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Abstract 

We introduce an extended representation of time series that 
allows fast, accurate classification and clustering in addition 
to the ability to explore time series data in a relevance 
feedback framework. The representation consists of piece- 
wise linear segments to represent shape and a weight vector 
that contains the relative importance of each individual 
linear segment. In the classification context, the weights are 
learned automatically as part of the training cycle. In the 
relevance feedback context, the weights are determined by 
an interactive and iterative process in which users rate 
various choices presented to them. Our representation 
allows a user to define a variety of similarity measures that 
can be tailored to specific domains. We demonstrate our 
approach on space telemetry, medical and synthetic data. 

1.0 Introduction 
Time series account for much of the data stored in 

business, medical, engineering and social science 
databases. Much of the utility of collecting this data comes 
from the ability of humans to visualize the shape of the 
(suitably plotted) data, and classify it. For example: 

l Cardiologists view electrocardiograms to diagnose 
arrhythmias. 

l Chartists examine stock market data, searching for 
certain shapes, which are thought to be indicative of 
a stock’s future performance. 

Unfortunately, the sheer volume of data collected means 
that only a small fraction of the data can ever be viewed. 

Attempts to utilize classic machine learning and 
clustering algorithms on time series data have not met with 
great success. This, we feel, is due to the typically high 
dimensionality of time series data, combined with the 
difficulty of defining a similarity measure appropriate for 
the domain. For an example of both these difficulties, 
consider the three time series in Figure 1. Each of them 
contains 29,714 data points, yet together they account for 
less than .OOOl % of the database from which they were 
extracted. In addition, consider the problem of clustering 
these three examples. Most people would group A and C 

Copyright 0 1998, American Association for Artificial 
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Figure 1: Examples of time series 

together, with B as the outgroup, yet common distance 
measures on the raw data (such as correlation, absolute 
distance or squared error) group B and C together, with A 
as the outgroup. 

What is needed is a representation that allows efficient 
computation on the data, and extracts higher order features. 
Several such representations have been proposed, including 
Fourier transformations (Faloutsos et al. 1994), relational 
trees (Shaw & DeFigueiredo, 1990) and envelope 
matching/R+ trees (Agrawal et al. 1995). The above 
approaches have all met with some success, but all have 
shortcomings, including sensitivity to noise, lack of 
intuitiveness, and the need to fine tune many parameters. 

Piece-wise linear segmentation, which attempts to 
model the data as sequences of straight lines, (as in Figure 
2) has innumerable advantages as a representation. Pavlidis 
and Horowitz (1974) point out that it provides a useful 
form of data compression and noise filtering. Shatkay and 
Zdonik (1996) describe a method for fuzzy queries on 
linear (and higher order polynomial) segments. Keogh and 
Smyth (1997) further demonstrate a framework for 
probabilistic pattern matching using linear segments. 

Although pattern matching using piece-wise linear 
segments has met with some success, we believe it has a 
major shortcoming. When comparing two time series to see 

Figure 2: An example of a time series and its piece-wise 
linear representation 

KDD-98 239 

From: KDD-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



if they are similar, all segments are considered to have 
equal importance. In practice, however, one may wish to 
assign different levels of importance to different parts of 
the time series. As an example, consider the problem of 
pattern matching with electrocardiograms. If a cardiologist 
is attempting to diagnose a recent myocardial infarction 
(MI) she will pay close attention to the S-T wave, and 
downplay the importance of the rest of the 
electrocardiogram. If we wish an algorithm to reproduce 
the cardiologist’s ability, we need a representation that 
allows us to weight different parts of a time series 
differently. 

In this paper, we propose such a representation. We use 
piece-wise linear segments to represent the shape of a time 
series, and a weight vector that contains the relative 
importance of each individual linear segment. 

2.0 Representation of time series 
There are numerous algorithms available for segmenting 

time series, many of which where pioneered by Pavlidis 
and Horowitz (1974). An open question is how to best 
choose K, the ‘optimal’ number of segments used to 
represent a particular time series. This problem involves a 
trade-off between accuracy and compactness, and clearly 
has no general solution. For this paper, we utilize the 
segmentation algorithm proposed in Keogh (1997). 

