
Research Article

An Enhanced Reliability Index Method and Its Application in
Reliability-Based Collaborative Design and Optimization

Debiao Meng ,1 Yan Li,1 Shun-Peng Zhu ,1 Gang Lv,2

José Correia ,3 and Ab-lio de Jesus 3

1School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
2Zigong Innovation Center of Zhejiang University, Zigong, China
3INEGI, Faculty of Engineering, University of Porto, Porto 4200-465, Portugal

Correspondence should be addressed to Debiao Meng; dbmeng@uestc.edu.cn and José Correia; jacorreia@inegi.up.pt
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When designing complex mechanical equipment, uncertainties should be considered to enhance the reliability of performance.
�e Reliability Index Method (RIM) is a powerful tool which has been widely utilized in engineering design under uncertainties.
To reduce computational cost in RIM, 	rst or second order Taylor approximation is introduced to convert nonlinear probability
constraint to the equivalent linear constraint during optimization process. Generally, this approximation process is performed at
Most Probable Point (MPP) to reduce the loss of reliability analysis accuracy. However, it is di
cult for the original RIM to be
utilized in the situation that MPP is collinear and RIM has the same direction with the gradient of performance function at MPP.
To tackle the above challenges, an EnhancedRIM (ERIM) is proposed in this study.�eCollaborativeOptimization (CO) strategy is
combined with ERIM.�e formula of CO using ERIM is given to solve reliability-based multidisciplinary design and optimization
problems. A design problem of the speed reducer is utilized in this study to show the e�ectiveness of the proposed method.

1. Introduction

�eReliability-Based Multidisciplinary Design Optimization
(RBMDO) has obtained more and more attention for the
high reliability and safety of complex engineering systems
[1–10]. Generally, the RBMDO process involves a three-level
optimization loop [11–16]. �e inner loop deals with the
interactions between coupled variables and the outer loop
explores design space to obtain optimal design solutions.
Between the inner and outer loop is uncertainty analysis loop.
If RBMDO is performed directly, the heavy computational
cost will a�ect the whole optimization process signi	cantly
[17–20]. To deal with the three-level optimization loop struc-
ture, many sophisticated optimization strategies have been
developed [21–25]. According to the integration strategies
of optimization and uncertainty analysis, these methods can
be roughly categorized into single-loop, decouple-loop, and
double-loop approaches [26–33].

�e single-loop approaches are suitable for design prob-
lems with moderate nonlinear performance function. �e

Karush-Kuhn-Tucker conditions are adopted by single-loop
approaches to replace the uncertainty analysis loop in an opti-
mization process, while the decouple-loop approaches per-
formdeterministic design optimization and uncertainty anal-
ysis sequentially. When new design solutions are obtained by
deterministic optimization, uncertainty analysis will be con-
ducted to 	nd Most Probable Point (MPP). �e acquisition
of MPP is important for constructing shi�ing vectors. �e
shi�ing vectors are utilized to move limit state constraints
into the safer feasible region. Compared with the single-loop
and the decouple-loop approaches, the strategy of double-
loop approaches is simple and robust. Many strategies have
been introduced into double-loop approaches to reduce
the computational cost. In general, these strategies include
modifying the formulation of probability constraint [34–
36] and enhancing e
ciencies of optimization algorithms in
reliability analysis [31, 37–39].

�e Reliability Index Method (RIM) is an e�ective tool
which can modify the formulation of probability constraint
in RBMDO [40, 41]. In RIM, the 	rst or second order Taylor
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Figure 1: �e single-level methods and multilevel methods for MDO.

approximation expansion is introduced to convert nonlinear
probability constraint to the equivalent linear constraint.
MPP is the expansion point, at which the accuracy loss of
reliability analysis due to approximation can be minimized.
However, in somepractical optimization processes,MPPmay
be collinear and RIMhas the same direction with the gradient
of performance function at MPP. It will result in the low
e
ciency of the original RIM. To tackle the above challenges,
an Enhanced RIM (ERIM) is proposed here.�e formulation
of CO using ERIM (CO-ERIM) is also proposed to solve
RBMDO problems.

