
Received April 3, 2019, accepted April 30, 2019, date of publication May 7, 2019, date of current version May 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2915354

An Enhanced Iterative Clipping and Filtering
Method Using Time-Domain Kernel Matrix
for PAPR Reduction in OFDM Systems

XIAORAN LIU , XIAOYING ZHANG , JUN XIONG , (Member, IEEE),

FANGLIN GU , (Member, IEEE), AND JIBO WEI, (Member, IEEE)
Department of Electronic Science, National University of Defense Technology, Changsha 410073, China

Corresponding author: Jun Xiong (xj8765@ nudt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61601477 and Grant 61601480, and in

part by the Research Foundation of the National University of Defense Technology under Grant ZK17-03-13.

ABSTRACT Iterative clipping and filtering (ICF) is a straight-forward method for reducing the peak-to-

average power ratio (PAPR) of signals in orthogonal frequency-division multiplexing (OFDM) system.

Recently, convex optimization has been used to find the optimal filter coefficients that minimize the error

vector magnitude (EVM) and meet the PAPR constraint. However, high-computation complexity may be

incurred when solving the convex optimization problem. Therefore, we develop an efficient PAPR reduction

method that uses the time-domain kernel matrix to generate the PAPR-reduction signal. Besides, we relax

the assumption that the clipping noise is a series of uncorrelated parabolic pulses and apply the proposed

method to more general cases. Based on the instantaneous observation of clipping noise, the proposed

method constructs a simple time-domain kernel matrix and employs the curve fitting approach to optimize

the corresponding scaling factors. The simulation results show that the proposed method can achieve very

close performance to that using convex optimization in terms of both the PAPR reduction and EVMwhile the

computational cost is reduced greatly. In addition, due to the decrease of iteration numbers and computational

complexity, the proposed method is more efficient than some existing clipping and filtering methods.

INDEX TERMS OFDM, PAPR reduction, clipping and filtering, time-domain kernel, curve fitting.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is such

a prominent technique that has been widely adopted in many

wireless communication standards such as the 5th genera-

tion New Radio (5G NR), Long Term Evolution-Advanced

(LTE-A), and IEEE 802.ax. However, the high peak-to-

average power ratio (PAPR) of OFDM is a major drawback,

which makes the signals sensitive to non-linear distortion

of power amplifier (PA) [1]. Although this problem can be

mitigated by yielding power back-off, it would result in the

reduction of PA efficiency and the shrink of the coverage

range [2].

Over the past decades, various PAPR-reduction techniques

have been proposed in the literature, including tone reserva-

tion (TR) [3], selected mapping (SLM) [4], partial transmit

sequence (PTS) [5], companding [6] clipping and filtering
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scheme [7]–[14], etc. These techniques can be divided into

two main categories, distortionless techniques and signal dis-

tortion techniques [15]. Among all these existing techniques,

the iterative clipping and filtering (ICF) method has received

considerable research interest because it requires neither

side information nor extra spectral resources and it presents

possibly the simplest PAPR reduction scheme. During each

iteration of ICF, the clipping procedure directly confines the

amplitude of OFDM signal to a preset threshold and then

the filtering procedure suppresses the consequent out-of-band

emission. Nevertheless, since the filtering procedure results

in peak regrowth, a number of iterations are usually required

to achieve the desired PAPR reduction [7]. Besides, another

problem of this method is that the in-band distortion caused

by clipping has not been considered.

To address these problems, various modified methods have

been proposed. In [8], a simplified clipping and filtering

(SCF) method is proposed, in which the clipping noise is

scaled to achieve the same PAPR reduction as that of ICF
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with just one iteration. This is based on the analysis that the

clipping noise generated in the first clipping and filtering

iteration is approximately proportional to that obtained after

several iterations. To reduce the computational complexity,

the authors in [9] have designed a neural network to emulate

the SCF signal pattern. Furthermore, a new approach that

does not rely on clipping ratio has been proposed to minimize

the number of iterations [16]. On the other hand, the in-

band distortion is considered in [10] through the constrained

error vector magnitude (EVM), which makes the clipped

signal satisfy specific communications standards. In [11],

the distortion on each tone of OFDM is limited, which can

be regarded as a generalization of active constellation extend

(ACE) [17]. The optimization method is further applied to

minimize the EVM in [12], [13]. In [12], an optimized ICF

(OICF) method is proposed to find the optimal frequency-

domain filtering coefficients that can minimize the EVM.

However, the drawback of this method is that solving a

convex optimization problem results in very high computa-

tion complexity. To overcome this problem, the optimization

problem in the original OICF method is transformed into an

approximate form, which is called simplified OICF (SOICF)

[13]. By using algebraic operations to approximately solve

the optimization problem, the computation complexity can

be significantly reduced. This method is further considered

in an adaptive clipping fashion but the bit error ratio (BER)

performance is then degraded [14]. In fact, the SOICFmethod

is only useful for the case when the clipping threshold is large

enough to make the clipping noise approximated as a series

of uncorrelated parabolic pulses.

