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Abstract: Infrared small-target detection is a key technology for the infrared search and track system
(IRST), but some problems still exist, such as false detections in complex backgrounds and clutter.
To solve these problems, a novel image patch tensor (IPT) model for infrared small-target detection
is proposed. First, to better estimate the background component, we utilize the Laplace operator
to approximate the background tensor rank. Secondly, we combined local gradient features and
highlighted area indicators to model the local targets prior, which can effectively suppress the
complex background clutter. The proposed model was solved by the alternating direction method of
multipliers (ADMM). The experimental results on various scenes show that our model achieves an
excellent performance in suppressing strong edge clutter and estimating small targets.

Keywords: highlighted area indicator; small target detection; low rank sparse decomposition; infrared
image; gradient feature

1. Introduction

Infrared (IR) small-target detection plays a crucial role in IRST and is a key technology
for different military and civilian applications, such as air raid warnings, maritime rescues,
and power equipment fault detection. However, the detection performance in practical
applications is not always satisfactory for the following reasons. (1) The small target at a
long distance usually has less texture and shape features that can be used for detection.
(2) The targets have low intensity under the interference of complex backgrounds, such
as clouds and solar radiation. Therefore, the way to effectively suppress background and
improve the target detection performance for the IRST is still a challenging task.

In general, track-before-detect (TBD) and detect-before-track (DBT) are two main
methods for small-target detection. TBD uses multiframe to detect targets, and typical
methodologies include 3D matched filtering [1], dynamic programming [2], and pipeline fil-
tering [3]. In real scenes, the TBD methods usually require huge amounts of computational
power to process the sequence to detect the target, which makes them less time-efficient. In
contrast, DBT uses prior information of the targets and background to detect a target in
a single frame, so the algorithm’s computation is faster. DBT algorithms can be broadly
classified into three types.

(1) Background suppression-based methods

The background suppression-based methods consider the small target to be an inde-
pendent and distinct component from the background. They usually use some filters to
suppress the background and then utilize a threshold function to extract small targets. Early
on, researchers used bilateral filtering [4], maximum mean filtering, and maximum median
filtering [5] to filter an original IR image to estimate the background, and then they used
the obtained target image to segment the target. The minimum mean squared difference
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filter [6] estimates a target image by the weighted average of the neighbouring pixels.
In addition, some morphological theory methods, such as Top-hat, have often been used to
separate small targets from the background [7–9]. However, most of these methods require
prior knowledge of small targets and may be affected by noise or edge clutter. Recently,
some researchers have improved some filters [10,11] to estimate the background compo-
nents for detecting the small target. However, this type of method could not suppress
complex backgrounds well.

(2) Human visual system (HVS)-based methods

HVS-based methods consider a small target to be visually more prominent than the
surrounding background. Taking advantage of this property, Chen et al. [12] proposed
the local contrast measure (LCM) to measure the difference between the center patch and
surrounding areas. Subsequently, a series of improved LCMs were proposed. Qin et al. [13]
enhanced the target by using a new LCM so that the target is not influenced by the high-
lighted background (NLCM). The authors in [14] combined the local intensity and gradient
(LIG) to enhance the target’s constrast and eliminate background clutter. Some methods,
such as DNGM [15], TTLCM [16], and VARD [17] use multilayer window models to enhance
small targets. To address the interference of different background clutters, Bai et al. [18]
combined derivative entropy and LCM (DECM) to enhance the target while suppressing
noise. Generally, HVS-based methods can discriminate the target well when the back-
ground is relatively smooth. However, the HVS-based method could not suppress some
strong edges well.

(3) Optimization model-based methods

This type of method usually formulates a model based on the sparsity of small targets
in an image and the nonlocal correlation of the background. Gao et al. [19] first designed
an infrared image patch model (IPI), which assumes that the background component is
low-rank and the target is sparse. They formulated an optimization model based on sparse
and low-rank matrix recovery to separate small targets. However, the limitations of nu-
clear norm minimization (NNM) in the IPI model can lead to the target overshrinkage
problem [20]. To solve the overshrinking problem, Dai et al. proposed weighting each
column of the target image patch to obtain a global weight and named this method the
WIPI [21] model. However, WIPI is slightly computationally intensive. Zhang et al. em-
ployed the L2,1 norm to suppress sparse strong edges in the nonconvex rank approximation
minimization (NRAM) model [22]. In [23], the authors utilized the LP norm to constrain
sparse targets and proposed nonconvex optimization with the LP norm constraint (NOLC)
model. By adding total variation (TV) regularization, Wang et al. [24] combined total
variation regularization and principal component pursuit (TV-PCP) to effectively sup-
press edge clutter in an image. Several multisubspace learning models have been designed,
such as the stable multisubspace learning (SMSL) method [25] and self-regularized weighted
sparse (SRWS) model [26]. Dai et al. [27] decomposed the input in the tensor domain rather
than the matrix domain and proposed a reweighted infrared patch tensor (RIPT) model.
The RIPT model can achieve relatively good performance because the tensor model can
make better use of the interpixel resultant information. Zhang et al [28] utilized the partial
sum of the tensor nuclear norm (PSTNN) to constrain the low-rank background tensor, and
this technique can detect the small target more effectively. Guan et al. [29] integrated local
contrast energy into the optimization process to eliminate structured edges.