�e rest of this study will be given as follows. In Section 2,
the general formulation of RBMDO is given. Also, the
uncertainty information in practical engineering is discussed
and the strategy of RBMDO is brie�y reviewed.�e RIM and
the Performance Measure Approach (PMA) are introduced
in detail in Section 3.�e proposed ERIM is also discussed in
this part. �e CO-ERIM is proposed in Section 4, including
the formulation and procedure. An RBMDO problem of the
speed reducer is given in Section 5 to show the e
ciency
and accuracy of CO-ERIM. �e conclusions are given in
Section 6.

2. Brief Review of RBMDO

When dealing with the design problems of complex engi-
neering, there are two aspects of challenges which should
be taken into consideration [43–46]. One is the complex-
ity of multidisciplinary system analysis. �e other is the
information exchange of coupling disciplines involved. �e
multidisciplinary system analysis process is based on itera-
tive calculations between coupled disciplines. �is process
requires the high computational cost. How to reduce the
computational cost and improve the e
ciency of system
analysis is important for the application of Multidisciplinary
Design and Optimization (MDO) in practical engineering.
Furthermore, the interaction e�ect between coupling dis-
ciplines complicates the exchange of information in com-
plex engineering systems. How to organize and manage
the interaction information transmission between coupling
disciplines e�ectively is another important problem which
should be taken into consideration in practical engineering.

MDO is a methodology which can deal with the design
problems of complex coupling engineering systems e�ec-
tively [42, 47–50]. �e main motivation of MDO is to drive
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Figure 2: Two categories of uncertainty-based design [42].

the performance of an engineering system not only by each
discipline but also by their coupling interactions.

By introducing MDO strategies into the early stage of
engineering design, designers can enhance the performance
of design solutions e�ectively. Also, the design cost can be
reduced simultaneously. Considering these coupling inter-
actions in an MDO problem requires sound mathematical
strategies and their corresponding formulations. In general,
the mathematical strategies of MDO can be classi	ed into
single-level methods and multilevel methods [51, 52]. As
shown in Figures 1(a) and 1(b), single-level methods have a
single optimizer. �ey utilize the nonhierarchical structure
directly. Compared with single-level methods, multilevel
methods introduce a hierarchical structure instead of a
nonhierarchical structure, which is shown in Figure 1(c).
�ere are optimizers at each level of the hierarchical structure.
Because a speci	c MDO method cannot be suitable to all of
the practical problems universally, appropriateMDOmethod
should be chosen to satisfy the industrial requirements.

Furthermore, to achieve the high reliability and safety
of complex industry systems, uncertainties in practical engi-
neering should be considered. Uncertainties have di�erent
taxonomies in practical engineering. Correspondingly, there
are two types of uncertainty-based design, reliability-based
and robust-based, respectively [42]. �e connection and
di�erence between them are illustrated in Figure 2. �e
reliability-based design deals with extreme events which
happen at tails of a probability density function, such as
failure of performance, catastrophe and so on. �e robust-
based design mainly considers �uctuations of performance
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Figure 3: �e design for a complex system based on RBMDO
strategy.

around the mean value, such as degradation, deterioration,
quality loss.

In this study, reliability-based design problems are pri-
marily considered. �e general formulation of RBMDO can
be given as

min
(d�,ds ,�X� ,�Xs )

� (d�, ds,�X� ,�Xs
)

s.t. Pr� [�� (d�, ds,X�,Xs,P) ≤ 0] ≤ Φ (−��)
�
Y�∙

= Y�∙ (d�, ds,�X� ,�Xs
,�

Y∙�
)

d
�
� ≤ d� ≤ d

�
� ,

d
�
s
≤ ds ≤ d

�
s
,

X
�
� ≤ �X� ≤ X

�
� ,

X
�
s
≤ �

Xs
≤ X
�
s
,

Y
� ≤ �

Y
≤ Y
�,

 = 1, 2, . . . , �

(1)