The clipping noise has been well investigated based

on the level-crossing theory which is widely used for

PAPR analysis [18] and clipping based PAPR reduction tech-

niques [19]–[22]. In [19], the clipping noise is analyzed in

both time and frequency domain. In [20], the amplitude of

the filtered clipping noise is optimally scaled to approximate

the amplitude of original clipping noise by using the least

square algorithm. In [21], a curve fitting based TR method

is proposed to directly generate the PAPR-reduction signal

that approximates the waveform of clipping noise. In [22],

the time-domain kernel matrix is used to suppress multiple

pulses of clipping noise in one iteration. However, these

methods designed for the approximation of clipping noise are

mainly based on TR scheme which has much difference with

the clipping and filtering scheme.

In this paper, an enhanced iterative clipping and filter-

ing method is proposed to generate the PAPR-reduction

signal by using the time-domain kernel matrix, which is

called TKM-ICF. Our work is motivated by the fact that

the clipping noise cannot be seen as a series of parabolic

pulses when the PAPR threshold is relatively low. Since the

PAPR-reduction signal is designed to approximate the clip-

ping noise, the proposed method shows the capability of

adapting to the change of clipping level. Firstly, we formulate

a new optimization problem in which a time-domain kernel

matrix is constructed and the corresponding scaling vector

is optimized to generate the PAPR-reduction signal. Our

analysis reveals that it is an equivalent form of the problem

formulated in [12]. Furthermore, since the main energy of

kernel is centralized in the half main-lobe width, the sam-

ples of clipping noise within correlation time of statistical

process can be covered with a kernel vector. In this case,

we can significantly simplify the time-domain kernel matrix

and obtain an approximate and intuitive solution of this

optimization problem with lower complexity. The simulation

results demonstrate that the proposed method achieves near

optimal performance in terms of EVM and PAPR reduction.

In addition, comparing with the traditional SOICF method,

we find that our method is more robust when setting low

clipping threshold.

This paper is organized as follows. Section II briefly

reviews the PAPR problem inOFDMsystem and the clipping/

filtering scheme. In section III, we present the related the-

oretical analysis and propose the TKM-ICF method. Then

simulations are performed in Section IV. The conclusion is

drawn in Section V.

II. OFDM SYSTEM AND CLIPPING/FILTERING SCHEME

A. PAPR PROBLEM IN OFDM SYSTEM

In the OFDM system with N subcarriers, the data sym-

bol X (k) is modulated to the k-th subcarrier, where k =
0, 1, . . . ,N − 1. The subcarrier spacing is 1f = 1/Ts,

where Ts is the symbol period. Then the continuous-time

OFDM signal x(t) can be written as

x(t) = 1√
N

N−1
∑

k=0

X (k)ej2πkt/Ts , 0 ≤ t ≤ Ts (1)

The PAPR of OFDM signal x(t) is denoted as

PAPR = maxt∈[0,Ts) |x(t)|2
Pav

, (2)

where Pav = E{|x(t)|2} = E{|X (k)|2} is the average power
of x(t). The discrete samples of x(t) may also be used to

compute the PAPR like (2) when the oversampling factor

L ≥ 4 [23]. The oversampled signal x(n) can be efficiently

computed by the LN -point inverse Fourier transform (IDFT)

of the data symbols with zero-padding, which is expressed as

x(n) = 1√
N

N−1
∑

k=0

X (k)ej2πkn/LN , 0 ≤ n ≤ LN − 1 (3)

The performance of PAPR reduction is normally eval-

uated by the complementary cumulative distribution func-

tion (CCDF) which represents the probability that the

PAPR of the OFDM symbol exceeds a predetermined

threshold PAPR0, i.e.

CCDF = Pr(PAPR > PAPR0), (4)

where Pr(·) denotes the probability function.
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B. CLIPPING AND FILTERING METHOD

In the ICF method, the clipping and filtering operation are

iteratively performed to suppress the peak regrowth. The

clipped OFDM signal x̃(n) can be denoted as

x̃(n) =
{

Aejθ (n), |x(n)| > A

x(n), |x(n)| ≤ A
(5)

where θ (n) is the phase of x(n), and A is the clipping level.

Note that A needs to be recalculated in each iteration accord-

ing to the predefined clipping ratio (CR), which is defined

as [1]

γ = A√
Pav

. (6)

Note that the amplitude clipping leads to in-band distor-

tion and out-of-band radiation. Filtering is then employed

to the clipped signal in frequency domain to eliminate the

out-of-band radiation. The rectangular window is used for

frequency-domain filter design in [7], which passes the

in-band and rejects the out-of-band frequency components.

However, this simple design of filter leads to peak

regrowth, in which numerous iterations are normally required

in order to achieve the desired PAPR. Another disadvantage is

that the in-band distortion is not taken into consideration. The

EVM is generally applied to measure the in-band distortion,

which is defined as [12]

EVM =

√

√

√

√

√

1
N

∑N−1
k=0

∣

∣

∣
X (k) − X̂ (k)

∣

∣

∣

2

1
N

∑N−1
k=0 |X (k)|2

=

∥

∥

∥
X − X̂

∥

∥

∥

2

‖X‖2
, (7)

where X̂ denotes the filtered symbols and ‖·‖2 denotes the

2-norm.