With the development of deep learning, many researchers formulate the neural net-
work for target detection and location [30–34], such as RCNN [35], Faster-RCNN [36],
YOLO [37], SSD [38], and FPN [39]. In recent years, some network frameworks are also
proposed for the small-target detection task. In [40], Wang et al. proposed a coarse-to-fine
network for small-target detection. They first applied a region potential network to estimate
coarse target regions, then they used the transformer encoder to model the interior relation
for pixels in the coarse regions, and finally they predicted the target by the attention-aware
features. In order to preserve the target feature in the deep layers, Li et al. [41] proposed a
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dense nested attention network (DNANet). Shi et al. [42] proposed an end-to-end detection
network based on the denoising autoencoder network and convolutional neural network
in which they treat small-target detection problems as noise-removal problems. Although
the deep learning-based small-target detection methods could achieve some excellent re-
sults, the huge dataset that cover various scences needed by this technique are difficult to
be obtained.

In general, the background components in an image are supposed to be slowly tran-
sitioning, which indicates that those adjacent image patches are greatly correlated. Thus,
the background in an image can extract a powerful low-rank property [43]. With regard to
the IPT-based model, accurately approximating the background rank is one main issue [44].
The RIPT model uses the sum of the nuclear norm (SNN) to approximately estimate the
rank of the background tensor, whereas the unfolding implementation destroys the patch
structure, so the SNN cannot accurately approximate the tensor rank. The tensor nuclear
norm (TNN) is another common technique that approximates the background tensor’s
rank in research and applications [45,46]. However, all singular values in the original
TNN are equally important, and in fact different singular values in an image have dif-
ferent importance and physical significance, so different treatment should be given to
different singular values. In PSTNN [28], the authors truncate some small singular values,
and the large singular values remain with the same weight. To more accurately approxi-
mate the background rank, we propose a Laplace function-based approximation method,
which could intelligently designate different weights to unequal singular values.

The local and nonlocal priors are both beneficial and complementary for the infrared
small-target detection mission [27]. Those methods that focus on local features are not
sufficient to distinguish between background and targets [47–50]. The low-rank sparse
matrix recovery model uses nonlocal features, but it is very sensitive to those edges that
exist in the background and has poor suppression ability. The strong edges with sparsity
cannot be well retained in the background by the low rank constraint. In fact, strong edges
have distinct local features and can be suppressed by local prior information. Thus, a new
IPT model based on local and nonlocal priors is proposed in this paper.

To better detect small targets in complex scenes, in this paper, we present a new IPT
model based on gradient features and edge and highlighted area indicators. Our paper
makes the following contributions.

(1) To estimate the background more accurately, we use the Laplace operator to approximate
the background tensor rank; it assigns different weights to different singular values.

(2) A new small target aware prior. We combine local gradient features and edge and
highlighted area indicators to enhance the small targets and suppress those sharp edges.

(3) We introduce the Laplace operator and structural prior into the IPT model and use the
ADMM to solve our model.

The arrangement of the rest of the content is as follows. In Section 2, we give some
necessary mathematical notations and definitions. Section 3 presents the proposed model,
including the construction of the local prior, the introduction of the Laplace approximation,
and a detailed description of the optimization process. Section 4 describes the comparison
experiments and provides a qualitative and quantitative evaluation. Finally, the conclusions
are given in Section 5.

2. Notations

The symbols and the corresponding explanations that appear in this paper are listed in
Table 1. Knowledge about tensor, definitions, and theorems can be found in the Appendix A.
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Table 1. Mathematical symbols.

Notation Instruction

a/a/A/A scalar/vector/matrix/tensor
A(i,:,:)/A(:,i,:)/A(:,:,i) or A(i) the ith horizontal slice / lateral slice / frontal slice of tensor A

Ai the i-th iteration of A
‖A‖0 l0 norm of tensor A, which is the number of nonzero elements
‖A‖1 l1 norm of tensorA, which is the absolute sum of all elements inA
‖A‖F

Frobenius norm of tensor A, which is the root of the sum of
the absolute values of the squares of the tensor elements

‖A‖∗
nuclear norm of tensor A, which is the sum of all the

singular values
A=fft(A, [ ], 3)/A = ifft(A, [], 3) fast Fourier transform of A / inverse Fourier transform of A

3. Proposed Model
3.1. Image Patch Tensor (IPT) Model

In general, an infrared image that contained a small target could be decomposed into
three components, i.e., the target components, the background components, and the noise
components [51]. We have

fD(x, y) = fT(x, y) + fB(x, y) + fN(x, y), (1)

where fD, fT , fB, and fN are the original infrared image, the target image, the background
image, and the noise image, respectively. (x, y) denotes the pixel coordinates. Gao et al. [19]
decomposed the input image through image patch level, defined as

