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ABSTRACT
Recently, a deterministic algorithm based on the O-tree repre-
sentation has been proposed. This method generates excellent
layout results on MCNC test cases with O(n3) complexity, where
n is the number of blocks. In this paper, we reduce the complexity
of the deterministic algorithm to O(n2). Experimental results
indicate our algorithm maintains the high quality of the
deterministic algorithm at a fraction of the CPU time.

1. INTRODUCTION
One of the most important steps of VLSI circuit layout is the
floorplan design. The goal is to arrange a set of non-overlapping
rectangular modules so that a certain objective function is
minimized. The objective function could be the total area of the
floorplan, the total wire length, or a weighted sum of these two
quantities.

Topological representations including both slicing structure, [5,6],
and nonslicing structures [3,4] have been very popular in recent
years. More recently, a nonslicing representation called the O-
tree[2] has been proposed. Compared with previous representa-
tions, the O-tree has a smaller upper bound on the number of
possible configurations, needs only linear computation effort to
generate a corresponding placement, and decreases the drawback
of redundancies in the previous representations.

We consider only the O-tree representation here as we have
pointed out such a structure has important advantages. The deter-
ministic algorithm [2] based on the O-tree representation can be
used to improve an existing floorplan. For an initial O-tree with n
blocks, the deterministic algorithm iteratively perturbs each block,
and, for each block, tries all possible insertion positions in the
tree. For each insertion position, it constructs a corresponding
placement. Because the evaluation of an O-tree takes O(n)
operations and the number of possible insertion positions is O(n),
it takes O(n2) for one block. Therefore, the placement of n blocks
takes O(n3).

In this paper, we describe an enhanced perturbing algorithm
(ENPA) which achieves the same goal of the deterministic
algorithm with less complexity. Like the deterministic algorithm,
it iteratively perturbs each block. For each block, however it
follows a depth first search sequence, reducing the checking of
each position to constant time by amortizing the checking of other
positions in that sequence. ENPA finds the relatively best
insertion position without constructing the O-trees. Therefore
ENPA takes only O(n) for each block and runs in O(n2) for n
blocks. ENPA can be used to improve an existing floorplan, or
carry out a complete design of a floorplan. To demonstrate the
efficiency of ENPA, we apply it to five MCNC benchmarks and
compare it with the deterministic algorithm. The results show that
we produce comparable high quality results with significantly less
CPU time.

The rest of this paper is structured as follows: in section 2, we
give a brief review of the O-tree representation and the
deterministic algorithm. In section 3, we present our enhanced
perturbing algorithm (ENPA) with the objective function
restricted to be the total area. In section 4, we extend the objective
function to consider the wire length. In section 5, we illustrate
how to carry out the complete floorplan design by ENPA. In
section 6, the experimental results are shown. Concluding remarks
are in section 7.

2. BRIEF REVIEW OF THE O-TREE
STRUCTURE AND THE DETERMINISTIC
ALGORITHM
2.1 The O-tree Representation
A n-node O-tree is a tree with n+1 nodes and is encoded by (T,
π), where T is a 2n-bit string that identifies the branching structure
of the tree, and π is a permutation of the n node labels (excluding
the root). When traversing the tree, we write a ‘0’ for descending
an edge and a ‘1’ for subsequently ascending that edge. Given the
6- node O-tree in Fig. 1, we can represent it as (T=
001100011101, π=bcdafe). Let B1, B2, ... , Bn be the blocks to be
placed on a chip, where each Bi is a rectangle having associated
with it a width wi and a height hi, and having (xi, yi) as coordinates
of its left-bottom corner. To construct a minimum area placement
for an O-tree, we place the blocks in depth first search order, and
the positions of the blocks are determined by the following
conventions:

(1) if B
i
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j
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j
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i
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i
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as the left chip boundary, x
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been placed on the chip and whose spanning interval
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k
if ψ(i) is non-empty

=0 otherwise
Fig. 1 shows an O-tree and its corresponding placement.