In the OICFmethod [12], the filter is optimally designed to

minimize the EVM at each iterations. The frequency-domain

symbol after clipping is denoted as X̃ =
[

X̃ in; X̃out

]

, where

X̃ in =
[

X̃ (0) , X̃ (1) , . . . , X̃ (N − 1)
]T

is in-band compo-

nent and X̃out =
[

X̃ (N ) , X̃ (N + 1) , . . . , X̃ (LN − 1)
]T

is

out-of-band component. Then the optimization problem with

regard to the filter coefficients can be formulated as [15]

min
H∈CN

EVM =

∥

∥

∥
X − X̂

∥

∥

∥

2

‖X‖2
(8a)

s.t. X̂ = X̃ in ⊙H (8b)

X̃out = 0(N−1)L×1 (8c)

x̂ = IDFT(X̂)LN (8d)
∥

∥x̂
∥

∥

∞
∥

∥x̂
∥

∥

2
/
√
LN

≤
√
PAPR = γ, (8e)

where the operator⊙ denotesHadamard product, IDFT (X̂)LN
represents a LN -point IDFT for zero-padded X̂ , H ∈ C

N is

the frequency-domain filter coefficient vector and ‖·‖∞ is the

∞-norm of a vector. The constraints (8b) and (8c) represent

the filtering procedure which weights the in-band component

X̃ in using H and sets the out-of-band component X̃out to

zero. (8e) guarantees that the PAPR of OFDM signal can not

exceed the predefined threshold.

Although the constraint (8e) is non-convex, it can be turned

to a convex function by approximating
∥

∥x̂
∥

∥

2
to ‖x̃‖2. Thus

the problem (8) can be formulated as a convex one and

solved as a second-order cone program (SOCP). Under the

constraint of PAPR level, the OICFmethod can provide better

EVM performance with fewer iteration times than traditional

ICF method. However, when using large number of subcarri-

ers, the computation complexity is prohibitively high, which

motivates us to find a low-complexity ICF method.

III. THE PROPOSED TKM-ICF METHOD

In retrospect to the original clipping and filtering scheme,

we find that the filtering in frequency domain requires an

IFFT/FFT pair at each iteration. The filtering operation with

complex value multiplication also leads to extra computation

cost. Therefore, in order to avoid the frequency filtering,

we will use an additive PAPR-reduction signal as the opti-

mization parameter.

A. PAPR REDUCTION SIGNAL DESIGN

Instead of frequency-domain filtering of the clipped signal,

the additive PAPR-reduction signal could be used as follows

x̂ = x− c = IDFT (X − C)LN , (9)

where c = [c(0), c(1), . . . , c(LN − 1)]T is the time-

domain PAPR-reduction signal and C = [C(0),C(1), . . . ,

C(N − 1)]T is the corresponding frequency-domain

PAPR-reduction signal.

The clipping noise f (n) is the consequence of amplitude

clipping in (5), which is written as

f (n) = x(n) − x̃(n). (10)

The clipping noise consists of several intermittent segments

at which |x(n)| > A. Let P denote the number of clipping

segments. Then f (n) can be expressed as the combination of

a series of clipping segments, i.e.,

f (n) =
P
∑

i=1

fi(n), (11)

where fi(n) is the i-th clipping segment. We suppose that the

i-th clipping segment arises at nsi, its maximum amplitude

occurs at ni and the duration time is Nτi (i.e., the number of

non-zero values of fi(n)).

It is obvious that the amplitude of signal would not exceed

the PAPR constraint if PAPR-reduction signal c is equal to the

clipping noise f . Note that the frequency spectrum of clipping

noise is distributed over the whole OFDM band, while the

PAPR-reduction signal c is generated in band-limited system.

That is, c hardly equals f . in other words, we can only

design c to approximate f as far as possible.
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The clipping noise f is considered as a series of parabolic

pulses in the SOICF method [13]. According to the positions

of P pulses, the PAPR-reduction signal is generated as

c =
nP
∑

ni=n1
µ (ni) p[((n− ni))LN ], i = 1, . . . ,P, (12)

where µ (ni) = (|x (ni)| − A) ejφ(ni) denotes the scaling fac-

tor, p = [p(0), p(1), . . . , p(LN − 1)]T is the time-domain

kernel vector, and p[((n− ni))LN ] represents the right circu-

larly shifted sequence of p by ni, such that its maximum value

position matches to the pulse’s max peak. The basic kernel

vector is generated as

p (n) = 1
N

∑N−1

k=0
ej2πnk/LN , n = 0, . . . ,LN − 1, (13)

in which the maximum value occurs at n = 0 and is normal-

ized to 1.

The advantage of SOICF is that the computational com-

plexity is reduced. But it is assumed that every clipping

segment is approximately a parabolic pulse and has only one

local maximum value, which greatly limits the generality of

this method. In fact, such an assumption is frequently violated

even for CR = 6dB [19], which implies that this method may

fail to work when the target PAPR is required to be relatively

low.

B. OPTIMIZATION PROBLEM REFORMULATION

From the previous subsection, we know that the SOICF

method may become ineffective when the clipping noise

has the envelope curve different from the parabolic pulse.