D = T + B + N, (2)

where D, T, B, and N are the original patch image, target patch image, background patch
image, and random noise patch, respectively. These patch images can be obtained by slid-
ing windows from the top left to the bottom right on the image. Because the background is
considered to be slowly transitioning, the adjacent background patches are approximately
linearly related, whereas small targets generally contain few pixels (1× 1 to 9× 9). There-
fore, the background image can be modeled as a low-rank component, and the target image
is usually considered to be a sparse component. Thus, the small-target detection prob-
lem can be formulated as a robust principal component analysis model (RPCA), such as
in [26,52,53]. However, the disadvantage of the IPI model is that it destroys the local
features between pixels. To solve this problem, the researchers propose the IPT model, as

D = T + B +N , (3)

where D, T ,B and N are the original patch tensor, target patch tensor, background patch
tensor, and noise patch tensor, respectively. Within an image, the patch image can be ob-
tained by expanding the patch tensor through mode-3 [43]. Thus, the IPT model can utilize
more spatial information than the IPI model. Generally, the sparse target tensor satisfies
‖T ‖0 < τ, where τ is a constant determined by target size. Thus, without considering
noise, we can formulate a tensor PCA model that separates the sparse target from the
background, as

min
B,T

rank(B) + λ‖T ‖0 s.t. D = B + T , (4)

where ‖ · ‖0 is the l0 norm, and λ is the compromise parameter.

3.2. Laplace-Based Rank Approximation

As in previous analyses, how to approximate the background rank is a key issue for
constructing the IPT model. Previously, researchers used TNN [45] as a convex relax-
ation of multirank tensor’s l1 norm. However, TNN accredits the equivalent weight to
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each singular value, so it may falsely separate some background clutter as the target,
which will result in false alarms. Therefore, using TNN directly in the IPT model will
reduce the detection performance. Recently, the Laplacian function [54] was introduced
to TNN to generate multirank nonconvex approximations of tensors for solving low-rank
tensor completion problems, and this approach is defined as follows,

‖X ‖LAP−TNN =
n3

∑
k=1

n

∑
i=1

φ
(

σi

(
X (k)

))
=

n3

∑
k=1

n

∑
i=1

(
1− e−σi

(
X (k)

)
/ε
)

,

(5)

where φ(x) =
(

1− e−x/ε
)

, its bandwidth is determined by the positive parameter ε, and
n = min(n1, n2). σi(O) is the ith singular value of matrix O. As shown in Figure 1, the
Laplace function can better approximate the L0 norm than the L1 norm. Therefore, we
introduce the LAP-TNN to constrain the background tensor, and our model is formulated as

min
B,T
‖B‖LAP−TNN + λ‖T ‖0 s.t.D = B + T . (6)

Figure 1. Comparison of l0 norm, l1 norm, and approximate rank of Laplace function.

3.3. Construction of the Local Prior

RPCA cannot preserve edge components well in the background image. Researchers
often formulate some prior information to preserve edge components and to better estimate
targets. The RIPT model attempts to retain the small targets while suppressing strong edges
by using the local structural information [27]. However, this weight cannot perceive the
corner structure in the background, resulting in false alarms and target oversuppression [55].
The PSTNN model further analyses the structural tensor map and proposes an improved
local structural weight map. However, the performance of this local structural weight map
in suppressing edges is also unsatisfactory. In this paper, we design a novel target prior
with the following feature information.

A. Gradient feature information

In general, small targets in local areas usually cause gray change, and the gradient
vectors in the surounding areas basically have a tendency to target center. Therefore,
the local gradient information can be benifical to detect small targets. LIG [14] introduces
gradient information that can further improve detection performance. LIG divides an
image patch into four parts (Φi, i = 1, · · · , 4) and calculates the gradient mean square of
each small patch separately. We have

Gi =
1
Ni

Ni

∑
k=1
‖gΦi (k)‖

2, (i = 1, · · · , 4), (7)
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where gΦi is the gradient magnitude of which element gradient pointed to the center
in Φi and Ni is the element number that satisfies the direction constraint in the part Φi.
The maximum and minimum values of Gi can be obtained by

Gmax = max{Gi}, Gmin = min{Gi}, (i = 1, · · · , 4). (8)

Finally, the gradient diagram can be calculated by

G =

{
∑4

i=1 Gi, i f Gmin
Gmax

> k1

0, otherwise,
(9)

in which G is the gradient intensity of the image patch, and k1 is a constant to reduce some
clutter and noise.

In this paper, we propose multidirectional LIG to better measure the gradient strength
of the elements in the patch. We divide an image patch into four quadrants and calculate
the gradient in eight directions, as shown in Figure 2.

Figure 2. Gradient direction map.

We set the 45◦, 135◦, 225◦, and 315◦ as the primary directions and 0◦, 90◦, 180◦, and
270◦ as the secondary directions. The sum of the gradient mean square values of which
elements gradient along the primary and secondary directions is calculated for each
quadrant as Qi, (i = 1, 2, 3, 4), and different weights are assigned to the primary and
secondary directions.