Fig. 1 An O-tree and its placement

2.2 The Deterministic Algorithm
Given an O-tree, a perturbation to that configuration can be made
by deleting a block from the O-tree and inserting it in other posi-
tions of the O-tree. For simplicity, we constrain our inserting posi-
tions to be the external nodes of the tree. If an initial O-tree has n
blocks, then after deleting the perturbed block, the number of the
possible insertion positions as external nodes is 2n-1 (it may
include the previous position of the block). Fig. 2 shows the
resulting O-tree obtained by deleting block a from the original O-
tree shown in Fig. 1 and all the possible insertion positions.

The deterministic algorithm attempts to reconstruct the O-tree by
placing the deleted block in the position so that the corresponding
placement has the minimal cost. Therefore an original O-tree is
iteratively improved by perturbation.

Fig. 2 Possible insertion positions

The basic procedure of the Deterministic Algorithm is as
follows:

given an initial O-Tree OT

for each block b in OT

set min_cost = infinite

remove b from OT, a resulting O-tree OT1 is obtained

for each possible position p in OT1 for b

set OT2 = new O-Tree inserting block b in position p

build the placement of OT2

set c = cost (OT2)

if c < min_cost then

set min_cost = c

set min_OT = OT2

end if

end for

set OT = min(OT, min_OT)

end for

Output placement for OT
There are two “for” loops in the algorithm: the first iterates over
all blocks, the second iterates over all insertion positions. For
each inserting position, it builds an O-tree and its corresponding
placement. Since O-tree evaluation can be performed in linear
time, if there are n blocks to be placed on a chip, the complexity
of the deterministic algorithm is O(n3).

3. THE ENHANCED PERTURBING
ALGORITHM
In the deterministic algorithm, there are 2n-1 insertion positions
for each perturbed block. Among them there exists one position
corresponding to a placement minimizing the value of the cost
function. It is desirable to determine the best one without con-
structing all possible new placements corresponding to the insert-
ing positions. Based on this observation, in this section we present
an enhanced perturbing algorithm (ENPA) which follows a depth
first search order sequence, reducing the time of checking each
inserting position to constant time by amortizing the checking of
other positions in that sequence. It can achieve the goal of the
deterministic algorithm in much less time.

If we visit the nodes of the O-tree shown in Fig. 2 in depth first
search order, the numeric labels next to the insertion position
indicate the order in which we visit the inserting positions. At
each insertion position, we virtually place that deleted block, and
attempt to obtain the value of the cost function without recon-
structing the whole placement. In order to make things clear, we
restrict the objective function to be the total area of the floorplan
in this section. Our algorithm could be extended to minimize a
different objective function, such as the weighted sum of the area
and the wire length. This extension is shown in next section.

3.1 Outline of the Enhanced Perturbing
Algorithm
Suppose all blocks are to be placed within a bounding box. The
box size is (H,W). W is the width of the box, H is the height of the
box. We refer to the top part of the box as the ceiling, and the bot-
tom part of the box as the floor. We define Gap as the minimum
distance of the empty space between the ceiling and the floor.
Width is the right boundary of all blocks.

Given an original O-tree, we remove the perturbed block from the
O-tree and perform the depth first search for the resulting O-tree.
We evaluate all insertion positions during this search. At each
possible insertion position, we virtually place the perturbed block
and estimate the value of the objective function. In order to
prevent the virtually placed block from overlapping with other
blocks, we arrange some blocks on the ceiling and some blocks on
the floor to make sure that there is enough space for the perturbed
block to be virtually inserted. The best result among all possible
insertion positions is chosen as the initial for the next iteration.
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The outline of the enhanced perturbed algorithm is as follows:

Procedure The enhanced perturbing algorithm

Input: An initial O-tree OT

Output: A reconstructed O-tree OT

for each block u in OT do the following 5 steps:

Step 1: Delete block u from OT and a resulting O-tree

OT1 (T1 , π1) is obtained

Step 2: Place all blocks in OT1 on the floor.

Step 3: Slide all blocks up toward to the ceiling.