where �(∙) is a cost-type objective function; �(∙) ≤ 0
and Pr[∙] ≤ Φ(−��) are the inequality constraint and
its corresponding probability constraint, respectively; �� is
the safety reliability index; Φ(−��) is the allowable failure
probability for �(∙) ≤ 0; Φ(∙) is the Cumulative Distribution
Function (CDF) of the standard normal random variable;
the subscript “s” denotes the sharing design information to
all disciplines; the subscript “” denotes the th discipline
in a complex system; d is the input design information
which is not accompanied with with uncertainties; X and
P are the input design information and parameters which
are accompanied with uncertainties; � is the mean value of
uncertainty information; Y is the coupling information; Y∙�
is the input coupling information for the th discipline from
other disciplines whileY�∙ is the output coupling information
for the th discipline to other disciplines; the superscripts “�”
and “�” denote the lower and upper bounds of input design
information, respectively; � is the number of disciplines.

As shown in Figure 3, uncertainties will be propagated
among coupled disciplines in multidisciplinary systems. If
the RBMDO problem in (1) is solved directly, a triple-loop
strategy will be utilized, which is shown in Figure 4. �e
outer loop performs the optimization for objective function

to obtain design point; the intermediate loop performs
the reliability analysis on the design point; the inner loop
performs the multidisciplinary analysis (MDA) between the
subdisciplines.

Using the triple-loop strategy, the multidisciplinary sys-
tem optimization problem requires reliability analysis in
each iterative operation. Meanwhile, each reliability analysis
operation involves MDA. Both of them result in a high com-
putational burden. To solve this problem, ERIM and PMA
are introduced in this study. �e corresponding formulation
of CO-ERIM is also proposed to improve the e
ciency of
RBMDO.

3. The Performance Measure Approach (PMA)
Using RIM in Sequential Optimization and
Reliability Assessment

Because of the existences of probability constraints, the PMA
using RIM (PMA-RIM) strategy has been utilized widely in
RBMDO to reduce computational cost. Researches on this
strategy mainly include two aspects: the modifying formu-
lation of probability constraint, and the enhanced e
ciencies
of reliability analysis and optimization algorithms [34].

In this study, the limitations of the original PMA-RIM are
discussed.�en, a PMAbased on Enhanced RI (PMA-ERIM)
is proposed here, which is on the condition of accepting the
approximate accuracy of the First Order Reliability Method
(FORM).

3.1. 	e Strategy of RIM. In (1), the probability constraint can

be reexpressed using Φ−1:
��� = −Φ−1 (��� (0)) ≥ �� (2)

where ��� is the safety reliability index of the th probability
constraint. �e input design information with uncertainties
in (1) is treated as random variables in this study. �en,
in RIM, the 	rst order safety reliability index ��,FORM can
be obtained using FORM. �is process mainly includes two
steps.

First, all random variables � of the set of X (� ∈ X)
in the X-space are transformed into the standard normal
distribution variable � in the U-space using the Rosenblatt
transformation. U is a set of the standard normal distribution
variable �, � ∈ U. �e standard normal variable can be
denoted as

� = Φ−1 (�	 (�)) (3)

where �	(∙) is the CDF of a random variable �. �en the
performance function ��(X) is transformed into the U-space
as ��(U).

Second, an optimization problem formulated as follows is
solved:

min ‖U‖2
s.t. � (U) = 0 (4)
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Figure 4: �e triple-loop strategy of RBMDO [11].

where ‖ ∙ ‖2 is the magnitude of a vector. �e optimum
solution of (4) on the failure surface (�(U) = 0) is called MPP
u
∗
�(U)=0. Also, ��,FORM = ‖u∗�(U)=0‖2 [34, 35].

3.2. 	e Strategy of PMA-RIM. Here, the probability con-

straint in (1) is converted into its equivalent form by �−1�� :
��� = �−1�� [Φ (−��)] ≥ 0 (5)

where��� is the probabilistic performance measure of the th
probability constraint.