Gi,D =
1
N

N

∑
j=1
‖gΦi,D (j)‖2 (D = 0◦, 45◦, · · · , 315◦) (10)

Q1 = 0.7 ∗ G1,225◦ + 0.15 ∗ G1,270◦ + 0.15 ∗ G1,180◦

Q2 = 0.7 ∗ G2,315◦ + 0.15 ∗ G2,270◦ + 0.15 ∗ G2,0◦

Q3 = 0.7 ∗ G3,45◦ + 0.15 ∗ G3,0◦ + 0.15 ∗ G3,90◦

Q4 = 0.7 ∗ G4,135◦ + 0.15 ∗ G4,90◦ + 0.15 ∗ G4,180◦

, (11)

where gΦi,D is the gradient magnitude of which element gradient along the direction D
in part Φi. N is the element number that satisfy the direction constraint in the part Φi.
The maximum and minimum values of Q can be calculated by

Qmax = max{Qi}, Qmin = min{Qi} (i = 1, · · · , 4). (12)

Finally, the multidirectional gradient diagram can be calculated by

Qg =

{
∑4

i=1 Qi, i f Gmin
Gmax

> k2

0, otherwise,
(13)

where Qg is the comprehensive gradient of image patch, and k2 is a parameter to reduce
some clutter and noise. In this paper, k2 is set to 0.5.
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B. Edge and highlighted area indicator
The target is enhanced by the gradient information in (13), and the highlighted areas

and edges are also enhanced. To eliminate strong edge clutter, we introduce highlighted
areas and edge retain weight. Li et al. [56] proposed an edge weight formula in the
following form,

EG(q) =
1
N

N

∑
p=1

θ2
G1
(q) + δ

θ2
G1
(p) + δ

, (14)

where G is the guide image, θ2
G1
(q) is the variance of G for a 3× 3 window centred on q, δ is

a small constant that has a value of (0.001× R)2, R is the dynamic range of the input image,
and N is the total pixel number in an image. This edge weight can perceive sharp edges,
but we expect to measure the highlighted areas too, so we made the following improve-
ments. We modify the 3× 3 window variance with the 5× 5 window mean to obtain an
edge and highlighted areas indicator with the following equation,

EHG(q) =
1
N

N

∑
p=1

MG2
2
(q) + δ

MG2
2
(p) + δ

, (15)

where G2 is the square of the input image and MG2
2
(p) is the mean of a 5× 5 window

centred on pixel p in G2. Edge and highlighted area-retained weighting maps can be
obtained by filtering the original map by using (15):

IEH = EHG( fD(x, y)). (16)

C. Local prior calculation
The gradient feature enhances the target, but the highlighted areas and edges are also

enhanced. The edge and highlighted area indicator measures the highlighted areas and
edge areas of the original image. Therefore, we combine the gradient feature information
with the edge and highlighted area indicator map to calculate the local target likelihood,

Wt = max(Qg − β · IEH , 0), (17)

where β is a regularization factor. To normalize the range of Wt, we linearly stretch it
as follows,

Wt =
Wt −Wmin

Wmax −Wmin
, (18)

where Wmax and Wmin represent the maximum and minimum values in Wt, respectively.
One example of our local target prior weight is shown in Figure 3.

Figure 3. Small-target local priori weight. (a) Input image. (b) Gradient features. (c) Edge and
highlighted area indicator. (d) Target local prior.

3.4. The Proposed Enhanced IPT Model

Introducing the local prior to IPT model, it can be updated as

min
B,T
‖B‖LAP−TNN + λ‖Wre � T ‖1 s.t.D = B + T , (19)
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where � is the Hadamard product. Wre is the reciprocal ofWt. To preventWre from going
to infinity, we add a small positive number τ toWt.

Wre =
1

τ +Wt
(20)

Many researchers [57–59] have employed reweighting methods to speed up the conver-
gence and reduce the iteration calculation. We adopted the following reweighting method
to speed up the proposed algorithm iteration process,

W k+1
se =

c

|T |k + η
, (21)

where c is a positive constant, k + 1 denotes (k + 1) iterations, and η is a small positive
number that avoids dividing by 0. In general, c is set to 1 [29,60]. Then, we combine the
two indicators to obtain the final target likelihood, as follows:

W =Wse �Wre. (22)

Finally, the proposed IPT model in (19) is updated as

min
T ,B
‖B‖LAP−TNN + λ‖W � T ‖1 s.t.D = T + B. (23)

3.5. Model Solution

The ADMM [58] is a common technology for solving the optimization problem with
constraints, which is characterized by fast convergence and high accuracy. In this section,
we employ ADMM to solve the proposed model. The augmented generalized Lagrangian
function for Model (23) is formulated as

L〈B, T ,W ,Z〉 = ‖B‖LAP−TNN + λ‖W � T ‖1 + 〈Z , T + B −D〉+ µ

2
‖T + B −D‖2

F, (24)

where Z is the Lagrange multiplier, 〈·〉 is the inner product of two tensors, and µ is a
penalty factor greater than 0. The unknown variables in (24) are separated, and we can
solve them in an alternate manner. Problem (24) can be decomposed into two subproblems:

T k+1 = arg min
T

λ‖W k � T ‖1 +
µk

2
‖T + Bk −D +

Z k

µk ‖
2
F (25)

Bk+1 = arg min
B
‖B‖LAP−TNN +

µk

2
‖T k+1 + B −D +

Z k

µk ‖
2
F. (26)