It can be easily found that improving the degree of free-

dom in the design of PAPR-reduction signal can achieve

better approximation to f . Therefore, we construct a time-

domain kernel matrix M , which contains LN column vec-

tors p0, p1, . . . , pLN−1 generated by circularly shifting p to

every sampling points of one OFDM symbol, i.e., pl =
p[((n− l))LN ], l = 0, 1, . . . ,LN . The time-domain kernel

matrixM can be written as

M =
[

p0, p1, . . . , pLN−1

]

LN×LN . (14)

Then we scale the column vector ofM by defining the scaling

vector as

β = [β0, β1, . . . , βLN−1]
T . (15)

The PAPR-reduction signal is then expressed as

c = Mβ. (16)

Based on the linearity and circular-shift property of the DFT,

the PAPR-reduction signal can be transformed in the fre-

quency domain as

C(k) = DFT(Mβ)LN

= DFT

(

LN−1
∑

d=0

βdpd (n)

)

LN

=
LN−1
∑

d=0

DFT
(

βdpd (n)
)

LN

=
LN−1
∑

d=0

βdDFT
(

p
[

((n− d))LN
])

LN

=
LN−1
∑

d=0

βde
−j 2πdkNL DFT(p)LN

= 1√
N

LN−1
∑

d=0

βde
−j 2πdkNL , (17)

for k = 0, 1 . . . ,N − 1. We define the (k, d) element of

N × LN matrix R as rkd = 1√
N
e−j

2πkd
LN . Thus, the

PAPR-reduction signal in frequency domain can be expressed

as

C = Rβ. (18)

Finally, we can reformulate the optimization problem in (8)

by substituting the variable β for filtering coefficients H ,

as given by

min
β∈CLN

‖Rβ‖2
‖X‖2

(19a)

s.t.
∥

∥x−Mβ
∥

∥

∞ ≤ γ ‖x̃‖2√
LN

, (19b)

where the PAPR constraint (8e) is changed to a convex func-

tion as (19b) by following the same procedure in [12].

It can be found that the optimization objective (19a) is also

a convex function because of RTR � 0. Thus it can also be

seen as a SOCP and solved by some public softwares like

CVX [24]. It is noteworthy that the solution to the optimiza-

tion problem (19) can also make theH ⊙ X̃ = X −Rβ solve

the problem in (8), and vice versa. We can also find that when

the constraint (19b) only considers one peak at n = 0 and

β only contains one element β0, this optimization problem

will derive the same result as SOICF [13].

Although the optimal time-domain PAPR-reduction signal

can be obtained by solving (19), we are interested in simpli-

fying this problem and finding a more intuitive solution.

C. PROPOSED METHOD

Inspired by [22], we find that when the PAPR-reduction

signal c is well designed though adjusting β that fits c to

the clipping noise f , the PAPR constraint (19b) could be

satisfied. Meanwhile, the deterioration of EVM performance

depends only on the power of PAPR-reduction signal. The

block diagram of the proposed method is displayed in Fig. 1.

According to the calculation of the clipping noise, the pre-

stored time-domain kernel matrix is multiplied by the opti-

mized scaling vector. To generate the scaling vector, we resort

to curve fitting method that makes the waveform of the

PAPR-reduction signal approximate the waveform of clip-

ping noise.

To concentrate on the magnitude fluctuation of clip-

ping noise, we define the positions of non-zero values
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FIGURE 1. Block diagram of the OFDM transmitter with the proposed PAPR reduction method.

in i-th clipping noise segment fi(n) as the time index set

Si = {ni0, ni1, . . . , niNτi
−1}. Then we denote S = S1 ∪ S2 ∪

· · · ∪ SP and Nτ =
P
∑

i=1

Nτi .

Then the problem of fitting c to f is equivalent to optimiz-

ing the vector β to minimize the Euclidean distance between

the points c(n) and f (n) for n ∈ S , which can be formulated

as

min
β

∑

n∈S
|c (n) − f (n)|2. (20)

It can be found that (20) can be regarded as an intuitive and

approximate form of (19) as analyzed above. We use ĉ and f̂

to represent the nonzero value of c and f , respectively, i.e.,

ĉ = [ĉ1; ĉ2; . . . ; ĉP], ĉi = [c(ni0), c(n
i
1), . . . , c(n

i
Nτi

−1)]
T ,

f̂ = [f̂ 1; f̂ 2; . . . ; f̂ P], f̂ i = [f (ni0), f (n
i
1), . . . , f (n

i
Nτi

−1)]
T .

Then the problem in (20) is rewritten as minβ

∥

∥

∥
ĉ− f̂

∥

∥

∥

2

2
.

Note that there is no unique solution when the dimension

of β is larger than that of f̂ . In this case, we can simplify

the time-domain kernel matrix by wiping out the vector pd
for d /∈ S , and only consider the curve fitting for the

nonzero samples in clipping noise. In addition, samples in

oversampled OFDM signal x(n) may not be mutually inde-

pendent. In fact, it has been shown that for cyclostationary

process x(t), the correlation coefficient of x(t) and x(t + 1t)

is [19]

ρx (1t) =
sin
(

πN1t
/

Ts
)

N sin
(

π1t
/

Ts
)e−jπ1t/Ts . (21)

Here we can grossly define correlation time by the reciprocal

of the bandwidth of the signals, i.e., Tc ≈ Ts/N , by which the

correlation of the stationary processes may rapidly diminish

as the interval of observation exceeds Tc. Let 1t = nTs/LN

for 0 6 n 6 LN − 1. Then we have

∣

∣ρx
(

nTs
/

LN
)∣

∣=
∣

∣

∣

∣

∣

sin
(

πn
/

L
)

N sin
(

πn
/

LN
)

∣

∣

∣

∣

∣

≈
∣

∣

∣

∣

∣

L sin
(

πn
/

L
)

πn

∣

∣

∣

∣

∣

, (22)

when n is small compared toN . As shown in (22), the samples

within the range of L have large correlation, which proves that

the clipping noise during the range of L is also correlated.

