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Abstract: Aiming at the intrusion detection problem of the wireless sensor network (WSN), con-
sidering the combined characteristics of the wireless sensor network, we consider setting up a
corresponding intrusion detection system on the edge side through edge computing. An intrusion
detection system (IDS), as a proactive network security protection technology, provides an effective
defense system for the WSN. In this paper, we propose a WSN intelligent intrusion detection model,
through the introduction of the k-Nearest Neighbor algorithm (kNN) in machine learning and the
introduction of the arithmetic optimization algorithm (AOA) in evolutionary calculation, to form
an edge intelligence framework that specifically performs the intrusion detection when the WSN
encounters a DoS attack. In order to enhance the accuracy of the model, we use a parallel strategy
to enhance the communication between the populations and use the Lévy flight strategy to adjust
the optimization. The proposed PL-AOA algorithm performs well in the benchmark function test
and effectively guarantees the improvement of the kNN classifier. We use Matlab2018b to conduct
simulation experiments based on the WSN-DS data set and our model achieves 99% ACC, with a
nearly 10% improvement compared with the original kNN when performing DoS intrusion detection.
The experimental results show that the proposed intrusion detection model has good effects and
practical application significance.

Keywords: wireless sensor networks; intrusion

1. Introduction

With the rapid development of real-time big data and the Internet of Things, the
demand for surrounding environmental data has also increased significantly [1]. The
demand for WSN products with low node costs and easy deployment will gradually
expand. WSN products can break through traditional detection methods. They reduce
the costs of environmental testing, and also greatly reduce the cumbersome process of
traditional testing methods. As a new network, the WSN has been widely studied by
scientific researchers and widely used in industry since its inception. Common applications
include scenarios such as environmental detection, military operations, and information
positioning. In the face of complex and changeable application scenarios, WSN nodes
face various challenges, such as (1) the computing power and storage capacity of a single
node is quite limited; (2) the communication capability between nodes is weak; (3) the
sensor node is in a complex physical environment; (4) some mobile nodes may cause the
network topology to be dynamic and random. Therefore, the security of WSN sensors is
relatively low, network attacks against WSN sensors are easier, and their security problems
are becoming increasingly severe.

Intrusion detection is the second line of defense for network security. An intrusion de-
tection system (IDS) can not only resist network attacks from intruders but also strengthen
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the system’s defense capabilities based on known attacks. From the perspective of data
sources, we can divide intrusion detection systems into three categories: (1) host-based
intrusion detection systems [2–4], which do not require the participation of network data,
and only judge whether the data are abnormal from the intrusion detection library inside
the system—this method will waste a lot of CPU resources and it is not suitable for the
use of small distributed devices; (2) network-based intrusion detection systems [5,6] can
acquire real-time network data packets and establish a corresponding intrusion detection
library to perform pattern matching and frequency analysis and judgment on the data
packets, but this method will carry large costs for the database update; (3) distributed
intrusion detection systems [7–9], where the system can comprehensively consider the
above two intrusion detection systems, i.e., it can not only detect the operating data of the
host but also can detect network data. A WSN, as an excellent distributed device that has
a low price, can be widely deployed on the edge side of the Internet of Things to protect
the security of the entire Internet of Things system. Intrusion detection is classified by the
detection technology, which can be divided into misuse-based intrusion detection [10] and
anomaly-based intrusion detection [11,12]. The first method mainly detects data directly
based on the existing signature database of the system; a problem occurs when the system’s
signature database is not updated in time, and thus the new intrusion behaviors cannot be
detected. In the second method, the system will establish a normal working database, and
then compare this with the behavior of the computer; if it does not exceed the threshold, it
will be a normal behavior; otherwise, the system will activate an alarm. This method is also
the most common intrusion detection method, but this method often encounters challenges
wherein the non-attack behavior is not within the scope of the normal working mode; the
false positive rate of this method is relatively high. However, the application of intrusion
detection systems on WSNs presents a great challenge. Because WSNs cannot provide
enough information required by traditional intrusion detection technology, traditional
intrusion detection technology cannot be directly applied to WSNs. Therefore, building
a simple and lightweight WSN intrusion detection technology has become an important
issue in the field of WSN security.