(1) We use the soft thresholding operator [61] to solve subproblem (25), and its solution can
be given by

T k+1 = So f tshrink(D −Bk − Z
k

µk ,
λW k

µk ). (27)

(2) To solve the low-rank tensor B, subproblem (26) can be expressed in the form

arg min
B
‖B‖LAP−TNN +

µ

2
‖B −H‖2

F, (28)

where B,H ∈ Rn1×n2×n3 , H = D − T k+1 − Zk

µk . To simplify the expression, we omit the
iteration k in (28). From Equation (5), we can observe that the nonconvex tensor rank
surrogate is a linear combination of all frontal slice Laplace functions in the Fourier domain
along the tube dimension [29,62]. Therefore, the optimization problem in (28) can be
transformed into n3 optimization problems in the Fourier domain [54], as follows,

arg min
B(s)

n

∑
i=1

φ
(

σi

(
B(s)

))
+

µ

2
‖B(s) −H(s)‖2

F, (29)



Remote Sens. 2022, 14, 6044 9 of 23

where s = 1, · · · , n3 and H(k) and B(s) ∈ Cn1×n2 . The generalized weighted singular value
thresholding operator [63] can solve model (29). We have

B(s) = U (s)S ′(s)∇φ
µ

V (s) (30)

in whichH(s)
= U (s)S (s)V (s)H

, and

S ′(s)∇φ
µ

(i, i) = max
{(

S(s)
(i, i)−

∇φ(σs
i )

µ

)
, 0
}

, (31)

where ∇φ(σs
i ) = 1/ε× exp(−σs

i /ε) is the gradient of σ at σs
i and σs

i is the i-th singular

value of B(s). B can be obtained by inverse FFT. Algorithm 1 presents the solution procedure
for model (28).

Algorithm 1 Solution process for model (28)

Input: Bk
,H, µk, ε

Output: Bk+1
,Bk+1

Step 1. ComputeH = fft(H, [ ], 3)

Step 2. Compute each forward slice of Bk+1
as:

for s = 1, · · · , d(n3 + 1)/2e do

(1)
[
U (s)

,S (s),V (s)
]
= SVD

(
H(s)

)
.

(2) Calculate S ′(s)∇φ

µk
by Equation (30)

(3)(Bk+1
)(s) = U (s) ∗ S ′(s)∇φ

µk
∗ V (s)H

end for
for s = d(n3 + 1)/2e+ 1, · · · , 1 do

(Bk+1
)(s) = conj

(
(Bk+1

)(n3−s+2)
)

end for
Step 3. Compute Bk+1 = ifft(Bk+1

, [ ], 3)

Z and µ are updated as follows,

Z k+1 = Z k + µk(D − T k+1 −Bk+1) (32)

µk+1 = ρµk, (33)

where ρ is a positive constant. The proposed model’s solution process is shown in
Algorithm 2.
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Algorithm 2 The proposed model solved by ADMM
Input: D,W , λ, µ0,, ε

Output: Bk, T k

Initialization: B0 = T 0 = Z0 = 0,Wsw = 1,W0 = Wsw �Wre, µ0 = 6 × 10−3, ρ =
1.05, k = 0, tol = 1× 10−3

while ‖T
k+Bk−D‖F
‖D‖F

> tol and ‖T k+1‖0 6= ‖T k‖0 do

update T k+1 by (27);
update Bk+1 by Algorithm 1
updateW k+1 by (22);
update Z k+1 by (32);
update µk+1 by (33);
update k = k + 1.
end while

3.6. Whole Process of the Proposed Method

Figure 4 illustrates the whole process of the proposed method, as follows.

(1) Local target prior calculation. For an obtained infrared image, we calcuate its gradient
feature by (13) and edge and highlighted area indicator by (16), and combine them into
the local target prior weight Wt by (18).

(2) Patch tensor formulation. Sliding a window of size s× s over original image from top
left to bottom right, we stack the paths into the original image 3D tensor D ∈ Rs×s×z.
Similarly, the prior weight tensorWt ∈ Rs×s×z can be constructed.

(3) The input tensor is decomposed into a background tensor B and a target tensor T by
using ADMM in Algorithm 2.

(4) The 2D background image and target image can be calculated from the background ten-
sor B and target tensor T by employing 1D median filter on the overlapping positions.

Figure 4. Procedure of the proposed algorithm.

4. Experiments and Results

In this section, we validate the proposed model’s performance in terms of background
suppression, target enhancement, and target detection abilities. Seven state-of-the-art meth-
ods are included for comparison, including WLDM [64], Top-hat [7], IPI [19], SMSL [25],
RIPT [27], PSTNN [28], and LogTFNN [43]. WLDM and Top-hat are local contrast-based
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methods, IPI and SMSL are IPI model-based methods, and RIPT, PSTNN, and LogTFNN
are similar to our model and are IPT model-based methods.