If the value �� ≥ 0, then Pr(�(X) ≤ 0) ≤ Φ(−��); if �� <0, Pr(�(X) ≤ 0) > Φ(−��). �� corresponds to the Φ(−��)
percentile of the CDF of performance function.

At 	rst, all uncertainty inputs are converted into the
standard normal random inputs in the U-space. �e 	rst
order probabilistic performance measure ��,FORM can be
obtained by solving

min � (U)
s.t. ‖U‖2 = �� (6)

where the optimal point on the surface ‖U‖2 = �� is identi	ed
as MPP u

∗
�=�� . Furthermore, ��,FORM = �(u∗�=��).

3.3. 	e Strategy of PMA-ERIM. To improve the e
ciency
and accuracy of the original RIM, the ERIM is discussed in
this section. Recall the statistic description of the failure of a
performance function �:

Pr (� (X) ≤ 0) = �� (0) = ∫
�(X)≤0

�X (x) �x. (7)

Step 1. Using the Rosenblatt transformation, (7) is equivalent
to

Pr (� (U) ≤ 0) = ∫ ⋅ ⋅ ⋅ ∫
�(�1,�2,⋅⋅⋅ ,��)≤0

�∏
�=1

1√2�
⋅ exp (−12�2� ) ��1��2 ⋅ ⋅ ⋅ ���.

(8)

Step 2. To evaluate the integration more easily, the integrand
boundary �(U) = 0 is approximated. FORM utilizes the 	rst
order Taylor expansion as

� (U) ≈ �� (U) = � (u∗) + [∇� (u∗)]� (U − u
∗) (9)

where��(U) is the linearized performance function; u∗ is the
expansion point; # denotes transpose; ∇�(u∗) is the gradient
of � at u∗:

∇� (u∗) = {( &�&�1 ,
&�&�2 , . . . ,

&�&��)
********U=u∗}

� . (10)

To minimize the accuracy loss, the performance function
should be expanded at MPP. MPP can be obtained by (4).

Because at MPP �(u∗) = 0, the performance function is
linearized as

� (U) ≈ �� (U) = [∇� (u∗)]� (U − u
∗)

= − [∇� (u∗)]� u∗ + [∇� (u∗)]�U. (11)

If the gradient ∇�(u∗) at u∗ is equal to zero, then the
performance function is linearized as �(U) ≈ ��(U) = 0. In
this case, the linear approximation of the integrand boundary
will cause a large error about the integration because of
the highly nonlinear character of performance function.
�erefore, if the above case appears, the FORM is not suitable
to deal with the problem. In the following, the case of the
gradient of performance function at MPP unequal to zero is
discussed.

Since ��(U) is a linear function of standard normal
variables, ��(U) is normally distributed. �us, based on (11),
the mean value and standard deviation of ��(U) are /�� =−[∇�(u∗)]�u∗ and 3�� = ‖∇�(u∗)‖2, which can be utilized in
the derivation process in (12).

�erefore, the probability of failure is calculated as

Pr (� (U) ≤ 0) ≈ Pr (�� (U) ≤ 0) = Φ(0 − /��3�� )

= Φ{( ∇� (u∗)8888∇� (u∗)88882)
�
u
∗} .

(12)
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At the optimal point, u∗ = ∇�(u∗)/‖∇�(u∗)‖2 ⋅ ‖u∗‖2 or
u
∗ = −∇�(u∗)/‖∇�(u∗)‖2 ⋅ ‖u∗‖2. Hence the probability of

failure is

Pr (� (U) ≤ 0)

≈
{{{{{{{{{

Φ(8888u∗88882) if u∗ = ∇� (u∗)8888∇� (u∗)88882 ⋅
8888u∗88882

Φ(− 8888u∗88882) if u∗ = − ∇� (u∗)8888∇� (u∗)88882 ⋅
8888u∗88882 .

(13)

From (12) and (13), the di�erence of judgment on the
satisfaction of probability constraint between RIM and the
practical situation is caused when u

∗ = ∇�(u∗)/‖∇�(u∗)‖2 ⋅‖u∗‖2. Utilizing (11), the probabilities of failure of the perfor-
mance functions in (1) can be recalculated.