Meanwhile, since the time-span of the main energy in time

domain is significantly confined within the half main-lobe

width Ts/N (which includes L + 1 samples for oversampled

signal), it would be extremely inefficient to apply p to every

sampling point in a clipping segment. Thus, the number of

columns of kernel matrix M can be significantly reduced

according to the segment duration Nτi .

Whenwe lower the clipping level, the probability that more

than one clipping pulses occur within the correlation time Tc
will increase. That is, for one clipping segment, multiple local

maximums could be found or the duration time frequently

exceeds one half mainlobe width of p. So considering the

clipping noise in all cases, the time-domain matrix should be

designed based on the instantaneous observation of clipping

noise.

Suppose that the i-th clipping segment requires Ni ker-

nel vectors, pi1, p
i
2, . . . , p

i
Ni

with circular shift l i1, l
i
2, . . . , l

i
Ni
,

respectively, i.e.

pir = p[((n− l ir ))LN ], r = 1, . . . ,Ni. (23)

Next, we will determine the number of kernel vectors Ni
and the value of circular shift l ir based on three cases of

observation:

1) CASE 1

The first case is that the i-th clipping segment has only one

local maximum and includes no more than L samples. Note

that it is in accord with the assumption in [13], where the

clipping segment can be regarded as a parabolic pulse. Then

Ni is set to 1 and p
i
1 is generated by circularly shifting p with

l i1 = ni.

2) CASE 2

In the second case, more than one local maximum could be

found in one clipping segment. Denote the number of local

maximum in the i-th clipping segment as Ki. In this case, if

the number of samples is less thanKi×L (the duration time is

less than Ki times of correlation time Tc), Ni is then set as the

number of all local maximums Ki among fi(t). The Ni kernel

vectors are individually circular-shifted by the positions of Ki
local maximums.
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3) CASE 3

In the third case, the number of samples is greater than the

Ki × L. For example, if there is only one local maximum

and the duration time of fi(t) is larger than the correlation

time Tc, then the clipping segment cannot be covered within

just one kernel vector. In this case, the number of vectors in

kernel matrix for i-th clipping segment is calculated by Ni =
⌈Nτi/L⌉, where ⌈·⌉ denotes the ceiling function. Suppose that
the segment duration is equally divided intoNi intervals, each

of which has (Nτi − 1)/Ni samples. Meanwhile, the rising

slope at the begin of segment and the falling slope at the

end of segment are considered to jointly occupy one interval.

In this way, the kernels are evenly spaced to be allocated

in the duration of clipping segment. Thus the corresponding

circular-shift value l ir is calculated by

l ir = nsi + Round(
Nτi − 1

Ni
(r − 1

2
)), (24)

where Round(·) is to round off to the nearest integer. The first
item is the starting position of the i-th clipping segment and

the second item is the internal offset of the r-th kernel vector.

Using (24) in (23), we can obtain Ni kernel vectors.

The amount of kernel vectors for each clipping segment is

given byNp =
P
∑

i=1

Ni.We can redefine a reduced time-domain

kernel matrix Mp which contains all the kernel vectors gen-

erated for each segment

Mp =
[

p11, . . . , p
1
N1

, p21, . . . , p
2
N2

, . . . , pPNP

]

LN×Np
. (25)

The corresponding scaling factor vector is βp =
[β1

1 , . . . , β
1
N1

, β2
1 , . . . , β

2
N2

, . . . , βPNP ]. In order to focus on the

non-zero value of f , we denote ĉ = M̂pβp, where M̂p is a

Nτ × Np matrix. The optimal β∗
p in (20) is the minimal norm

least squares solution of the overdetermined linear equations

M̂pβp − f̂ = 0. (26)

Since the column vectors of M̂p are uncorrelated, the rank of

M̂p is Np and smaller than Nτ . Thus, the equation (26) has a

unique solution

βp
∗ = (M̂H

p M̂p)
−1M̂H

p f̂ . (27)

The complexity of calculating the solution in (27) depends

on the dimension of M̂p. Because of the weak correlation of

each clipping segment, we can further split thematrix M̂p into

P low-dimension sub-matrices by independently considering

the curve fitting in the i-th clipping noise segment, i.e.,

min
β i

∥

∥

∥
ĉi − f̂ i

∥

∥

∥

2

2
, i = 1, 2, . . . ,P. (28)

where ĉi can be expressed by M̂ i
pβ

i
p and M̂ i

p is a Nτi × Ni
matrix. Similar as (27), the solution in (28) can be obtained

as

β ip
∗ = (M̂ i

p

H

M̂ i
p)

−1M̂ i
p

H

f̂ i. (29)

To ensure the PAPR constraint, we further modifies the solu-

tion in (28) by comparing the maximum value of clipping

segment to that of the approximated signal. The modified

solution is calculated as αiβ
i
p, where

αi = fi(ni)

‖M̂ i
pβ

i
p

∗‖∞
. (30)

Particularly, for the case 1 that only one kernel vector is

required (i.e., Ni = 1), β ip can be directly obtained by

β ip = fi(ni). (31)

Since the scaling factor is set to the maximum of the clipping

segment, we set αi = 1 as a constant.

