), and avoid a self-transition with
probability value equal to 1.0 in the state 5 (s5). The end-state does not absorb any
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observation and it is useful to concatenate the numeral models during a string-based
training. The positive impact of this modification on the HMM topology to the string
recognition is shown in Section 4.

Figure 7. 5-state HMM with an end-state

Based on this new topology, we can pay some attention to the possibility of
integrating handwriting-specific knowledge into the model structure to obtain a
more accurate representation of numeral strings. We believe that as the knowledge
learned from ligatures and spaces between adjacent characters have shown to be
very important to increase the word recognition performance, the knowledge about
overlapping, touching and spaces between adjacent numerals may play the same role
for numeral strings.

Similar to [2,3], we investigate the use of a pause model. The objective is to
model inter-digit spaces and local interactions (overlapping, touching) between
adjacent numerals in strings. However, our pause model is built-in the numeral
models. This strategy allows us to keep the L parameter of the LBA fixed. The
pause model is trained on digit-pairs extracted from the NIST database. In this
training, for a given digit-pair the corresponding numeral models are concatenated
by using the end-state. In fact, the end-state of the first model is replaced with the
first state of the second (see Figure 8). The strategy used to train this pause model is
presented in the next section.

Figure 8. Concatenation of numeral models during string-based training

4. Experiments

The isolated numerals used in these experiments come from the NIST SD19
database. In order to construct 10 numeral models we use 50,000 numeral samples
for training, 10,000 for validation and 10,000 for testing. The slant normalization of
these numerals is done taking into account contextual information regarding the
slant of their original strings, and the feature extraction is performed considering the
intra-string size variation. All this process is detailed in [4].

 The experiments using numeral strings are based on 12,802 numeral strings
extracted from NIST SD19 and distributed into 6 classes: 2_digit (2,370), 3_digit
(2385), 4_digit (2,345) and 5_digit (2,316), 6_digit(2,169) and 10_digit(1,217)
strings respectively. These strings exhibit different problems, such as touching,
overlapping and fragmentation.



 During the comparison of the HMM topology with and without the end-state,
we did not consider the inter-digit spaces in order to evaluate the LBA in terms of
segmentation performance. For each string, features have been extracted considering
just foreground pixels (black pixels). There is no symbol to represent inter-digit
spaces. This also may give us some idea about the real contribution of the pause
model in our system.

Class HMM without
end-state

HMM with
end-state

Pause model
(1 by class)

Pause model
(1 for all classes)

Isolated numerals 91.10 91.73 91.60 91.60
2_digit (2,370) 85.32 87.72 88.23 88.40
3_digit (2,385) 78.19 82.43 83.31 83.61
4_digit (2,345) 71.34 78.17 78.55 78.72
5_digit (2,316) 66.32 75.65 75.35 76.21
2,3,4 and 5_digit (9,416) 75.32 81.00 81.40 81.77
6_digit (2,169) 63.85 71.69 71.37 72.01
10_digit (1,217) 44.04 60.64 57.68 61.05
Global (All classes) 70.43 77.51 77.45 78.15

Table 1. String recognition results on the test database

For the pause model experiment, we use a two step-training mechanism: 1) 10
numeral models are trained first on isolated digits, 2) the numeral models are
submitted to a string-based training using digit pairs (DPs) extracted from the NIST
database. The DP database is balanced in terms of number of naturally segmented,
overlapping and touching numerals. The NIST series hsf_0 to hsf_3 were used for
providing 15,000 training samples, while hsf_7 was used for providing 3,500
validation samples.

We use the two-step training mechanism described above to evaluate the
following strategies: 1) the use of one pause model for each numeral class; and 2)
the use of one pause model representing all numeral classes. In both just the pause
model parameters are estimated during the second-step training. The parameters
corresponding to the numeral models are kept the same as estimated during the first
training step based on isolated numerals. Table 1 resumes all the experiment results,
in which a zero-rejection level is used.

5. Discussion

The HMM topology with end-state does not bring a significant improvement to the
recognition of isolated numerals (about 0.6%). On the other hand, this brought
7.08% of improvement to the global string recognition rate. This is due the better
distribution of the observations between the states, and a better estimation of the
self-transition probability in the last HMM-state (s5). Consequently, the LBA
provides a better match of numeral models against the observation sequence. This
means a better definition of string segmentation cuts. Maybe, this can also explain
the importance given by the authors to space model in [8,9], and the use of
durational constraints in [10].

Figure 9 shows an example in which the segmentation cuts at top and bottom
were provided respectively by the models with and without end-state. To confirm
the improvement on segmentation cuts, we made an error analysis considering the



10_digit strings misrecognized using the models without end-state, which were
recognized with the models with end-state. A total of 245 samples were manually
checked.

Figure 9: Segmentation points and recognition result produced by the LBA using 5-state
HMMs with end-state (top) and without end-state (bottom).

Figure 10(a) shows that 72.2% of these misrecognitions are related to mis-
segmentation problems. Moreover, we compute the difference of location of the
segmentation points provided by these two HMM-structures in terms of the number
of observations. Figure 10(b) shows that the frequencies of location differences
equal to 1, 2 and more than 2 observations are respectively 47.3%, 18% and 6.9%.
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Figure 10: a) Frequency of recognition and recognition/segmentation mistakes; b) Difference
between the location of segmentation points considering the number of observations

In the pause model experiments we consider all the spaces (white columns)
between adjacent digits in strings. In fact, the pause model is used to absorb all
interactions between adjacent numerals including inter-digit spaces, overlapping and
touching. The experiment considering one pause model for each numeral class does
not show improvements for all numeral string classes. We observe a small loss in
terms of recognition rate of numeral strings composed of more than 4 numerals. This
is due the lack of training samples of specific digit-pair classes in the database. In
fact, the database used for the second-step training is well balanced in terms of
natural segmented, overlapping and touching numerals, but it needs also be balanced
in terms of isolated numeral classes and digit-pair classes. This experiment also
shows that the interaction between adjacent digits varies as the string length. We can
see some improvement for all string classes when we use all the database to model
just one pause model.

The small improvement obtained by considering the pause model also confirms
the nice string segmentation performance provided by the LBA by using the 5-state
HMM with end-state. In fact, this shows that even without considering the inter-digit
spaces, the models based on this topology can provide a good string segmentation.



6. Conclusions

In this work we have evaluated different HMM topologies on the LBA framework.
The inclusion of an end-state in numeral HMM structure allowed us to balance the
importance between their states. Under this condition, the LBA finds a more precise
match of the numeral models against the observation sequence representing a
numeral string. This new HMM structure improves the LBA string segmentation
performance. In addition, the end-state provides a way of concatenating the numeral
models to evaluate the use of a pause model built-in the numeral models.

The preliminary results on the pause model show us that integrating handwriting-
specific knowledge into the model structure to obtain a more accurate representation
of numeral strings is a promising approach. However, this approach is strongly
dependent on a representative database.
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