Intrusion detection technology is an important technique to ensure product security.
Therefore, it is very important to accurately identify various attacks in the network. At
present, there are some mature WSN intrusion detection systems based on convolutional
neural networks [13], random forest [14], naive Bayes [15], decision tree [16], and other
intrusion detection systems based on machine learning. We know that distributed equip-
ment has extremely high requirements regarding space complexity. The space complexity
of a convolutional neural network is S

(
k2 × Cout× Cin

)
, where k is the kernel size; the

space complexity of random forest is S(N + D× Split× TreeNum), where N is the number
of samples and D is the number of features; and the space complexity of naive Bayes is
S(N × D), but naive Bayes must ensure that the samples are independent of each other to
ensure a good effect. kNN [17], with almost the same space complexity as Naive Bayes,
is also an excellent machine learning method, whose space complexity is S(N × D). The
k-Nearest Neighbor (kNN) method is a normal machine learning method, whose structure
is simple and easy to implement, and the classification effect is good. Because it eliminates
the training process of neural networks, it is often used as a lightweight machine learn-
ing method in the intrusion detection systems of traditional networks. Compared with
traditional networks, due to the small size of the WSN sensor and low computing power,
purely embedding the artificial intelligence model into the WSN sensor may cause slower
operation and low performance. Therefore, we can use edge nodes close to the WSN sensor
nodes to train and deploy machine learning models at the edge of the network, closer to
users and data sources, in an edge-wise manner [18–20]. There are two problems when
we want to use kNN: one is the measurement of distance, and the other is the selection
of the k parameter. For the distance measurement problem, kNN needs to calculate the
distance between each sample size of the test set and the training set, which means that
it is challenging for kNN to process larger data in reality. Tan et al. [21] used a different
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strategy to refine the incoming data and greatly improve the classification effect of kNN;
for the selection of the k value, Liang [22] and others have made some progress. Huang
uses a weighted method to improve kNN. However, these works have not simultaneously
optimized the k and weighted above-mentioned problems.

Optimization is one of the most commonly used methods to solve complex problems.
For kNN distance selection and K value selection, many scholars also use optimization
algorithms to solve them. For example, Chen [23] used the PSO algorithm to optimize kNN
weights. Xu [24] optimized the kNN distance formula through GWO [25], and specifically
solved the kNN distance selection problem; Tahir [26] et al. optimized the k value selection
of kNN through TS [27], and specifically solved the K value selection problem. Of course,
common optimization algorithms include evolutionary-inspired algorithms (GA) [28],
differential evolution algorithm (DE) [29], whale algorithm (WOA) [30], cat colony algo-
rithm (CA) [31], multiverse algorithm (MVO) [32], and quasi-affine optimization algorithm
(QUATER) [33] inspired by natural physics. For WSN nodes with weak computing power,
overly complex optimization algorithms cannot be selected for optimization. Therefore,
choosing a lightweight and high-performance optimization algorithm is particularly mean-
ingful in the process of WSN intrusion detection. The Arithmetic Optimization Algorithm
(AOA) is a new stochastic optimization algorithm proposed by Australian scholar Mir-
jalili in 2020 [34]. The algorithm has few control parameters, a simple structure, ease of
implementation, and has an excellent performance in a variety of industrial optimization
problems. In this regard, this article will focus on using the AOA algorithm to optimize the
kNN weight and k value selection. However, considering the no free lunch theorem [35],
this paper will also compare the kNN optimized by other optimization algorithms with the
improved version of the AOA algorithm that we propose.

In this article, we mainly offer the following contributions:

• We propose an intelligent intrusion detection model based on edge intelligence that is
deployed at the edge of the WSN node (kNNPL−AOA);

• We propose a parallelized arithmetic optimization algorithm and achieve outstanding
results compared to another algorithm;

• Through standard data set testing, our edge intelligent intrusion detection model has
good performance in detecting DoS attacks.