Then we replace the calculated αiβ
i
p for the corresponding

βn(n = l i1, . . . , l
i
Ni
) of β and insert zero into the remainder

of β. In order to save computation cost, the PAPR-reduction

signal is firstly generated in frequency domain [13], which

can be obtained by (18). By converting C to the time domain,

the iteration output signal can be expressed as

x̂ = x− IDFT(Rβ)LN . (32)

Algorithm 1 The TKM-ICF Method

Initialization:

Set up the clipping ratio and the maximum number of

iterations.

Generate the basic kernel vector p by (13).

Runtime:

1: Modulate OFDM signal x in time domain with oversam-

pling factor L.

2: Calculate the average power Pav and set the clipping

threshold A using (6).

3: Calculate the clipping noise f using (10).

4: For each clipping segments, generate the kernel vectors

using (23) according to the three cases. Calculate αiβ
i
p

using (29), (30), and (31).

5: Calculate the PAPR-reduction signal C in frequency

domain by (18). Transform C into time domain and

update the OFDM signal x as (32).

6: If ‖x‖∞ ≤ A or the maximum iteration number is

reached, go to step1 and get new data to process the next

OFDM symbol. Otherwise, go to step 2 to proceed the

next iteration.

The proposed method is summarized in Algorithm 1.

In order to further explain our proposed method, Fig. 2 shows

the examples of time-domain observation of clipping noise

for an OFDM system with oversampling factor L = 8.

The PAPR-reduction signals generated by Algorithm 1 are

presented to illustrate the curve fitting procedure. The cor-

responding kernel vectors are scaled and superimposed on

each other to constitute the PAPR-reduction signal. For com-

parison, the optimal PAPR-reduction signals are obtained

by solving convex optimization problem in (19). It can be

seen that the clipping noise is classified into the three cases
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FIGURE 2. Examples of the clipping noise for three cases as illustrated in section III-C, and the PAPR-reduction signals generated by our proposed
method and convex optimization method. (a) Case 1. (b) Case 2. (c) Case 3.

as illustrated above. For case 1, the clipping noise can be

enveloped in one kernel vector. From the plots of amplitude

and phase, the proposed method generates approximately

identical PAPR-reduction signal to the convex optimiza-

tion method. From Fig. 2(b) and Fig. 2(c), multiple kernel

vectors are used to perform curve fitting as analyzed in

case 2 and 3. The PAPR-reduction signals generated by the

proposed method and convex optimization both have approx-

imate envelope to the clipping noise, which infers that the

clipping noise can be nearly canceled out. We also note that

in case 1, the clipping segment can be assumed as a parabolic

pulse. In this case, our proposed method is equivalent to the

SOICF method, which implies that SOICF is a special case

of our proposed method. However, the SOICFmethod cannot

tackle case 2 and 3 since this assumption is no longer valid.

D. COMPLEXITY COMPARISON

In the Algorithm 1, since the basic kernel vector can be stored

in advance and step 1-2 are the regular operations for the

clipping and filtering scheme, we can ignore the computation

cost before step 3.

In step 3, the complexity of calculating the clipping noise

f (n) by using (10) is O(LN ). In step 4, the calculation of

scaling factors includes the inverse and multiplication of

matrix. The complexity of (27) is O(N 2
pNτ ), where Np and

Nτ determine the dimensions of M̂p. By splitting the matrix

M̂p into P sub-matrices, only for those cases that have more

than one kernel vectors do we need to calculate the (29). The

complexity for the case of Ni > 1 is accordingly reduced

to O(N 2
i Nτi ). Note that Ni, Nτi and P are random variables.

Assume that i-th clipping segment occurs in (0, 1t). Then

the probability of Ni can be estimated as the probability of

Ni up-crossing pulses that occur within correlation time. It is

written as [19, Equation (66)]

Pr (Ni > m) = 1 −
m
∑

v=0

(λA1t)
ve−λA1t

v! , (33)

where λA =
√

π
3
γ N
Ts
e−γ 2

and 1t = nTs
/

N . It implies that

Pr (Ni > m) is independent to N and depends on CR. In the

OFDM system with N = 128,CR = 5.5dB, we have the

probability Pr (Ni > 0) ≈ 0.2209, Pr (Ni > 1) ≈ 0.0264 and

Pr (Ni > 2) ≈ 0.0022. We can see that the probability drops

rapidly as m increases, such as Pr (Ni = 2) ≫ Pr (Ni > 2).

Then we suppose that in most cases Ni equals 2 and Nτi is set

to its maximum value 2L. Besides, from [18, Equation (14)],

we know that the random variable P is dependent on CR

and N . The expectation of P reaches its maximum when

γ = 0, which can be calculated as P̄ ≈ 0.64N . So the upper

bound of computational complexity of (29) is estimated as

O(8L×0.64N ). In step 5, the computation of C using (18) is

the same as DFT. Since the number of nonzero values in β is

generally small as analyzed above, the inputs of the DFT are

sparse. Therefore, the wavelet transform can be applied to this

sparse signal [25], which only requires O(LN ) complexity.

Besides, the final output needsO(LNlog2LN ) complexity for

the IDFT. As a result, the computational complexity of the

proposed method is estimated asO(7.12LN + LNlog2LN ) in

a single iteration. Because in most practical applications L is

far less thanN , the overall complexity of the proposedmethod

is mainly determined by the IDFT.