4.1. Evaluation Metrics

We use a variety of metrics to measure the performance of the comparison detection
methods. The signal-to-clutter ratio gain (SCRG) is a common index that measures the
saliency of the target, and a higher SCRG value indicates that the detection model could
enhance the target more distinctly. It is related to the SCR, which is defined as

SCR =
|µt − µb|

σb
, (34)

where µt and µb denote the average value of the target pixels and neighboring background
regions, respectively. σb denotes the variance in the pixel values in the background neigh-
bourhood. SCRG is then defined as

SCRG =
SCRout

SCRin
, (35)

where SCRin represents the SCR of the original image and SCRout represents the SCR of
the target image.

The background suppression factor (BSF) evaluates the background clutter suppressing
ability of one detection method; the higher the BSF value is, the more effectively the
background clutter is suppressed. We have

BSF =
σin
σout

. (36)

In addition, we employ ROC curves to comprehensively evaluate the detection perfor-
mance. In a ROC curve, the vertical axis represents the model’s true positive rate (TPR),
and the horizontal axis represents model’s false-positive rate (FPR):

TPR =
number o f detected true targets

number o f actual targets
(37)

FPR =
number o f f alse pixels detected

number o f pixels in whole image
. (38)

4.2. Parameters Analysis

In our model, there are some prominent parameters that influence the detection perfor-
mance of the proposed model, such as the patch size, sliding step size, tradeoff parameter
λ, penalty coefficient µ, and regularization factor β. To better analyse the role of each
parameter, we conduct parametric experiments by varying one variable while fixing the
others. Figure 5 depicts the ROC curves for four real captured IR sequences with various
parameter settings. It should be noted that the parameter settings presented in this section
are not optimal.

The patch size plays a crucial role in our model. A large patch size usually leads to
poor detection performance because the model may identify some sparse noise as the
target. Then, a small patch size would weaken the sparsity of the target. For the four test
sequences, the ROC curves with regard to the patch size that range from 20 to 60 with an
interval of 10 are displayed in Figure 5a. It seems that the best detection performance can
be obtained when the patch size is set to 50.

Another key parameter is the sliding step. A larger sliding step could decrease the
slicing number of the IPT, which can destroy the nonlocal correlation of the background.
In contrast, a smaller sliding step could slow down the construction of the tensor,
and target sparsity would decrease as the number of target slices increases. We change the
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step size from 20 to 60 at intervals of 10, and the best detection performance can be reached
when the sliding step is set to 40, as shown in Figure 5b.

Figure 5. ROC curves are formed with different parameters. (a) The first column depicts the curves of
different patch sizes p. (b) The second column depicts the output of different sliding steps s. (c) The
third column shows the influence of the tradeoff factor λ. (d) The fourth column shows the results
of different penalty factors µ. (e) The fifth column shows the result for different β values. Each row
represents a different parameter in the same sequence.

The weight parameter λ is used to balance the target’s sparsity and the background’s
low-rank. When λ is large, a heavy penalty acts on the sparse components, and may
generate an incomplete target; when λ is small, some false alarm might emerge with the
true target. Referring to [28], we set λ to H√

max(n1,n2)×n3
and then adjust H in the range

[0.5, 3] instead of λ. Figure 5c shows the effect of H on the four sequences, and we can easily
observe that the performance is relatively good when H = 2. Thus, in the experiment,
we set λ as λ = 2√

max(n1,n2)×n3
.

The penalty factor µ also plays a significant role in separating the small-target compo-
nent and the low-rank background. It also influences the optimization process and the
convergence speed. A smaller µ will cause certain target components to be preserved in the
background components, which may shrink the target component. If µ is large, although
the target component can be perfectly retained, some background component may appear
in the target patch tensor, too. We varied µ in the four sequences from 0.004 to 0.008 at
0.001 intervals, as shown in Figure 5d. The best detection performance is reached when
µ = 0.006.

The regularisation factor β is employed to eliminate the clutter that is generated by the
local gradient calculation. A large β can remove background clutter, but the target may
be shrunk; a small β could retain a full target, but some background clutter may be also
retained. We varied β from 1 to 3 at intervals of 0.5, and the best noise rejection performance
is obtained when β = 2, as shown in Figure 5e.
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4.3. Comparative Evaluation

We tested the robustness of the proposed model by conducting comparison experiments
on a sequence of six different scenarios. Table 2 describes the details of the six real sequences.
These real infrared sequences are selected from the dataset provided by the authors in
reference [65]. We choose seven advanced methods to compare with the proposed method,
and Table 3 gives the details of the parameters for the comparison methods. The visual
output on sequences 1 to 6 of different methods are shown in Figure 6. As shown in
Figure 6, the Top-hat and WLCM methods enhance the target to some extent, but the
strong interference part cannot be suppressed, and the detection results are poor. This is
because they use a fixed filter structure to process the image, which makes them more
sensitive to the background and leads to a less robust final result. Compared with the first
two algorithms, IPI improved detection performance, but the detection results still retain
some clutter due to the inability to accurately approximate the background rank. RIPT,
PSTNN, and LogTFNN utilize image information in tensor form to separate targets more
effectively than IPI, but these algorithms are unable to accurately calculate the background
rank, resulting in lower robustness to different backgrounds. Compared to these methods,
the proposed method can more accurately approximate the background rank by using the
Laplace function. The constructed target prior weights can suppress strong edges while
enhancing the target. As a result, the proposed method can better separate the background
and target components than other methods.