The main structure of the article is as follows:
In Section 2, we describe related works to introduce AOA and kNN, which we use in

this article. In Section 3, we introduce the improved version of AOA proposed in this article
in detail and compare it with other algorithms; Section 4 introduces the intrusion detection
system based on WSN, which includes the improved kNN formula and the method of
combining PL-AOA and kNN; Section 5 describes the simulation experiment and data
statistics of WSN intrusion detection; Section 6 provides the conclusions and future work.

2. Related Works
2.1. Arithmetic Optimization Algorithm (AOA)

The Arithmetic Optimization Algorithm (AOA) is a new type of swarm intelligence
optimization algorithm proposed by Mirjalili in 2020 The algorithm has a simple structure,
fewer parameters, and is easy to implement. Its search process is mainly controlled by basic
mathematical operators, namely multiplication (M “×”), division (D “÷”), subtraction
(S “−”), and addition (A “+”)).

Arithmetic Optimization Algorithms are used to solve optimization problems. First, AOA
is achieved by creating multiple initial random candidate solutions X ∈ (x1, x2, x3, . . . , xn).
After the AOA algorithm is initialized, it will first enter the exploration stage. Before the
exploration stage, Math Optimizer Accelerated (MOA) is calculated. MOA is obtained by
the following Equation (1):

MOA(C_iter) = Min + C_iter×
(

Max−Min
M_Iter

)
(1)
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where C_Iter represents the current iteration C_Iter ∈ (1, M_Iter). Max and Min re-
spectively represent the maximum and minimum values of the acceleration function.
MOA(C_Iter) represents the function value in the tth iteration, which is obtained by
Equation (2):

xij(CIter + 1) =
{

best
(
xj
)
÷ (MOP + ε)×

((
ubj − lbj

)
× µ + lbj

)
, r2 < 0.5

best
(
xj
)
×MOP×

((
ubj − lbj

)
× µ + lbj

)
, r2 ≥ 0.5

(2)

where xi(C_Iter + 1) represents the i-th solution in the next iteration, xij(C_Iter) represents
the j-th position of the i-th solution in the current iteration, best

(
xj
)

is the j-th position in
the best iteration, ε is a small integer number, ubj and lbj represent the upper limit and
lower limit of the j-th position, respectively, µ = 0.5.

According to the arithmetic operators, using the division (D) operator or the multi-
plication (M) operator can obtain highly distributed values or decisions. These will help
the algorithm exploration mechanism, by using multiplication (M) or division (D). Due to
the exploration mechanism of AOA, it is possible to find the approximate optimal solu-
tion through multiple iterative explorations in the solution space, thereby providing the
possibility to obtain a more promising optimal solution in the subsequent optimization
phase (development phase). MOP is a mathematical optimizer; MOP(C_Iter) represents
the function value of the t-th iteration, as shown in Equations (3) and (4):

MO P(C_Iter) = 1− C_Iter
1
α

M_Iter
1
α

(3)

where C_Iter represents the current iteration, and (M_Iter) represents the maximum
number of iterations. α is a sensitive parameter, which defines the development accuracy
in the iterative process; in this paper, α = 5.

xij(CIter + 1) =
{

best
(
xj
)
+ MOP×

((
ubj − lbj

)
× µ + lbj

)
, r3 ≥ 0.5

best
(
xj
)
−MOP×

((
ubj − lbj

)
× µ + lbj

)
, r3 < 0.5

(4)

In order to effectively balance the exploration and development stage of the algorithm,
r1 is used in AOA as the condition for the algorithm to transition from exploration to
development. r1 is a random number [0, 1]. When r1 > MOA, the candidate solution
tries to approximate the most optimal solution and diverges when the algorithm in the
exploratory stage. When r1 ≤ MOA, the candidate solution tends to approximate the
optimal solution when the algorithm in the development stage.

2.2. K-Nearest Neighbor (kNN)

The K-Nearest Neighbor (kNN) algorithm is a theoretically mature method and one of
the most commonly used machine learning algorithms, which is widely used in various
practical problems [36–38]. The basic idea of the kNN algorithm is that, in the feature space,
if most of the k-nearest samples near a sample belong to a certain category, the sample
also belongs to this category. In kNN, when a new instance appears, the k-nearest instance
is directly found in the training data set, and this new instance is assigned to the class
with the largest number of instances among the k training instances. Of course, for kNN,
the classification result is affected by three factors: k value setting, distance measurement
method, and decision rules. Among them, decision rules often follow “the minority obeys
the majority”. For optimization, the focus is often on optimizing the k value and distance
test.