The OICF method mainly includes two steps, i.e. solving

the optimization problem and using an IDFT, which leads to

O(N 3+LNlog2(LN )) computation complexity [12]. Because

of L ≪ N , the complexity of OICF is much higher than

the proposed method. For the SOICF method, most of the

steps are similar to the proposed method. The computation

of scaling factors in (12) is easier than the proposed method,

which has the same operation as (31) [13]. However, due

to the inevitable FFT operation, the saving of computa-

tion cost for SOICF is relatively small. As for the tradi-

tional ICF method [7], an FFT/IFFT pair is required in each

iteration, leading to O(2 × LNlog2LN ) complexity. Also,

the frequency filtering in ICF have O((L − 1)N ) complexity.

Therefore, the whole computational complexity is estimated

as O((L − 1)N + 2LNlog2LN ). The computation complex-

ities of the TKM-ICF, OICF and ICF method are compared

in Table 1. We can see that the OICF method has the high-

est computational cost due to the use of optimization tool.

The complexities of proposed method and traditional ICF

method are similar, which primarily depend on the IDFT/DFT

operation. Since the proposed method only has one IDFT in
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TABLE 1. Complexity comparison of the proposed TKM-ICF, OICF, and
classical ICF methods.

FIGURE 3. PAPR reduction performance of SOICF and TKM-ICF with
different clipping ratio for N = 128 and QPSK modulation.

each iteration, the complexity of TKM-ICF is lower than that

in ICF.

IV. SIMULATION RESULTS

To evaluate the performance of the proposed method,

we present simulation results in this section. A typical OFDM

system with N = 128 subcarriers and L = 4 oversampling

is considered in our simulation. We compare the proposed

algorithm with the SOICF [13], OICF [12], ICF [7] and

SCF [8] methods.

In Fig. 3, we compare the performance of PAPR reduction

between the SOICF and TKM-ICF methods with one itera-

tion for CR = 4, 5.5, 7dB, respectively. When the desired

PAPR is set to 7dB, the SOICF and TKM-ICF methods can

achieve almost the same PAPR performance, since most of

clipping segments include only one local maximum and can

be approximated as a parabolic pulse. Nonetheless, the devi-

ation happens when the PAPR is larger than 7.5dB. The

curve of the SOICF method gradually deviates from that of

the TKM-ICF method when the CCDF of PAPR is lower

than 10−3. Furthermore, when we set a lower clipping level,

such as CR = 4 or 5.5dB, the difference of performance

between the SOICF and TKM-ICF methods is increasingly

enlarged. It implies that the assumption of parabolic pulse

is reasonable only for CR → ∞. This inference can be

proven by using (33) as well, which shows the probability that

two or more up-crossing pulses occur within a time interval

will increase as the CR goes down. We can see that the

TKM-ICF method properly adapts to the changes of CR and

achieves better PAPR reduction performance.

FIGURE 4. PAPR reduction performance of TKM-ICF, OICF, and ICF for
N = 128 and QPSK modulation.

The proposed method is further compared with the OICF

and ICF methods, when CR = 5.5dB. Fig. 4 depicts the

CCDF of PAPR for modified signal using OICF (for 1, 2 and

3 iterations), modified signal using traditional ICF (for 1, 8,

16 and 32 iterations), and modified signal using TKM-ICF

(for 1, 2, 3 and 4 iterations). It can be seen that each method

requires several iterations to reach the target PAPR threshold.

The results of OICF method presented here can be seen as

the optimal performance of PAPR reduction. For the TKM-

ICF method, when the number of iterations is 4, the CCDF

curve achieves a sharp fall at the desired PAPR and has no

difference to that of theOICFmethodwith 3 iterations. On the

other hand, the traditional ICF method usually needs much

more iterations to gradually converge at the target PAPR.

After 32 iterations, the PAPR reduction level achieved by ICF

is close to the desired PAPR. According to the complexity

analysis above, in order to achieve the ideal performance,

the OICFmethod costs 3×O(N 3) computational complexity,

and ICF needs at least 32 times IFFT/FFT pair operation

resulting in 32×O(2LNlog2(LN )) computational complexity.

Nevertheless, the proposed method with 4 iterations only

costs 4 × O(LNlog2(LN )) computational complexity, which

is far more efficient than the other methods.

The performance of PAPR reduction of TKM-ICF, with

different number of subcarriers, is performed in Fig. 5. The

number of subcarriers is 256, 512, 1024, and 2048, respec-

tively, with clipping ratio 5.5 dB and 16-QAM modulation.

It can be observed that when the proposed method is exe-

cuted once, the PAPR reduction in Fig. 5 is 5, 5.11, 5.2 and

5.28 dB, respectively, for 256, 512, 1024, and 2048 sub-

carriers, at CCDF = 10−4. After three iterations, all the

CCDF curves achieve a sharp fall nearly at the desired PAPR

threshold. The performance analysis indicates that the TKM-

ICF method is feasible for OFDM systems with different

subcarriers.

Table 2 lists the EVM performance of the TKM-ICF

method compared with that of the OICF, ICF, and SCF meth-

ods. The CR is fixed to 5.5dB for the TKM-ICF and OICF
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FIGURE 5. PAPR reduction performance with different subcarrier
numbers (N =256, 512, 1024, and 2048) and 16-QAM modulation.