Table 2. Sequence information for six different scenes.

Frames Length
Target and

Background
Description

Seq.1 100 256 × 256 Single target, ground
background

Seq.2 100 256 × 256 Single target, open
space background

Seq.3 150 256 × 256 Single target, open
space background

Seq.4 150 256 × 256 Single target, open
space background

Seq.5 70 256 × 256 Single target, ground
background

Seq.6 150 256 × 256 Single target, ground
background

Table 3. Parameters of the eight comparison methods.

Methods Parameter Settings

Top-hat [7] Structure pattern: square, size 3× 3
WLCM [64] Neighbourhood structure: (3 ∼ 5)× (3 ∼ 5)

IPI [19] Patch size: 50× 50, sliding step: 10, λ = 1√
(min(m,n))

, ε = 10−7

SMSL [25] Patch size: 30× 30, sliding step: 30, λ = 1√
(min(m,n))

, ε = 10−7

RIPT [27]
Patch size: 30× 30, sliding step: 10, λ = 1√

(min(m,n))
, ε = 10−7,

h = 1
PSTNN [28] Patch size: 40× 40, sliding step: 40, λ = 2√

(min(m,n))
, ε = 10−7

LogTFNN [43]
Patch size: 40× 40, sliding step: 40, λ = 0.4√

(max(n1,n2)×n3)
,

β = 0.05, µ = 200

Proposed
Patch size: 50× 50, sliding step: 40, λ = 2√

(max(n1,n2)×n3)
,

β = 2, µ = 0.006, tol = 10−3
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Figure 6. Results of the 8 methods on the 6 sequences.

Table 4 displays the BSF and SCRG metrics for the six sequences by the eight methods,
wherein the best result for each metric is highlighted in red and the next best result is
marked in green. Larger BSF and SCRG values indicate better detection performance.

As displayed in Table 4, the proposed method achieves more significant advantages
in SCRG and BSF. PSTNN achieves the next best results on Sequence 2 and Sequence 4,
which indicates that the tensor-based model can indeed improve the detection performance
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by obtaining more spatial information. In addition, nonlocal prior methods can achieve
higher values than local prior methods (Top-hat, WLCM). This is due to the fact that
nonlocal prior-based methods can improve detection performance by utilizing additional
spatial information.

Table 4. The BSF and SCRG results for the six sequences by eight methods.

Method Seq.1 Seq.2 Seq.3 Seq.4 Seq.5 Seq.6
BSF SCRG BSF SCRG BSF SCRG BSF SCRG BSF SCRG BSF SCRG

Top-
hat 2.62 2.28 4.67 5.16 4.82 3.36 4.84 7.46 5.08 4.53 4.17 3.82

WLCM 5.93 8.76 8.16 18.22 8.20 9.15 9.20 14.20 10.12 3.80 8.15 2.85
IPI 11.10 4.59 12.02 27.00 15.65 13.43 13.05 17.97 17.66 14.28 17.12 17.85

SMSL 31.64 18.50 8.50 30.17 55.43 18.23 37.68 27.69 82.02 14.84 115.86 18.81
RIPT 10.21 13.26 8.71 19.91 14.29 10.61 13.74 17.49 14.82 10.08 11.90 10.31

PSTNN 6.37 9.25 13.20 30.19 64.66 17.38 47.97 28.16 32.87 13.52 34.67 18.16
LogTFNN 3.35 3.65 9.54 20.59 6.17 3.89 9.33 8.97 106.78 12.60 97.86 16.06
Proposed 75.63 29.89 59.57 53.18 269.76 25.14 371.86 46.19 327.44 20.11 107.98 22.75

* For each index, the best value is colored with red, and the second best value is colored
with green.

To further demonstrate the comprehensive performance of the compared methods, we
show the ROC curves of the different methods for six sequences (Figure 7). The ROC curves
show that the proposed method works best, the PSTNN, RIPT, and SMSL methods have
sufficient ROC performance, whereas the other methods have typical performance. Overall,
the proposed method has the highest probability of detection for the same false alarm rate
and the lowest false alarm rate for the same accuracy on the different scenes.

Figure 7. ROC curves for six sequences by comparison methods. (a) Sequence 1. (b) Sequence 2.
(c) Sequence 3. (d) Sequence 4. (e) Sequence 5. (f) Sequence 6.
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4.4. Robustness in Different Scenes

The detection performance of a method is evaluated based on its accuracy and robust-
ness in different scenarios, namely, scenes with diverse backgrounds, target variability,
and uncertain target locations. As the distance between a target and the infrared sensor
is variable, the target pixel size in an image and the target brightness are also variable.
To further verify the robustness of each algorithm, we selected 20 small target images with
different backgrounds and different intensities from the public dataset in [66,67] to test
their performance, as shown in Figure 8.