To satisfy the probability constraint, from (12), the prob-
ability of failure should satisfy

Φ{( ∇� (u∗)8888∇� (u∗)88882)
�
u
∗} ≤ Φ (−��) . (14)

Equation (14) can be written as

( ∇� (u∗)8888∇� (u∗)88882)
�
u
∗ ≤ −�� (15)

or

−( ∇� (u∗)8888∇� (u∗)88882)
�
u
∗ ≥ ��. (16)

�e reliability C of the performance function is

C = 1 − Pr (� (X) ≤ 0)
= 1 − Φ{( ∇� (u∗)8888∇� (u∗)88882)

�
u
∗}

= Φ{−( ∇� (u∗)8888∇� (u∗)88882)
�
u
∗}

(17)

and the reliability index is de	ned as

� = −( ∇� (u∗)8888∇� (u∗)88882)
�
u
∗. (18)

4. The CO and the Formulation of CO-ERIM

As a well-known multilevel method for MDO, the strategy of
CO is suitable for large-scale distributed engineering systems.
�e CO algorithm decomposes, coordinates, and optimizes
complex engineering problems. Every discipline in a system
can enjoy good autonomy, regardless of the in�uence of other
disciplines.�e consistency betweendisciplines is guaranteed
by compatibility constraints attached to the system-level
optimization problem. While the value of compatibility con-
straint is obtained through subject-level optimization prob-
lem. �e objectives of subject-level optimization problems

are to minimize the inconsistency between disciplines while
satisfying the constraints of discipline design.

Using CO, the RBMDO problem in (1) is converted into
the system-level and subject-level optimization problems.
�e formulation of the optimization problem in system level
is

min
(d�� ,d�s ,��X� ,�

�
Xs
,��

Y∙� )
� (d�� ,d�s,��X� ,��Xs

,��
Y∙�
)

s.t. D�
= (d�� − d�)2 + (d�s − ds)2
+ (��

X�
− �

X�
)2 + (��

Xs
− �

Xs
)2

+ (��
Y∙�

− �
Y∙�
)2 ≤ E

 = 1, 2, . . . , �

(19)

where D� is the compatibility constraints. d
�
� , d
�
s
,��

X�
,��

Xs
,

and ��
Y∙�

are the design variables at the system level. �e

formulation of the optimization problem in subject-level
optimization problems is

min
(d�,ds,�X� ,�Xs ,�Y∙� )

D�
= (d�� − d�)2 + (d�s − ds)2
+ (��

X�
− �

X�
)2 + (��

Xs
− �

Xs
)2

+ (��
Y∙�

− �
Y∙�
)2

s.t. Pr� [�� (d�, ds,X�,Xs,P) ≤ 0]
≤ Φ (−��)
�
Y�∙

= Y�∙ (d�, ds,�X� ,�Xs
,�

Y∙�
)

d
�
� ≤ d� ≤ d

�
� ,

d
�
s
≤ ds ≤ d

�
s
,

X
�
� ≤ �X� ≤ X

�
� ,

X
�
s
≤ �

Xs
≤ X
�
s
,

Y
� ≤ �

Y
≤ Y
�,

 = 1, 2, . . . , �.

(20)

�e corresponding bilevel strategy of CO is also shown in
Figure 5.

Considering uncertainties in practical engineering, all
discipline probability reliability constraints in (20) are con-
verted into the corresponding RIM-based reliability con-
straints. �ese RIM-based reliability constraints only con-
sider the performance reliability at MPP, which can reduce
the cost of reliability analysis and improve the computational
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Table 1: �e design information of speed reducer.