Step 4: current_block=root

bestcost=infinite

// insert a at the first insertion position

xroot=yroot=0 , xu=yu=0

do step 4.3

index=1

for T1[i], i=1,2,...,2n, repeat Step 4.1 through Step 4.3

Step 4.1: if T1[i] is 0

peel block π1 [index] down to the floor

update the contour structure of the ceiling and floor

current_block=π1 [index]

index=index+1

else current_block=parent of current_block

Step 4.2: // virtually place u at position (xu,yu)

xu=xcurrent_block+wcurrent_block

let ψ be the set of blocks which are on the floor and their

horizontal spanning intervals overlap with (xu, xu+wu),

yu = max k inψ (yk + hk )

Step 4.3: // evaluate this insertion position:

let ψ be the set of blocks which are on the ceiling and

horizontal spanning intervals overlap with (xu, xu+wu)

Gu= min k inψ (yk -(yu+hu))

newGap=min(Gap, Gu)

newWidth=min(Gap, xu+wu)

newArea=newWidth*(H-newGap)

cost=newArea

if (cost < bestcost)

bestcost=cost
best_insertion_position=this insertion position

Step 5: Insert the deleted block in the best_insertion_position,

construct the corresponding O-tree OTnew

OT=min(OT, OTnew)

3.2 An Illustrative Example
A behavioral example is presented in this section to illustrate the
enhanced perturbing algorithm.

Suppose the O-tree OT (001100011101, bcdafe) shown in Fig. 1
is given as the input O-tree and block a is selected to be

perturbed. In step 1, block a has to be deleted from its original
position in OT. The resultant O-tree OT1 (0011001101, bcdfe) is
shown in Fig. 2. We will traverse OT1 in depth first search order,
and visit the inserting positions in the order listed in Fig. 2.

In step 2 and step 3, the placement of OT1 is pushed up to the ceil-
ing of the bounding box. Fig. 3 shows the result of the two steps.

Fig. 3 Step 2 and Step 3

In step 4, we first virtually insert a at the insertion position 1 as
shown in Fig. 4. After a is inserted, newGap is yb-ha , newWidth is
the same as Width, the total area of the placement is (H-(yb-
ha))*Width. We update the best cost to be (H-(yb-ha))*Width, and
best insertion position to be 1.

Fig. 4 Insert a in insertion position 1

Then we traverse OT1 in depth first search order. In iteration i=1:
T1[1]=0, π1[1]=b, we peel block b down to the floor and virtually
place a right next to block b in the insertion position 2 shown in
Fig. 5. Therefore the value of the cost function which is also the
total area is (H-(yc-ha))*Width. Since best cost is larger than
current cost, we update the best cost and the best insertion
position.

Fig. 5 Insert a in insertion position 2

In iteration i=2: T1[1]=0, π1[2]=c, we peel c down to the floor.
We virtually place a right next to block c in the insertion position
3 shown in Fig. 6. Now the cost is (H-(yf-ha))*width. Since this
cost is smaller than the best cost, we update the best cost, and the
current best insertion position is position 3.
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Fig. 6 Insert a in insertion position 3

In iteration i=3: T1[3]=1, we update the current block to be block
b (parent of block c) and insert a at the insertion position 4 shown
in Fig. 7. Since best cost is smaller than this current cost, no
update is needed.

Fig. 7 Insert a in insertion position 4

In iteration i=4: T1[4]=1, we update the current block to be the
root which represents the left boundary of the bounding box. We
insert block a in the fifty insertion position. Since the current cost
is larger than best cost, no update is needed.

Fig. 8 Insert a in insertion position 5

We continue this process. When the code is ‘0’, we peel down the
corresponding block, update the contour structure of both the ceil-
ing and the floor, and update the current block to be the block just
peeled down. Then we insert block a next to the current block.
When the code is ‘1’, we update the current block to be the parent
of the previous current block, and then insert block a next to the
current block. In both cases, we calculate the new area and update
the best cost and the best insertion position when it is necessary.
After we traverse all the blocks, we visit all insertion positions,
and the best insertion position is the one corresponding to the
minimum area. We note that more than one position may lead to
the same minimum area. In our example, position 7 is one of
them. We insert block a in position 7. The resulting O-tree and its
placement are shown in Fig. 9.

After block a is perturbed, the tree then is reconstructed as in Fig.
9. Repeat the procedure until all blocks are perturbed.