TABLE 2. Performance comparison of TKM-ICF, OICF, ICF, and SCF
methods.

methods. This target CR is achieved by 3 and 4 iterations for

the OICF and TKM-ICF methods, respectively. For the ICF

and SCF methods, the CR is deliberately selected such that

the average PAPR achieved by these methods are equal to that

of the proposed method with no more than 4 iterations. We

can see that the OICF method has optimal EVM performance

as expected. The EVM difference between the OICF and

TKM-ICF methods is only 0.34%. The other two methods

lead to more than 10% EVM, which can give rise to severe

deterioration of demapping in receiver.

Fig. 6 and Fig. 7 provide the comparison of the uncoded

BER performance with different clipping and filtering meth-

ods over additive white Gaussian noise (AWGN) channel and

Rayleigh fading channel, respectively. Rayleigh channel is

assumed to be quasi-static frequency selective and channel

estimation is perfectly known at the receiver. The simulation

parameters are the same as in Table 2 in order to show

the effects of in-band distortion of different methods. The

unclipped OFDM signal without PAPR reduction technique

is considered as the reference. It can be observed from Fig. 6

that the BER curves of these methods are always worse

than the ideal results. This is because the clipping procedure

causes signal distortion. However, comparing the BER curve

of the TKM-ICF method with other methods, we can see

that the TKM-ICF method has a slight difference of BER

performance with the OICF method and causes less SNR loss

than the ICF and SCF methods at given BER requirement.

For example, for the BER level of 10−5, the ICF and SCF

FIGURE 6. BER performance of TKM-ICF, OICF, ICF, and SCF methods with
N = 128 and QPSK modulation over AWGN channel.

FIGURE 7. BER performance of TKM-ICF, OICF, ICF and SCF methods with
N = 128 and QPSK modulation over Rayleigh fading channel.

methods yield more than 0.6dB SNR loss compared with the

OICF method, while the performance difference between the

TKM-ICF and OICFmethods is about 0.1dB. It demonstrates

that the proposed the TKM-ICF method leads to less in-

band-distortion than that of the ICF and SCF methods, and

achieves similar performance to the OICF method. From

Fig. 7, we can see that, in comparison with AWGN channel

case, BER performance is obviously degradedwhenRayleigh

fading channel is considered. However, the proposed method

is still better than the ICF and SCF methods and has similar

BER performance to the OICFmethod. It should be noted that

the computation complexity of OICF is prohibitively high,

while the TKM-ICF method has much lower computation

complexity than OICF.

Finally, to compare the out-of-band radiation, we consider

passing the PAPR-reduced signal through a solid-state power

amplifier (SSPA). The input/output model of SSPA can be
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FIGURE 8. Out-of-band radiation comparison of OFDM signals with
TKM-ICF, OICF, ICF, and SCF through SSPA model, with parameter v = 3
and q = 1dB.

written as [1]

so (t) = |si (t)|
[

1 +
(

|si(t)|
q

)2v
]

1
2v

ejφ(t), (34)

where si (t) = x(t)ejφ(t) is the input signal and so (t) is the

output of SSPA. We set SSPA parameters v and q as 3 and

1dB, respectively. The CR is set to 5.5dB for the OICF, ICF,

SCF and TKM-ICF methods with only one iteration. The

original OFDM signal without any PAPR reduction tech-

nique is also included. The power spectrum density (PSD)

of SSPA’s output is shown in Fig. 8, which are evaluated by

averaging several periodogram estimates. It can be seen that

the original OFDM signal leads to large out-of-band radiation

compared with those using PAPR reduction techniques. All

these clipping and filtering methods can bring better per-

formance of out-of-band radiation at different level. We can

observe that the OICF method achieves the lowest out-of-

band radiation and the TKM-ICF method also brings about

negligible performance difference to the OICF method.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a new ICF method based on the time-domain

kernel matrix has been proposed. Instead of frequency

filtering, the PAPR-reduction signal is generated to approx-

imate the clipping noise by constructing a time-domain ker-

nel matrix and optimizing the corresponding scaling vector.

According to the statistical analysis, we sort the observation

of clipping noise into three cases and simplify the problem

into several sub-problem. By using the curve fitting pro-

cedure, the proposed method can adapt to different PAPR

requirements. The simulation results show that the proposed

TKM-ICF method has near optimal performance in terms

of PAPR reduction and EVM. Meanwhile, it is also demon-

strated that the TKM-ICF method is more efficient to achieve

the desired PAPR than the other iterative clipping and filtering

methods.

Future work will focus on the performance of pro-

posed method with some new OFDM-based waveforms,

such asWOLA-OFDM, filtered-OFDM and FBMC. Because

of the severe suppression of the out-of-band radiation

using additional windowing and filtering operations, the

PAPR-reduction signal should be redesigned to satisfy the

requirement of spectrum confinement. Future study will also

address the optimization problem formulation that contains

both PAPR reduction and the suppression of power leak-

age, and the intuitive method that has significantly reduced

complexity. The adjacent channel interference is also to be

consideredwith the PAPR reduction for the sake of improving

the capacity of adjacent channel co-existence which is of

prime importance in future mobile communication systems.
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