2.1 Notation 
For clarity we will refer to ‘raw’, unprocessed temporal 

data as time series, and a piece-wise representation of a 
time series as a sequence. We will use the following 
notation throughout this paper. A time series, sampled at k 
points, is represented as an uppercase letter such as A. The 
segmented version of A, containing K linear segments, is 
denoted as a bold uppercase letter such as A, where A is a 
5tuple of vectors of length K. 

A= { AxL,AxR,AYL,AYR,Aw} 
The i* segment of sequence A is represented by the line 

between (AxL, AYL,) and (AxR, AYR,), and Aw,, which 
represents the segments weight. Figure 3 illustrates this 
notation. 

t 

Figure 3: We represent times series b a sequence of straight se ments, 
together with a sequence of weights (s i own as the histogram) w 8. lch contain 
the relative importance of each segment 

After a time series is segmented to obtain a sequence, we 
initialize all the weights to one. Thereafter, if any of the 
weights are changed, the weights are renormalized such 
that the sum of the products of each weight with the length 
of its corresponding segment, equals the length of the 
entire sequence, so that the following is always true: 

c;,Wi *(Ax& -AxL,)=AxR, -AxL, 

2.2 Comparing time series 
An advantage in using the piece-wise linear 

segment representation is that it allows one to define a 
variety of distance measures to represent the distance 
between two time series. This is important, because in 
various domains, different properties may be required of a 
distance measure. Figure 4 shows some of the various 
distortions one can encounter in time series. 

m m Noise 

m- Discontinuities 

Figure 4: Some of the difficulties encountered in defining a distance measure 
for time series 

It is possible to define distance measures for sequences 
that are invariant to any subset of the illustrated distortions. 
For the experiments in this paper we used the simple 
distance measure given below. This measure is designed to 
be insensitive to offset translation, linear trends and 
discontinuities. 

D(A,B>=C;,Ay *By *I(AYL, - BY&)-(AYR,-BYRJ 

It is convenient for notational purposes to assume that 
the endpoints of the two sequences being compared are 
aligned. In general, with real data, this is not the case. So 
we will have to process the sequences first, by breaking 
some segments at a point which corresponds to an endpoint 
in the other sequence. This can be done in O(K). 

Ff 

11-1 

Figure 5: An example of time series hierarchically clustered using our 
distance measure 
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2.3 Merging time series 
In this section we define an operation on sequences 

which we call ‘merge’, The merge operator allows us to 
combine information from two sequences, and repeated 
application of the merge operator allows us to combine 
information from multiple sequences. The basic idea is that 
the merge operator takes two sequences as input, and 
returns a single sequence whose shape is a compromise 
between the two original sequences, and whose weight 
vector reflects how much corresponding segments in each 
sequence agree. 

When merging sequences one may wish for one of the 
two input sequences to contribute more to the final 
sequence than the other does. To accommodate this, we 
associate a term called ‘influence’ with each of the input 
sequences. The influence term associated with a sequence 
S is a scalar, denoted as SI, and may be informally 
considered a ‘mixing weight’. Where the influence term 
comes from depends on the application and is discussed in 
detail in sections 3.1 and 4.1 below. 

To merge the two sequences A and B with influence 
terms AI and BI respectively, we use the following 

d algorithm that creates the sequence C: 
if (AI * BI < 0) then sign = -1 
else sign = 1 
end 

mw = min(lAII,jBI() / max(lAI[,IB~l) 

scale = max(max(AyL), (AYR) )- min(min(AyL), (AYR)) 

for i = 1 to K 
CXLi = AxLi 

CXRi = AXRi 

CYL~ = ( (AYL~ * AI)+(BYL~ * BI))/(AI+BI) 
CYR~ = (( AYR~ * AI)+(BYR~ * BI) )/(AI+BI) 
run = AXRi - AXl, 

rise = ~(AYL~- BYL~) - (AYR~ - BYRD) 1 

d = (rise / run) * scale 
Cw, = (Aw,*Bw,)* (l+(sign * mag)/ (1 + d)) 

end 
Cw = normalize(Cw) 

Table 1: The merge algorithm 

2.4 Learning prototypes 
Although the merge operator is designed to be a 

component in the more sophisticated algorithms presented 
below, it can, by itself, be considered a simple learning 
algorithm that creates a prototypical sequence. Creating a 
prototype solely from positive examples works in the 
following manner. We have a model sequence A, which is 
a typical example of a class of sequences. If we merge 
sequence A with sequence B, another member of the same 
class, the resultant sequence C can be considered a more 
general model for the class. In particular the differences in 
shape are reduced by averaging, and the weights for similar 
segments are increased. 