The target image output of the proposed method on 20 single-frame images are dis-
played in Figure 9, and their corresponding 3D maps of the target images are displayed in
Figure 10. We can see that various types of background clutter are completely removed in
Figure 9. In Figure 10, the background components are supressed to a large extent, and the
target becomes the most prominent elements in the 3D map. As shown in Figures 9 and 10,
all small targets are significantly enhanced by the proposed method, and various types of
background clutter are effectively suppressed. From Table 4, we can observe that PSTNN,
which is also based on T-SVD, has a better BSF and SCRG metric than RIPT and LogTFNN
on most sequences. Therefore, we choose PSTNN as a visual comparison. Figure 11 shows
the PSTNN results of 20 single-frame images, and the corresponding 3D maps are shown
in Figure 12. As we can see, although PSTNN could detect the target out for the 20 images,
there is still some background clutter (marked by blue boxes) in the output image. There-
fore, by comparison, our method could detect more real target components in different
scenes than the baseline methods.

Figure 8. Twenty single-frame images in different scenes.
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Figure 9. Process output of proposed method for 20 single-frame images.

Figure 10. Three-dimensional results of the proposed method on the 20 single-frame images.
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Figure 11. Twenty single-frame image results processed by PSTNN.

Figure 12. 3D maps of PSTNN on the 20 single-frame images.

4.5. Computation Time Comparison

In addition to assessing the detection capability of different methods, we also evaluate
their computation time in this subsection. The average running time of different methods
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on the six sequences are listed in Table 5. All experiments are implemented by using MAT-
LAB R2020a on a personal computer with 2.9 GHz Ryzen7 and 16 G RAM. Among them,
the Top-hat has the fastest computation speed, but its detection performance is not satis-
factory, as shown in the previous experiment. Among the optimization-based algorithms,
the IPI has the slowest detection speed, which is due to the fact that it employs the
accelerated proximal gradient method with high time computation to solve its model.
Among the IPT model-based algorithms, PSTNN provides the fastest computation speed.
The proposed algorithm provides a slower computation speed than PSTNN, but it is faster
than the RIPT and LogTFNN. Thus, the computing time is acceptable.

Table 5. The computing time of different methods for six sequences (Seconds).

Top-
Hat WLCM IPI SMSL RIPT LogTFNN PSTNN Proposed

Seq.1 0.0041 1.9749 4.1769 0.1681 0.7069 1.2196 0.2093 0.4934
Seq.2 0.0038 2.0203 4.0588 0.1792 0.6564 1.2241 0.2108 0.4341
Seq.3 0.0026 2.0071 4.0922 0.2792 0.6307 1.2152 0.1921 0.3925
Seq.4 0.0039 1.9492 4.2002 0.3444 0.5800 1.2780 0.1804 0.4050
Seq.5 0.0037 1.9568 4.5251 0.2464 0.5607 1.2455 0.2037 0.3734
Seq.6 0.0035 1.9627 4.0498 0.2641 0.5534 1.3670 0.1853 0.5612

5. Conclusions

In this paper, a tensor optimization patch model that combines gradient features with
edge and highlighted areas as prior regulations is proposed for infrared small-target
detection. To accurately separate the target and background, we utilize the Laplace function
to approximate the background rank. Moreover, gradient features and edge and highlighted
area indicators are integrated as local targets prior to suppressing edge clutter. Then,
ADMM is employed to solve the proposed model. The extensive experimental results on
numerous real scene sequences demonstrate that the proposed method outperforms other
baseline methods on both visual perception and indices quantitative calculations.
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Appendix A

Theorem A1. Tensor singular value decomposition (t-SVD) [68]. Given a three-dimensional
tensor A ∈ Rn1×n2×n3 , and its T-SVD is formulated as

A = U ∗ S ∗ VT , (A1)

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal tensors and S ∈ Rn1×n2×n3 is a
diagonal tensor.

Algorithm A1 shows an efficient calculation procedure of T-SVD.
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Algorithm A1 T-SVD for a three-order tensor
Input: A ∈ Rn1×n2×n3

Output: T-SVD components U ,S and V of A
Step 1. Calculate A = fft(A, [ ], 3)

Step 2. Calculate each frontal slice U (t)
,S (t) and V (t) from A through

for t = 1, 2, · · · , d(n3 + 1)/2e do[
U (t)

,S (t),V (t)
]
= SVD

(
A(t)

)
end for
for t = d(n3 + 1)/2e+ 1, · · · , n3 do

U (t)
= conj(U (n3−t+2)

)

S (t) = S (n3−t+2)

V (t) = conj(U (n3−t+2)
)

end for
Step 3. Calculate U = ifft(U , [ ], 3), S = ifft(S , [ ], 3), V = ifft(V , [ ], 3)

Theorem A2. For a proximity minimization problem in the form:

arg min
X

η‖X‖1 +
1
2
‖X−Y‖2

F (A2)

in which η > 0, and X, Y∈ Rn1×n2 , its solution can be given by the soft thresholding
operator [61], as:

So f tshrink(y, η) = sign(y)×max(|y| − η, 0) (A3)

Definition A1. Tensor conjugate transpose [68]. Given a tensor X ∈ Cn1×n2×n3 , then its
conjugate transpose X H ∈ Cn2×n1×n3 can be obtained by the following calculation:

(X H)(1) = (X (1))H and

(X H)(t) = (X (n3+2−t))H , t = 2, · · · , n3
(A4)
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