Fig. 9 The reconstructed O-tree and its placement

3.3 The Complexity of the Enhanced Perturb-
ing Algorithm
Theorem 1: The enhanced perturbing algorithm runs in O(n2),
where n is the number of the blocks of the O-tree.

Proof: The enhanced perturbing algorithm iterates over all blocks
of the given O-tree, so we need to prove that for each iteration the
complexity of the algorithm is O(n).

Step 1 takes at most n operations. Steps 2 and 3 can be achieved
by the following procedure -- PushToCeiling. We will explain
that it is O(n) later in this subsection.

In step 4, we visit the nodes in depth first search order, so each
node is visited exactly twice: once at the nodes encoded ‘0’ and
once at the nodes encoded ‘1’. This loop executes exactly 2n
times. Inside the loop, we perform four major operations: (1) peel
down a block from the ceiling (2) find the local maximum of y-
coordinate of the floor (3) find the local minimum of y-coordinate
of the ceiling (4) update the contours of the ceiling and the floor.
We only need to pass a limited set of blocks on the above four
operations. The number of the blocks accessed is equal to the
number of edges inserted in the vertical constraint graph. The con-
straint graph is planar, and the number of edges in the vertical
constraint graph is O(n). In the whole loop, we go through every
edge in the vertical constraint graph exactly twice. The overall
complexity for step 4 is then linear. Therefore the complexity for
the enhanced perturbing algorithm is O(n2).

We apply the following algorithm PushToCeiling to step 3. The
basic idea of this algorithm is to transform the given O-tree to
another O-tree structure whose siblings are in the reverse order of
the original O-tree, and then place the new structured O-tree on
the ceiling.

Procedure PushToCeiling

Input: O-tree OTd

Output: the vertical constraint graph and the placement of

blocks in OTd on the ceiling.

perm=1

current=node_head=NULL

for i=1 to 2n

new_T[2n-i]=1-T[i] // put the siblings in reverse order

if (T[i]==0)

put the π[perm] after the current block

perm=perm+1

else current=prev(current)



172

//write new permutation in the correct corresponding order

current=node_head

for i=1 to n

new_π[i]=current

current=next(current)

place O-tree(new_T, new_π) on the ceiling
Observation: Algorithm PushToCeiling runs in linear time since
transforming an O-tree to another O-tree with reverse order
sibling structure takes linear time, and evaluating an O-tree to the
placement is in linear time.

4. EXTENDED COST FUNCTION
In physical design, wires are usually considered in addition to the
area in the objective function. We extend our objective function to
be the weighted sum of the area and wire length in this section.
Wire length is defined by the perimeter of the minimum bounding
box.

At each insertion position, the area of the corresponding
placement can be obtained by the method described in the above
section. In order to save the computational cost, we only consider
the nets related to the inserted block for the wire length. We use
the same notation here as in the procedure for the enhanced
perturbing algorithm. OT1 is the resulting O-tree obtained by
removing block u from the O-tree OT. At insertion position i, the
block u is virtually placed in (xu, yu). The wire length of the
corresponding placement can be approximated by the following
steps:

for each pin_i of block u

x=xu+relative x-coordinate of pin_i

y=yu+relative y-coordinate of pin_i

net_i is the net that pin_i need to be connected

(x1,x2, y1, y2) is the boundary of net_i without block u in the

placement of OT1

if x<x1 x1=x if x>x2 x2=x if y<y1 y1=y if y>y2 y2=y

change_wire=the wire length changed by the above loop

newWirelength=change_wire+wirelength(OT1)
cost=w1*newArea+w2*newWirelength

5. COMPLETE DESIGN OF A
FLOORPLAN
In addition to improving an existing floorplan, the idea of the
enhanced perturbing algorithm can be used to carry out the com-
plete design of a floorplan. Given a random permutation of the
labels of the blocks, we can heuristically construct a floorplan in
the following way:

Procedure Complete floorplan design

Input: A random sequence π from 1 to n

Output: A floorplan of block 1 to block n

construct an O-tree OT with empty nodes

for π[1] to π[n]

evaluate all possible inserting position in OT

construct a new O-tree new_OT by inserting π[i] in the best

insertion position

OT=new_OT

run the enhanced perturbing algorithm to OT

output the placement of OT
By using the order of the given random sequence, we insert the
blocks to the constructed tree in the best position each time. We
then improve the already constructed O-tree by running the
enhanced perturbing algorithm. At each step we perform a greedy
strategy. This process continues until that a complete pass through
all the blocks produces no improvement. If the orientation of the
blocks is flexible, we can also evaluate the different orientations
in each insertion position and choose the best orientation each
time.