In contrast, creating a prototype from both positive and 
negative examples uses a negative influence for the 
negative examples. As before, suppose we have a sequence 
A, which is an example of one class of sequences. 
However, suppose B is an example of a different class. If 

we merge A with B, using a negative influence term for B, 
the resultant sequence C is a new prototype for A’s class 
where the differences in shape between A and B are 
exaggerated and the weights for similar segments are 
decreased. 

The above maps neatly to our intuitions. If we are 
learning a prototype for a class of sequences from a set of 
positive examples, we want the shape learned to be an 
average of all the examples, and we want to increase the 
weight of segments that are similar, because those 
segments are characteristic of the class. If however, we are 
trying to learn from a negative example, we want to 
exaggerate the differences in shape between classes, and 
decrease the weight of similar segments, because segments 
that are similar across classes have no discriminatory 
power. 

3.0 Relevance feedback 
Relevance feedback is the reformulation of a search 

query in response to feedback provided by the user for the 
results of previous versions of the query. It has an 
extensive history in the text domain, dating back to 
Rocchio’s classic paper (1971). However, no one has 
attempted explore time series databases in a relevance 
feedback framework, in spite of the fact that relevance 
feedback has been shown to significantly improve the 
querying process in text databases (Salton & Buckley, 
1990). In this section we present a simple relevance 
feedback algorithm which utilizes our representation and 
we demonstrate it on a synthetic dataset. 

Our relevance feedback algorithm works in the 
following manner. An initial query sequence Q is used to 
rank all sequences in the database (this query may be hand 
drawn by the user). Only the best n sequences are shown 
to the user. The user assigns influences to each of n 
sequences. A positive influence is given to sequences that 
the user approves of. Negative influences are given to 
sequences that the user finds irrelevant. 

The relative magnitude of influence terms reflects how 
strongly the user feels about the sequences. So if a user 
“likes” Si twice as much as Sj he can assign influences of 
1,s or 2,1 etc. The sequences are then merged to produce a 
new query, and the process can be repeated as often as 
desired. 

Q ll.2” = merge ( [Qold, Q,,,Il, [S,,S,Il t [S,,S,Il I..., [S,,S,Il 1 

Q,,I = QolaI + S,I + S,I + . . + SJ 

3.1 Experimental results 
To test the above algorithm, we conducted the following 

experiment. We constructed 500 “Type A”, and 500 “Type 
B” time series, which are defined as follows: 

0 Type A: Sin(x’> normalized to be between zero and 
one, plus Gaussian noise with CJ = .l -25x52 

0 Type B: Tan(Sin(x3)) normalized to be between zero 
and one, plus Gaussian noise with 0 = .l -2 I x I 2 
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A) 

B) 

c> 

Sin(x3) Tan(Sin(x3)) 

Figure 6: Synthetic data created for relevance feedback experiment 
A) The original time series. 

B) The original time series with noise added. 

Cl The segmented version of the time series. 

Twenty-five experimental runs were made. Each run 
consisted of the following steps. A coin toss decided 
whether Type A or Type B was to be the “target” shape 
(that is, the shape to be considered “relevant” for that 
particular experiential run). The initial query was made, 
and the quality of the ranked sequences was measured as 
defined below. The best 15 sequences were shown to the 
user, who then rated them by assigning influences that 
reflected how closely he thought they resembled the target 
shape. A new query was built and the search/rate process 
was repeated twice more. 

We evaluated the effectiveness of the approach by 
measuring the average precision of the top 15 sequences, 
and the precision at the 25, 50 and 75 percent recall points. 
Precision (P) is defined as the proportion of the returned 
sequences which are deemed relevant, and recall (R) is 
defined as the proportion of relevant items which are 
retrieved from the database. These results are shown in 
Table 2. 

In order to see if the ability to assign negative influence 
terms is helpful, we did the following. For each 
experimental run we also built queries which contained just 
the feedback from the sequences judged relevant. These 
results are shown in parentheses in Table 2. 