The k value is the only parameter of the kNN algorithm. The selection of the k value
has a very important impact on the prediction results of kNN. A small k value will lead to a
large prediction error and even noise. A large k value will cause underfitting. Under these
circumstances, the forecast model is too simple. For the distance measurement of spatial
samples, it is also a crucial factor that affects kNN prediction. Commonly used distance
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measurement methods include Euclidean distance, Mahalanobis distance, angle cosine
distance, etc. In the calculation process, the smaller the distance between the two samples,
the closer similarity of the two samples; otherwise, the similarity of the two samples is
not good.

Suppose that there are two samples xi and xj in the D dimensional feature; we easily
formulate the samples as: xi = (xi1, xi2, . . . , xiD) and xj =

(
xj1, xj2, . . . , xjD

)
. The distance

between two samples is d
(
xi, xj

)
. Normally, kNN uses Euclidean distance to measure the

similarity between samples, as shown in Equation (5):

d
(
xi, xj

)
=

√√√√ D

∑
k=1

(
xik − xjk

)2
(5)

3. Improved AOA

In this section, we explain in detail the main ideas and implementation schemes of
PL-AOA. We show that it can overcome the problem of AOA, which has slow convergence
speed and prematurely falls into the local optimum when solving complex problems.

3.1. Lévy AOA
Lévy Flight

Compared with Gaussian mutation, Lévy flight [39] random walk is a better search
strategy; its flight step size satisfies a stable distribution with heavy tails. By using Lévy
flight in the optimization algorithm, we can expand the search range, increase the diversity
of the population, and make it easier to jump out of local convergence. The updated
formula of Lévy flight is given in Equation (6):

xt+1
i = xt

i + α× Lévy(λ) (6)

where xt
i represents the position of xi and the t-th generation, × is the point multiplication

operation, α is the Levy flight step control amount, Levy(λ) is the random search path, and
Levy ∼ u = t̂(−λ), Λ ∈ (1, 3].

In this section, we effectively combine Lévy flight with the AOA algorithm. We add
Lévy flight to the iterative process of the AOA algorithm, which enhances the population
diversity of the algorithm, to improve the problem of slow convergence of the AOA
algorithm and solve complex problems wherein the system prematurely falls into the
problem of local optima. After the AOA algorithm updates the solution, the Lévy flight
leads the solution to a new x′ as shown in Equation (7):

x′ij = xij + α× Lévy(λ) (7)

3.2. Parallel Lévy AOA (PL-AOA)
Parallel Strategy Based on Lévy AOA

In order to solve this problem, we adopt a parallel strategy to compensate for the
negative effects of Lévy flight in order to enhance the communication capabilities between
the populations. Normally, this method does not increase the complexity of the algorithm.
The population size is taken as 40, divided into four groups [40], and the algorithm steps
are as follows:

(1) Initialization:

Initialize the population P and related parameters, and divide P into 4 groups:
gi (i = 1, 2, 3, 4).

(2) Evaluation:

Evaluate the fitness value of each particle in the population.

(3) Update:
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Use Equations (2) and (4) to update the position of each particle. Then, update each
group’s historical optimal pbest and global optimal gbesti (i = 1, 2, 3, 4).

(4) Communication:

Communicate between groups every k generations: choose the best solution in the
group for Lévy flight.

(5) Termination:

Repeat steps 2 to 5. If the predefined function value has been obtained or all iterations
have been completed, record the global optimal particle and its fitness value until the end
of the optimization process.

In addition, the flowchart and pseudo code of the algorithm are shown in Figure 1
and Algorithm 1.