6. EXPERIMENTAL RESULTS
We have implemented our algorithm in C on a Sun Ultra60 work-
station. The test cases are the five MCNC benchmarks. We com-
pared our algorithm with the deterministic algorithm. The
experimental results are reported in Tables 1, 2 and 3. All the
results have been run on the same Sun workstation. The cost func-
tion we use here is w1*area+w2*wirelength. Tables 1, 2 and 3 cor-
respond to the following sets of {w1, w2} values: {0,1}, {1.0} and
{0.5, 0.5}. DA denotes the deterministic algorithm and ENPA
denotes our algorithm.

The initial sequences of the problems in the tables are randomly
generated. In each test case, we use 100 randomized sequences
and present the best results among the 100 runs. The running time
of our algorithm on each of the test examples is substantially less
than that of the deterministic algorithm. For circuit apte (which
has only 9 cells and is the smallest circuit among the MCNC
benchmarks), our algorithm is about 3 times faster than the
deterministic algorithm under all three different cost functions.
But for the largest circuit ami49 with 49 cells, our algorithm is
about 20 times faster on average. The larger the circuit, the greater
the performance gain with our algorithm.

Table 1 is a summary of results for the case where the cost
function is the total area. Among the five circuits, our algorithm
has slightly better solutions than the deterministic algorithm in
three of them. In the other two test examples, the areas of the
placements by our algorithm are no more 0.55% larger than those
by the deterministic algorithm. Therefore the two algorithms
produce comparable results. In Tables 2 and 3, wire length has
been considered in the cost function. Comparing with the
deterministic algorithm, we have -2% to 2% improvement in area
and in wire length. On average, the two algorithms generate the
same high quality placements. Therefore our approximation
strategy in section 4 works well.

For the cost function with weights 0.5 for both the area and wire
length, we display two placements. The placement of ami33 is
presented in Fig. 10. This circuit has 33 cells, and the placement
takes only 3.42 minutes. Fig. 11 shows the largest circuit ami49 of
the five examples. This placement was completed in about 12
minutes.

The above experimental results show clearly that the results
obtained by the ENPA are as good as those of the deterministic
algorithm, while taking much less time. Therefore, the ENPA is
more effective.
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7. CONCLUSIONS
We have proposed a new method utilizing the properties of an O-
tree to improve an existing floorplan or carry out a complete
design of a floorplan in faster time. Since the speed up is
proportional to the size of the problem, it is especially useful for
handling large circuits.

w1=1 w2=0

Time(min) Area(mm*mm)Circuit

ENPA DA ENPA DA

apte 0.19 0.63 46.92 47.1

xerox 0.63 1.97 20.21 20.1

hp 0.32 0.95 9.159 9.21

ami33 1.98 23.83 1.242 1.25

ami49 6.76 123.5 37.73 37.6

w1=0 w2=1

Time(min) Wire(mm)Circuit

ENPA DA ENPA DA

apte 0.25 0.79 316.8 317

xerox 0.65 2.66 372.2 368

hp 0.32 1.50 150.4 153

ami33 2.95 37.52 51.58 51.5

ami49 11.46 235.2 629.3 636

w1=0.5 w2=0.5

Time(min) Area(mm*mm) Wire(mm)Circuit

ENPA DA ENPA DA ENPA DA

apte 0.24 0.77 51.95 51.92 320.7 320.7

xerox 0.68 2.37 20.42 20.42 380.6 380.6

hp 0.35 1.40 9.384 9.490 151.9 152.6

ami33 3.42 39.15 1.299 1.283 52.13 51.31

ami49 11.67 255.3 39.92 39.55 702.8 688.7
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