Initial Query Second Query Third Query 

Poftop 15 .51 .91 (.68) .97 (.72) 

Pat25%R .52 .91 (.69) .96 (.71) 

PatSO%R .49 -89 (661 .95 f.691 

1 Pat75%R 1 .51 .87 (.63) .95 (.68) 

Table 2: Results of relevance feedback experiments. The values recorded in 
parentheses are for the queries built just from positive feedback 

As one might expect, the initial query (which does not 
have any user input) returns the sequences in essentially 
random order. The second query produces remarkable 
improvement, and the third query produces near perfect 
ranking. The queries built from just positive feedback do 
produce improvement, but are clearly inferior to the more 
general method. This demonstrates the utility of learning 
from both positive and negative instances. 

4.0 Classification 
Given our representation, an obvious approach to 

classification is to merge all positive instances in the 
training set, and use the resultant sequence as a template to 
which the instances to be classified are compared. This 
may work in some circumstances, but in some domains it 
may totally fail. The reason for the potential failure is that 
there may be two or more distinct shapes that are typical of 
the class. 

To avoid this problem, an algorithm needs to be able to 
detect the fact that there are multiple prototypes for a given 
class, and classify an unlabeled instance to that class if it is 
sufficiently similar to any prototype. In the next section we 
describe such an algorithm, which we call CTC (Cluster, 
Then Classify). 

4.1 Classification algorithm 
Table 3 shows an outline of our learning algorithm. The 

input is S, the set of n sequences that constitute the training 
data. The output is P, a set of sequences, and a positive 
scalar E. 

An unseen sequence U will be classified as a member of 
a class if and only if, the distance between U and at least 
one member of P is less than E. 

The algorithm clusters the positive examples using the 
group average agglomerative method as follows. The 
algorithm begins by finding the distance between each 
negative instance in S, and its closest positive example. 
The mean of all these distances, neg-dis, is calculated. Next 
the distance between each positive instance in S, and the 
most similar positive example is calculated. The mean of 
all these distances, pos-dis, is calculated. The fraction q1 = 
pos-dis, /neg-dis, can now be calculated. 

At this point, the two closest positive examples are 
replaced with the result of merging the two sequences, and 
the process above is repeated to find the fraction q2 = pos- 
dis, / neg-dis,. The entire process is repeated until a single 
sequence remains. Figure 7 shows a trace through this part 
of the algorithm for a dataset that contains just 4 positive 
instances. The set of sequences returned is the set for 
which q1 is minimized. 

The E returned is (pas-dis, + neg-dis,) /2. 

Let Pi be the set of all positive instances in S 
Cluster all sequences in Pi 

for i = 1 to n 
neg-dis, = mean distance between all negative 

instances and their closest match in Pi 

pos-dis, = mean distance between all positive 
instances and their closest match in Pi 

qi= pos-dis i / neg-dis, 
Let A and B be the closest pair of sequences in Pi 
C = merge([A,AIl, [B,BII) 
CI = AI + BI 
Remove A and B from Pi 

Add C to Pi 

end 

let best equal the i for which qI is minimized 
return P,., , (pas-dis,, + neg-dis,,,,) / 2 

Table 3: The CTC learning algorithm 
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4.2 Experimental results 
To test the algorithm presented above we ran 

experiments on the following datasets. 

l Shuttle: This dataset consists of the output of 109 
sensors from the first eight-hours of Space Shuttle 
mission STS-067. The sensors measure a variety of 
phenomena. Eighteen of them are Inertia Movement 
Sensors, measured in degrees (examples are shown 
in Figures 1 and 7). The task is to distinguish these 
from the other 91 sensors. 

l Heart: This dataset consists of RR intervals 
obtained form Holter ECG tapes sampled at 128 Hz 
(Zebrowski 1997). The data is in a long sequence 
that contains 96 ventricular events. We extracted the 
96 events, and 96 other sections, of equal length, 
chosen at random. 