Algorithm 1 Pseudocode of PL-AOA

1: Initialize the parameters related to the algorithm: ub, lb, Dim, max_itergroup = 4.
2: Generate initial population X containing N individuals Xi(i = 0, 1, 2, 3, · · · , N).
3: Divide X into 4 groups.
4: Do
5: if r1 > MOA
6: Update the X by Equation (1).
7: else
8: Update the X by Equation (2).
9: for i = 1:group
10: for i = 1:Dim
11: if fwinner < fgbest
12: Update the best solution obtained so far.
13: Change flight status according to iteration.
14: end
15: if iteration = 50
16: Update the pbest by Equation (6) and calculate its fitness value.
17: if fgbest < fpbest′
18: Update the best solution obtained so far.
19: Change flight status according to iteration.
20: end
21: end
22: While (t < max_iter)or ( get the expected f unction value).
23: Return the best solution obtained so far as the global optimum.

Figure 1. The PL-AOA algorithm flow.
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4. An Edge-Intelligent WSN Intrusion Detection System
4.1. Weighted kNN

Though the application of Euclidean distance is more common, it is suitable for
situations where the metric standards of each component of the sample vector are uniform.
For most statistical problems, since the values of the sample components contribute equally
to the Euclidean distance, satisfactory results are often not achieved. Especially when
the dimensional difference in the fluctuation range of each component is large, this will
cause the contribution of each component to the overall difference to be large, and even
the contribution of a certain sample will be almost negligible. When each component is
a quantity of a different nature, the size of the Euclidean distance is related to the unit
of the sample component. In practical applications, it is impossible to guarantee that the
value of a certain dimension has a small fluctuation range, so we can consider weighting
sk(k = 1, 2, . . . , D) for each coordinate sub-scalar. In other words, the coordinates with
large changes have smaller weight coefficients than those with small changes, and the
differences between different attributes of the samples are quantified to the same interval.
This is the method of standardized Euclidean distance, and the formula is as follows in
Equation (8):

d
(

xi, xj
)
=

√√√√√ D

∑
k=1

(
xik − xjk

)2

sk
(8)

As a commonly used machine learning algorithm, many scholars have also improved
it, mainly around the adjustment of the k parameter [41,42]. However, no in-depth research
has been performed on the determination of k, selection of distance functions, or setting
of distance weights. For all sample-based distributions, data characteristics, and analysis
requirements, they can all be regarded as typical optimization problems. With the help of
the optimization ability of a meta-heuristic algorithm, we can obtain a more reasonable and
effective kNN classification model.

4.2. PL-AOA Combined with kNN

The kNN parameter k and the distance weight si largely determine the classification
effect. However, these two parameters are often considered to be determined under normal
circumstances. The PL-AOA proposed in this article can be used to optimize the relevant
parameters of kNN to obtain the best or near-best classification results.

The samples in the D dimensional feature space correspond to the N solution vectors
Xi(i = 1 . . . N) of the evolutionary algorithm. The first dimension is the parameter k of
kNN, which can be set as a random integer within a certain range as required, but the value
of k must be a positive integer. sij ∈ [0, 1], which is a random number, represents the j-th
distance weight in the i-th solution. The evolutionary algorithm will continuously search
and iterate under the guidance of the fitness function, and finally output the optimal solu-
tion or approximate optimal value [43], which is the most suitable kNN-related parameter.
In order to demonstrate our model more clearly, the model’s structure is shown in Figure 2.

4.3. WSN Intrusion Detection System

The wireless sensor network (WSN) has become an increasingly important research
area due to its wide range of real-time applications such as critical military surveillance,
battlefields, building security surveillance, forest fire surveillance, and medical care [44].
A WSN consists of a large number of autonomous sensor nodes, which are distributed in
different areas of interest to collect important data and wirelessly transmit the collected data
to more powerful nodes, called sink nodes or base stations (BS) [45]. The data transmitted
across the network depend on the dedicated WSN protocol, but the WSN is extremely
vulnerable to attacks due to its open and distributed nature and the limited resources of
sensor nodes.
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Figure 2. PL-AOA combined with kNN.