Variables Lower and upper bound Distribution Mean Standard deviation

gear face width, �1 (cm) [2.6, 3.6] - - -

teeth module, �2 (cm) [0.3, 1.0] - - -

number of teeth of pinion, �3 [17, 28] - - -

distance between bearings 1, �4 (cm) [7.3, 8.3] Normal /	4 0.01/	4
distance between bearings 2, �5 (cm) [7.3, 8.3] Normal /	5 0.01/	5
diameter of shaft 1, �6 (cm) [2.9, 3.9] Normal /	6 0.01/	6
diameter of shaft 2, �7 (cm) [5, 5.5] Normal /	7 0.01/	7

System optimization problem in Eq. (19)

�e 1st discipline optimization

problem in Eq. (20)

�e 1st discipline analysis

�e

problem in Eq. (20)

thi

X

Ｍ ,X


1

Y

∙1,Y


1∙

XＭ ,X1

Y∙1,Y1∙

X

Ｍ ,X


i

Y

∙i,Y


i∙

XＭ ,Xi

Y∙i,Yi∙

XＭ ,X1,Y∙1 Y1∙
XＭ ,Xi,Y∙i Yi∙

discipline optimization

�e thi discipline analysis

Figure 5: �e bilevel strategy of CO.

e
ciency of RBMDO. �e formulation of the subject-level
optimization problem in the U-space using RIM-based relia-
bility constraints can be denoted as

min
(d�,ds ,�X� ,�Xs ,�Y∙� )

D�
= (d�� − d�)2 + (d�s − ds)2
+ (��

X�
− �

X�
)2 + (��

Xs
− �

Xs
)2

+ (��
Y∙�

− �
Y∙�
)2

s.t. Φ{−( ∇�� (u∗)8888∇�� (u∗)88882)
�
u
∗}

≤ Φ (−��)
�
Y�∙

= Y�∙ (d�, ds,�X� ,�Xs
,�

Y∙�
)

u = {� | The Rosenblatt

transformation of X}
d
�
� ≤ d� ≤ d

�
� ,

d
�
s
≤ ds ≤ d

�
s
,

X
�
� ≤ �X� ≤ X

�
� ,

X
�
s
≤ �

Xs
≤ X
�
s
,

Y
� ≤ �

Y
≤ Y
�,

 = 1, 2, . . . , �.
(21)

�e detail information of CO-ERIM is as follows.

Step 1. Input the original design information; the cycle
number L = 0.
Step 2. Solve the system-level optimization problem in (19).
During this process, d�� , d

�
s
, ��

X�
, ��

Xs
, and ��

Y∙�
are treated as the

design parameters.

Step 3. Transform random variables in X-space into random
variables in U-space using the Rosenblatt transformation.

Step 4. Solve the subject-level optimization problems in (21).
�en send the design solutions to the system level.

Step 5. Obtain the value of D�,  = 1, 2, . . . , �. If D� ≤ E and
the di�erence between the objective function values of two
consecutive iterations is not more than a small number in the
optimization iteration process, carry out Step 6; Otherwise,L = L + 1 and carry out Step 2.

Step 6. Stop and output the design solutions.

�e �owchart of CO-ERIM is shown in Figure 6.

5. Example

Speed reducers are generally used in low-speed, high-torque
transmission equipment. In this study, a speed reducer
RBMDO problem is introduced to illustrate the utilization of
the proposedmethod.�ere are seven design variables in this
example, which is listed in Table 1. Twenty-	ve constraints are
introduced to ensure that the design solutions can satisfy the
strength, sti�ness, and space requirements. �e optimization
object is to minimize the overall weight. Further information
can be obtained in [14, 43].

�ere are three disciplines in this RBMDO problem,
Bearing-Sha� 1, Bearing-Sha� 2, and Gears, which is shown
in Figure 7.�e CO-ERIM strategy for this problem is shown
in Figure 8, where �� = 2.07, Φ(−��) = 0.02, and E = 0.001.

To illustrate the accuracy of design solutions, the Monte
Carlo Simulation (MCS) method is also introduced here as
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Solve the optimization problem

in Eq. (19) at system level

Solve the discipline optimization

problems in Eq. (21) at subsystem level 
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８Ｍ,(k−1) , ８i,(k−1) , ９∙i,(k−1) ９i∙,(k−1)

(Ｃ = 1∼n)

Ji ≤ 

Figure 6: �e �owchart of CO-ERIM.