For comparison purposes we evaluated 4 algorithms on 
the two datasets described above. CTC is the algorithm 
described in section 4.1. CTCuw is the same algorithm 
with the weight feature disabled (we simply hardcoded the 
weights to equal one). NN is a simple nearest neighbor 
algorithm that uses the raw data representation of the time 
series. An unlabeled instance is assigned to the same class 
as its closest match in the training set. We used absolute 
error as a distance measure, having empirically determined 
that it was superior to the other obvious candidates (i.e. 
squared error, correlation). NNs is the same algorithm as 
NN except it uses the sequence representation and the 
distance measure defined in section 2.2. 

We ran stratified 10 fold cross validation once. All 
algorithms were trained and tested on exactly the same 
folds. The results are presented in table 4. 

Shuttle 

Heart 

CTC CTCuw NN 
100 96.0 82.1 
85.6 69.1 59.8 

NNs Default 

89.3 83.5 
64.6 50.0 

Table 4: Experiment results of classification experiments 

On both datasets the CTC algorithm performs the best. 
Its ability to outperform CTCuw seems to be a justification 
of our weighted representation. On the Shuttle dataset NN 
performs at the base rate. We surmise this is probably due 
to its sensitivity to discontinuities, which are a trait of this 
dataset. NNs ability to do significantly better supports this 
hypothesis. 

P2 

5.0 Related work 
There has been no work on relevance feedback for time 

series. However, in the text domain there is an active and 
prolific research community. Salton and Buckley (1990) 
provide an excellent overview and comparison of the 
various approaches. 

6.0 Conclusions 
We introduced a new enhanced representation of time 

series and empirically demonstrated its utility for 
clustering, classification and relevance feedback. 
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final set P4 contains a single sequence that is too general, because it is trying to model two distinct shapes. The set P3 is the best compromise. 
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Related Work. Brin et al. (Brin, Motwani, & Sil- 
verstein 1997) used the chi-squared test to look for cor- 

related associations, but did not take into account the 

number of hypotheses were being tested. Piatetsky- 

Shapiro (Piatetsky-Shapiro 1991) had a similar idea 
when he argued that a rule X + Y is not interest- 

ing if support(X * Y) N support(X) x support(Y), 

but again did not consider the number of hypotheses. 

2. Statistical Significance of Association 
Rules 

In this section, we discuss issues of statistical signifi- 
cance of a set of association rules. First, in Section 2.1, 

we discuss the statistical significance of a single rule. 
However, when we analyze many rules simultaneously, 

the significance test has to take into account the num- 

ber of hypotheses being tested. This is the so-called 

multiple comparisons problem (Hochberg & Tamhane 

1987). Typically the test statistics corresponding to 

the hypotheses being tested are not independent. It 
is important to observe that the number of hypothe- 

ses implicitly being tested may be much greater than 
the number of output rules; we give an upper bound for 

this number in Section 2.2. This bound may, in general, 
be too conservative. We offer a practical way of deal- 

ing with this problem in Section 2.3; the idea is to use 

resampling to determine a good acceptance threshold. 

Finally, in Section 2.4, we describe the computation of 
confidence intervals for the support and confidence of a 

rule. 

2.1. Statistical Significance of a Single 
Association 

We view a dataset consisting of n transactions as the re- 

alizations of n independent identically distributed ran- 

dom boolean vectors, sampled from the “real world” 

distribution. Let 7rs denote the “real world” probability 
that a transaction contains a given itemset S. Thus, the 

number of transactions NS in the sample (i.e., dataset) 
that contain S is a binomial random variable with suc- 

cess probability 7r = ns and n trials. 

Hypothesis testing and minimum support. The 

minimum support requirement can be cast in the hy- 

potheses testing framework as follows. For example, 

suppose our minimum support requirement is 10%. For 

each itemset S, let Hf be the null hypothesis that 

ns = 0.1, and let us test it against the crlternative hy- 

pothesis H& that ns > 0.1. Let ps be the fraction of 

transactions in the dataset that contain S. The test is 

to compare ps with a threshold value po and reject H: 

if and only if ps 2 pc. There are two kinds of possible 
errors (Cryer & Miller 1994): 

~~ 

The selection of ps is determined by a bound on the 

desired probability of Type I error, which is called the 
significance level. 

P-values. In general, the p-value of a test result is the 

probability of getting an outcome at least as extreme as 

the outcome actually observed; the p-value is computed 
under the assumption that the null hypothesis is true 

(Cryer & Miller 1994). In our example, the p-value 

corresponding to an observed fraction ps is equal to the 

probability, under the assumption that rs = 0.1, that 

the fraction of transactions that contain S is greater 
than or equal to ps. 