Since the process of avoiding or preventing security threats is not always successfully
completed, an intrusion detection system (IDS) is needed to detect known and unknown
attacks and send out alerts about them to sensor nodes [46]. An IDS can detect suspicious or
abnormal activity and trigger an alarm when an intrusion occurs. The realization of a WSN
IDS is more challenging than other systems, because sensor nodes are usually designed to
be small and cheap, and they do not have enough hardware resources. In addition, there
is no dedicated data set that contains general configuration files and attacks in WSN that
can be used to detect attackers’ signatures. Considering the above challenges, we deploy
edge nodes outside the WSN to enable the WSN to establish communication with the edge
nodes, and we use edge intelligence to facilitate WSN intrusion detection. Figure 3 shows
the edge-intelligent WSN intrusion detection system.

4.4. Performance Evaluation of Intrusion Detection System

Machine learning usually uses the following four criteria to evaluate the performance
of a model: true positive (TP), true negative (TN), false positive (FP), and false negative
(FN). They are also used to calculate various performance evaluation indicators, such as
detection rate (DR), false positive rate (FPR), and accuracy rate (ACC). The calculation
method is as follows:

DR = TP/(TP + FN) (9)

FPR = FP/(FP + TN) (10)

ACC = (TP + TN)/(TP + FN + FP + TN) (11)
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Figure 3. The model WSN intrusion detection system.

Among them, DR represents the probability of a positive prediction in a sample with
a normal actual value. FPR is the probability of a positive prediction in a sample with an
abnormal actual value. ACC divides the number of samples correctly predicted by the total
number of samples to indicate the accuracy of the prediction results. This article uses the
ACC indicator as a fitness function, and its formula is as follows:

f itness = (TP + TN)/(TP + FN + FP + TN) (12)

5. Simulation Experiment and Analysis
5.1. The Experimental Results and Conclusions of PL-AOA

As described in this section, in order to test the performance of PL-AOA, we used the
original standard test function of AOA to conduct comparative experiments on PL-AOA,
AOA, SCA [47], and MVO. This is a complex problem, so we designed the experiment as
follows, focusing on testing the optimization of PL-AOA for complex functions. The test
functions that we used included two single-mode functions ( f1 ∼ f2), four multi-mode
functions. ( f3 ∼ f6), and six complex functions ( f7 ∼ f12), as shown in Table 1. The test
convergence curve is shown in Figure 4, and the test results are shown in Table 2.
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Table 1. The 12 benchmark functions.

Function Dim Range Fmin

f1(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| 30 [−100,+100] 0

f2(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2
30 [−100,+100] 0

f3(x) = ∑n
i=1−xi sin

(√
|xi|
)

30 [−1.28,+1.28] 0

f4(x) = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

30 [5.12,+5.12] 0

f5(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
−

exp
(

1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e

30 [−32,+32] 0

f6(x) = 1
4000 ∑π

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 30 [−5.12,+5.12] 0

f7(x) =
(

1
500 ∗∑25

i=1
1

i+∑2
i=1(xj−xij)

)
30 [−65, 65] 0

f8 = 4 ∗ x2
1 − 2.1 ∗ x6

1
3+x1∗x2

− 4 ∗ x2
2 + 4 ∗ x4

2
2 [−5,+5] 0

f9(x) = −
1+cos

(
12
√

x2
1+x2

2

)
0.5(x2

1+x2
2)+2

2 [−2,+2] 3

f10(x) = −∑4
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [−10,+10] −10.1532

f11(x) = −∑7
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [−10,+10] −10.4028

f12(x) = −∑10
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [−10,+10] −10.5363

Table 2. Comparison results of PL-AOA, AOA, SCA, and MVO on 12 benchmark functions.

Function Algorithm Best Value AVG STD

f1

PL-AOA 0 0 0

AOA 0 0 0

SCA 2.09× 10−14 9.71085× 10−9 9.10029× 10−9

MVO 0.013127 0.0473636 0.025148762

f2

PL-AOA 0 0 0

AOA 3.39× 10−5 6.7766× 10−6 1.35532× 10−5

SCA 3.35× 10−6 0.84790582 1.01309437

MVO 0.23415 0.25472 0.167577958

f3

PL-AOA −3251.961 −3072.60658 192.0813616

AOA −2669.3232 −2828.61848 127.3300739

SCA −2060.5021 −2206.09518 222.1806306

MVO −2511.7046 −2889.61756 225.6564613

f4

PL-AOA 0 0 0

AOA 1.85× 10−8 9.6634× 10−14 1.93268× 10−13

SCA 45.627 2.95231933 5.879472705

MVO 9.9668 13.93912 4.664720195



Sensors 2022, 22, 1407 11 of 18

Table 2. Cont.