Table 2: Optimization results of the reducer design.

�1 �2 �3 /	4 /	5 /	6 /	7 �
ERIM 3.4238 0.6493 18 7.3001 7.6902 3.3201 5.2646 2987.8558

RIM 3.4254 0.6502 18 7.3004 7.6865 3.3251 5.2637 2966.7482

MCS 3.4237 0.6487 18 7.3000 7.6893 3.3214 5.2657 2993.4750

Gear 2 Gear 1

Bearing group 2 Sha� 2

Bearing group 1 Sha� 1

5x

7x 6x
4x

Figure 7:�e speed reducer design [14, 43].

the reference. �e so�ware Isight is utilized in the compu-
tations of optimization. �e solutions from CO-ERIM are
compared with the ones from original PMA-RIM based CO
and MCS based CO, which is listed in Table 2. From the
comparison of solutions, the design results from ERIM are
closer to the design results from MCS. Furthermore, the

calculation time of ERIM is 17min23s, and the calculation
time of RIM is 25min17s, which means the proposed method
enjoys higher computational e
ciency.

6. Conclusions

In this study, the e
ciency problem of RBMDO is stud-
ied. �e RIM strategy is reviewed and the corresponding
algorithm of ERIM is discussed in detail. Furthermore, the
CO-ERIM strategy is proposed, including its formulation
and procedure. In CO-ERIM, the concurrent design idea is
adapting to the development of modern engineering systems.
Compatibility constraints are introduced into subsystem-
level and system-level optimization problems, respectively.
�e consistency between di�erent disciplines can be guaran-
teed when the RBMDO solutions are obtained.�e introduc-
tion of ERIM reduces the computational burden of reliability
analysis during optimization iteration process. Under the
condition that the 	rst order method is acceptable, the
reliability analysis accuracy of the proposedmethod is similar
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System level optimization
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Gears discipline

x1, x2, x3

ＧＣＨ J2 (x1, x2, x3)
s.t. g1, g2 (x1, x2, x3) ≤ 0

g7 (x2, x3) ≤ 0

g8, g9 (x1, x2) ≤ 0

ＧＣＨ f(x
1, x


2, x


3, 


x4


x5
, 

x6
, 

x7

)
s.t. J1 ≤  J2 ≤  J3 ≤ 

x
1, x


2, x


3

J2

J1

ＧＣＨ J1 (x1, x2, x3, x4
, x6
)

s.t. ０Ｌ1 [g3 ( x2, x3

x4
, x6

) ≤ 0] ≤ Φ (−2.07)

０Ｌ2 [g5 ( x2, x3

x4
, x6

) ≤ 0] ≤ Φ (−2.07)

０Ｌ3 [g24 (x4
, x6
) ≤ 0] ≤ Φ (−2.07)

g1, g2 (x1, x2, x3) ≤ 0

g7 (x2, x3) ≤ 0

g8, g9 (x1, x2) ≤ 0

ＧＣＨ J3 (x1, x2, x3, x5
, x7
)

s.t. ０Ｌ4 [g4 ( x2, x3

x5
, x7

) ≤ 0] ≤ Φ (−2.07)

０Ｌ5 [g6 ( x2, x3

x5
, x7

) ≤ 0] ≤ Φ (−2.07)

０Ｌ6 [g25 (x5
, x7
) ≤ 0] ≤ Φ (−2.07)

g1, g2 (x1, x2, x3) ≤ 0

g7 (x2, x3) ≤ 0

g8, g9 (x1, x2) ≤ 0


x4
, 

x6

x
1, x


2, x


3

J3

x
1, x


2, x


3


x5
, 

x7

x4
, x6

x1, x2, x3
x1, x2, x3 x5

, x7

Figure 8: �e MDO strategy for the speed reducer problem.

to the accuracy ofMCS.�e speed reducer example illustrates
the e�ectiveness of the proposed method.
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