In order to compute the p-value, we use either the 

normal approximation, the Poisson approximation, or 
the exact binomial distribution, depending on the ac- 

tual values of n, the minimum support requirement, 

and the observed support. For example, suppose n = 

10,000, the minimum support is 7r = 0.1 and the ob- 

served support is p = 0.109. We use the normal ap- 
proximation. The mean is 7r = 0.1, and the standard 

deviation is J(r( 1 - n)/n) = J(O.O9/10000) = 0.003. 
Since p is three standard deviations greater than 7rTT, the 
p-value is 0.0013. 

Testing Independence. Consider an association 

rule S 3 T, where S and T are sets of items. As a null 

hypothesis we assume that S and 2’ occur in transac- 
tions independently. Thus, under the null hypothesis,3 
,$hT = *TT’ x nT. As an alternative hypothesis, we can 

use the inequality nShT > ns x nT, which means that 

the conditional probability of T given S is greater than 

the probability of T. 

If the values 7rs and rT are assumed to be known 

with sufficient accuracy, we can use the value ns x nT to 

compute a p-value for S + 2’. This p-value corresponds 

to the probability, under the assumption that S and 2’ 

are independent, that the empirical frequency of the 

set S U T will be greater than pSAT. Since we don’t 

know the actual values of rs and 7rT, we use ps and 

‘We denote the event that S U T is included in the trans- 
action by S A 2’ since this is indeed the intersection of the 
events corresponding to S and T. 
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pT (the fractions of transactions that contain S and T, 

respectively) as estimates for ns and rT. The lower 

the p-value, the more likely it is that S and T are not 

independent. 

2.2. Statistical Significance of a Set of 
Associations 

Suppose we are testing k null hypotheses Hi, . . . , Ht , 

and denote by qi the probability of rejecting Hi when 

it is true. The probability of rejecting at least one of 
the null hypotheses when they are all true is at most 

q1 + * * e + qk. Thus, if we wish the latter to be smaller 

than, say, 0.05, it suffices to determine thresholds for 
the individual tests so that q; < 0.05/k. This bound 

may be very small if the number of hypotheses im- 

plicitly being tested is very large. Indeed, since under 
the null hypothesis the empirical p-value is distributed 

uniformly, when we test k true null hypotheses whose 
test statistics are independent random variables, the 

expected value of the smallest p-value is l/(k + l), so 
in order to achieve a small probability of rejecting any 

true null hypothesis we would have to choose thresholds 

even smaller than that. Note that when we test inde- 

pendence of pairs in a set of, say, 10,000 items, then the 

value of k would be greater than 107. 
Obviously, if we wish to achieve a good probability of 

rejecting most “false discoveries”, we have to increase 

the probability of rejecting some true ones as well. In 
other words, when we attempt to discover more true 

rules, we also increase the risk of false discoveries (i.e., 

rejecting true null hypotheses). However, we would like 
to have an idea how many false discoveries there may 

be for any given threshold. We explain below how to 

compute an upper bound on the number of hypotheses 

that are implicitly tested; this number can be used to 

estimate the number of false discoveries for any given 

threshold. 

Upper Bound on the Number of Hypotheses. 

The number of hypotheses that we are implicitly testing 
in the associations algorithm is typically much larger 

than just the number of frequent itemsets or the num- 
ber of rules that are generated. To understand why, 

consider the set of frequent pairs. Let the null hypoth- 

esis HF be that the items i and j are independent. To 

find the set of frequent pairs, the associations algorithm 

counts the cross-product of all the frequent items. Sup- 

pose there are 100 frequent items. Then there will be 

roughly 5000 pairs of items whose support is counted. If 

the algorithm throws away 4000 of these at random and 

tests HF only for the remaining 1000 pairs, then only 

1000 hypotheses have been tested. On the other hand, 

if the algorithm picks the 1000 pairs with the smallest 

p-values, then 5000 hypotheses have been tested. If the 

algorithm first considers the 1000 pairs with the high- 
est support, and only then looks at p-values, then the 

actual number of hypotheses being tested is not readily 

available. In this case, we can use the number 5000 as 
an upper bound on the number of hypotheses. 