Function Algorithm Best Value AVG STD

f5

PL-AOA 8.88× 10−16 8.88× 10−16 0

AOA 1.62× 10−8 3.25× 10−9 6.4912× 10−9

SCA 9.33× 10−8 3.45× 10−7 2.14341× 10−7

MVO 0.040718 5.09× 10−2 0.016216161

f6

PL-AOA 0 2.14× 10−12 3.96128× 10−13

AOA 2.34× 10−14 1.98× 10−10 8.2776× 10−14

SCA 0.0033891 1.26× 10−1 0.177027801

MVO 0.20291 3.81× 10−1 0.134430398

f7

PL-AOA 0.998 0.998 0

AOA 7.874 2.377862 2.295234559

SCA 0.99801 3.744742 3.61965409

MVO 0.998 0.998 0

f8

PL-AOA −1.0316 −1.0316 0

AOA −1.0315 −1.03152 9.79796× 10−5

SCA −1.0314 −1.03124 0.000621611

MVO −1.0316 −1.02918 0.00459147

f9

PL-AOA −3.859 −3.85222 0.00484124

AOA −3.8549 −3.85486 0.003883607

SCA −3.8503 −3.85166 0.001654811

MVO −3.8628 −3.8628 0

f10

PL-AOA −5.0579 −5.04412 0.018240329

AOA −3.6494 −3.09772 0.96147737

SCA −2.8665 −2.53446 0.823849153

MVO −2.6828 −1.843174 1.282266985

f11

PL-AOA −7.6701 −7.3831 0.826224943

AOA −2.9294 −2.30354 1.040143612

SCA −3.0656 −2.12771 2.042497321

MVO −2.7659 −1.87218 3.060140019

f12

PL-AOA −5.7896 −4.91552 1.09829503

AOA −2.4736 −2.14244 1.972803802

SCA −4.699 −3.916174 1.515732845

MVO −2.4273 −1.36822 3.881249547

Compared
with the

four
algorithms

Algorithm Win Win Win

PL-AOA 9 9 8

AOA 0 0 1

SCA 0 0 0

MVO 1 1 1
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Figure 4. The convergence curves of test function.
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Through three sets of benchmark function tests, it can be seen that PL-AOA has
achieved the absolute advantage in algorithm comparison, and its performance in complex
functions is more prominent. The numbers in bold indicate the best results for each set
of tests which PL-AOA has achieved the nine best results in the 12 benchmark tests. In
the standard deviation comparison, the first results were achieved eight times, which
proves that the PL-AOA proposed in this paper has good optimization strength and reliable
stability. Moreover, the average performance was improved by nearly 80% compared with
the original AOA.

5.2. The Experimental Results and Conclusions of WSN Intrusion Detection System

In order to verify the practicability of the intrusion detection model proposed in this
paper, the WSN intrusion detection data set WSN-DS [48] was used in simulation exper-
iments. WSN-DS collects data from the network simulator 2 (NS-2), and then processes
it to generate a data set of 23 features. Four types of DoS attacks are defined in WSN-DS:
Blackhole, Grayhole, Flooding, and Scheduling attacks. The data distribution is shown
in Table 3.

Table 3. The data of WSN-DS.

Data Set
The Type of Data

Normal Blackhole Grayhole Flooding Scheduling Attacks

Number 340,066 10,049 14,596 3312 6638

Before executing the algorithm, the data set was preprocessed, including numerical
values, normalization, and other operations. The detection performance of four intrusion
detection models (kNN, kNNPSO, kNNAOA, kNNPL−AOA) was tested. The experimental
results are shown in Table 4, and the average results of 30 independent experiments were
recorded. The total population of the three evolutionary algorithms of PSO, AOA, and
PL-AOA was set to 20, and the number of iterations was 100.We can clearly find the model
kNNPL−AOA achieved the best results on the three indicators of ACC, DR, and FPR. This
shows that the model can identify most of the DoS attacks that affect a WSN and can
distinguish different types.