We can extend this upper bound to include itemsets 

and rules with more than two items. Consider an item- 

set with three frequent items that does not include any 

frequent pairs. We do not need to include such an item- 
set while counting the number of hypotheses because 

this itemset clearly cannot have minimum support (in 

the dataset) and hence it’s properties are never exam- 

ined by the algorithm. Hence for itemsets with three 
items, the number of hypotheses is less than the prod- 

uct of the number of frequent pairs times the number of 

frequent items. In fact, we can further bound the num- 
ber of hypotheses to just those itemsets all of whose 
subsets are frequent. This number is exactly the num- 

ber of candidates counted by current algorithms. By 

summing this over all the passes, we get 

Number of Hypotheses 

< Number of Candidate Itemsets 

5 Number of Frequent Itemsets x Number 
of Frequent Items. 

where the set of candidate itemsets includes any item- 
set all of whose subsets are frequent. We emphasize 

that this is only an upper bound and may be much 

higher than necessary. Another serious problem is that 
even when all the null hypotheses are true, their test 

statistics are clearly not independent, thus prohibiting 

a direct calculation of appropriate thresholds. Below 

we present a practical solution to this problem. 

2.3. Determining thresholds by resampling 

Given the observed singleton frequencies pi of the items, 

we generate a few synthetic data sets of transactions 

under a model where the occurrences of all the items 
are independent. Thus, the transactions are generated 
independently; for each transaction j and for item i we 

pick a number ~ij from a uniform distribution over [0, l] 

and include i in j if and only if ~ij < pi. Typically, we 

would generate 9 data sets, each consisting of 10,000 

transactions. These numbers depend on the number 

of frequent items and minimum support rather than 

the number of transactions. We run the association 
rules algorithms on these data sets. Let vij denote the 

;th smallest p-value in dataset j. Let Vi denote the 
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Dataset 
Number of Customers 
Number of Transactions 
Items per Transaction 
Min. Support (for exp.) 
Min. Conf (for exp.) 
# Frequent Items 
# Frequent Itemsets 
# Candidates 
# Rules 

Supermarket Dept. Store 
6200 Unknown 

1.5 million 570,000 
9.6 4.4 
2% 1% 

25% 25% 
201 283 

2541 943 
30,000 42,000 

4828 1020 

Table 1: Dataset Characteristics 

Mail Urder 
214,000 

3 million 
2.6 

0.02% 
25% 
2849 

10,173 
4,090,000 

2479 

mean of the values wii, vi2, . . . The value Vi estimates 

the expectation of the ith smallest p-value when all the 

null hypotheses are true. So, we expect at most i false 

discoveries when we place the threshold at vi. These 
estimates become useful when we wish to assess the 

quality of the set of rules we mine from the real data 

set. For example, if in the real data set we consider 
reporting all the rules with p-values smaller than some 
threshold t, and if Vi < t 5 Vi+l, then we expect no 

more than i of these rules to be false discoveries, since 

even in a purely synthetic data base where all the null 

hypotheses are true, no more than an expected number 

of i turn out to have such small p-values. As the value of 

t increases, more rules would be reported, but a larger 
number of them is expected to be false. 

We tried this approach on three real-life datasets, 
whose characteristics are shown in Table 1. We present 

results for a specific minimum support and confidence 

for each rule; we got similar results for other values of 
support and confidence. Table 2 gives for each dataset 

the results of the simulation. We present results with 
three different random seeds to give an idea of the vari- 

ation in p-values. For the supermarket and department 

store data, we also ran with three different data sizes: 

1000, 10,000 and 100,000 transactions.5 Notice that 

the average p-values are quite similar for the three data 

sizes. 
We estimated the smallest p-value for each dataset 

based on the conservative upper bound on the number 

of hypotheses that we derived in the previous section. 
There was more than a factor of 100 difference between 

the expected lowest p-value and the actual least p-value 

on all three datasets. 

For the Supermarket data, only two rules (out of 4828 

rules) had p-values higher than lo-‘: their p-values 

6For the mail or der data, the minimum support was too 
low to get meaningful results with the first two data sizes. 
With 10,000 transactions, minimum support corresponds to 
just 2 transactions. 

were .0037 and .0051. For the Department Store data, 

only nine rules (out of 1020 rules) had p-values higher 

than 10-loo, and all their p-values were greater than 

0.09. For the Mail Order data, none of the rules (out 

of 2479 rules) had p-values greater than 10m4’. Hence 

the number of “false discoveries” was extremely small. 

The reason for the extremely low number of false dis- 

coveries is that the support and confidence threshold al- 
ready do an excellent job of pruning out most rules that 
are not statistically significant. For instance, consider 

a rule where the support of the consequent is 5%. For 
this rule to meet the minimum confidence constraint, 

the support (confidence) of this rule must be at least 5 

times the expected support (confidence) assuming that 

the antecedent and consequent are independent. Hence, 

unless the minimum support was extremely low, this 
rule would have a very low p-value. 

2.4. Confidence Intervals 

Denote by B(k;n, s) the probability that a binomial 

random variable with success probability s and n tri- 

als will have a value greater than k. The p-value of a 

rule with observed frequency p, with respect to a de- 

sired support level of s is equal to B(np; n, s). Let 7r 

denote the true frequency. The probability of the event 

7r - it: 5 p 5 7r + y is the same as the confidence level of 

an interval of the form [p - y, p + z]. The symmetry of 

the normal approximation allows calculating confidence 
intervals based on the observed value p. If we construct 

for each rule a confidence interval of level 95%, then for 
each rule there is an apriori probability of 95% that the 
true frequency lies within the interval. This means that 

the expected proportion of the rules where the true fre- 

quency lies within the respective interval is 95%. With 

regard to constructing a confidence interval for the con- 

fidence of a rule, we can argue the following. In gen- 

eral, consider events Er c Es. If [a, b] and [c, 4 are 

confidence intervals of level 1 - E for r(El) and 7r( E2), 

respectively, and if c > 0, then [u/d, b/c] is a confidence 
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Simulated Number of Expected Lowest Lowest Next Lowest 
Dataset Transactions p-value p-value p-value 

1,000 .0026, .0048, .0072 .0038, .0074, .0089 
Supermarket 10,000 3e-5 .0030, .0044, .0064 .0049, .OllO, .0140 

100,000 9011, .0022, .0086 .0049, .0055, .0096 
1,000 3e-5, .0025, .0025 .OOlO, .0027, .0029 

Dept. Store 10,000 2e-5 .0013, .0025, .0032 .0032, .0040, .0090 
100,000 .0002, .0021, .0045 .0006, .0022, .0090 

Mail Order 100,000 2e-7 2e-5, 6e-5, .0002 7e-5, 8e-5, .0003 

Table 2: Simulation Results 

interval for p( El 1 E2) with confidence level of at least 

1 - 2E. 

These confidence intervals allow users to use associ- 

ations rules predictively by giving them an idea of how 

much variance they can expect in the support and con- 
fidence of a rule in the future. 

3. Conclusions 

We looked at the issue of whether association rule algo- 
rithms produce many “false discoveries”. It is straight- 

forward to compute the statistical significance of a sin- 

gle rule. However, when looking at a set of rules, the 

significance test has to take into account the number 

of hypotheses being tested. We showed that the num- 
ber of hypotheses implicitly being tested can be much 
greater than the number of output rules, and derived 

an upper bound for the number of hypotheses. Unfor- 

tunately deriving an acceptance threshold for the sta- 

tistical significance test from this bound may be too 

conservative. We presented a novel approach of using 

resampling to determine the acceptance threshold for 

the significance test. The threshold value derived using 

this approach was typically more than 100 times greater 

than the threshold value derived from the upper bound. 

We then used this threshold to evaluate the number of 

“false discoveries” on three real-life dataset. We found 
that less than 0.1% of the rules were false discoveries: 

the reason for this surprisingly low number is that the 

minimum support and confidence constraints already 

do an excellent job of pruning away the statistically 

insignificant rules. A bonus of this work is that the 

statistical significance measures we compute are a good 

basis for ordering the rules for presentation to users, 

since they correspond to the statistical “surprise” of 

the rule. 

Finally, we derived confidence intervals for the sup 

port and confidence of an association rule, enabling 
users to use the rule predictively over future data. 
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