Table 4. Classification effects of the four models.

Model ACC (%) DR (%) FPR (%)

kNN 0.91162 0.95291 0.51429
kNNPSO 0.92893 0.94226 0.035714
kNNAOA 0.97727 0.97861 0.045455

kNNPL−AOA 0.99721 0.99171 0.068966

In machine learning, the confusion matrix can be used to evaluate the accuracy of the
four detection models. Here, we prove the accuracy of the four models by drawing the
confusion matrix, as shown in Figure 5. The horizontal axis represents the predicted value,
and the vertical axis represents the true value, visually showing the misclassification of
each category. It can be seen that the kNNPL−AOA model proposed in this paper has the
best detection effect.
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Figure 5. kNN, kNNPSO, kNNAOA, and kNNPL−AOA confusion matrix.

For WSN intrusion detection systems, reducing the false positive rate is a challenge.
We conducted five independent experiments using the data set. Figure 6 visually shows
the comparison results of the false positive rate of the four different detection algorithms.
It can be seen that the false positive rate of kNNPL−AOA is extremely stable at a low level.

Figure 6. The false positive rate comparison for kNN, kNNPSO, kNNAOA, and kNNPL−AOA.

Figure 7 shows the AOC curves of the four classification methods, where we can see
that the kNNPL−AOA proposed in the article achieves a good effect.
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Figure 7. The AOC curves for kNN, kNNPSO, kNNAOA, and kNNPL−AOA.

6. Conclusions

Due to the proposal of edge technology and its extensive combination with IoT devices,
some complex technologies can be easily implemented in this way [49–51]. Some applica-
tions pose various security threats to WSNs, especially in unattended environments. In
order to ensure the security and reliability of WSN services, an intrusion detection system
(IDS) should be established. Intrusion detection is one of the key issues that urgently needs
to be resolved in the practical application of WSNs. This paper proposes an edge-intelligent
intrusion detection system that can be applied when a WSN encounters a DoS attack. First,
we improve the AOA algorithm by using Lévy flight to improve the ability to jump out of
the local optimum, and we use a parallel strategy to improve the population diversity in
iterations. Then, through the combination of the improved PL-AOA optimization algorithm
and kNN machine learning classifier, we not only improve the accuracy of detection and
classification but also greatly improve the detection precision. The improved PL-AOA
algorithm proposed in this paper has passed 12 benchmark function tests with outstanding
results; we achieve the best results 9 times in 12 benchmark functions. In addition, the pro-
posed intrusion detection model has been proven to be feasible in simulation experiments
using WSN standard intrusion detection data sets to achieve a 99% ACC.

Time complexity is one of the evaluation indicators to measure the pros and cons of
an algorithm. The time complexity of the PL-AOA proposed in this paper consists of two
parts: initialization and solution update. The time complexity of the initialization process
is O(G× N/G) = O(G). Due to the parallel strategy, regardless of how many groups are
divided, the final population size is still N, G is the number of groups, and the solution
update is O(N × T) + O(T × N × D), where T denotes the iteration and D denotes the
dimension. The time complexity of Lévy flight is O(1). Therefore, the time complexity of
the PL-AOA algorithm is O(N × (TD + 1)), as with the original AOA algorithm. The time
complexity of kNN is O(N × D). In the proposed kNNPL−AOA, kNN is used as the update
solution, so the time complexity of kNNPL−AOA is also O(N × (TD + 1)). Although the
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time complexity is a little higher than that of the native kNN, the accuracy is improved by
nearly 10%, so we believe that this time loss is an appropriate trade-off.

In the future, we will focus on developing an unsupervised or semi-supervised WSN
intrusion detection model, such as k-means optimized by an evolutionary algorithm, and
so on. These models will not only target a particular type of DoS attack, but also strive to
cover Sybil attacks, routing attacks, and other possible attacks.
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