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Abstract— This paper develops an enhanced robust fault 

tolerant control (FTC) using a novel adaptive fuzzy PID-based 

nonsingular fast terminal sliding mode (AF-PID-NFTSM) control 

for a class of second-order uncertain nonlinear systems. In this 

approach, a new type of sliding surface, called PID-NFTSM, 

which combines the benefits of the PID and NFTSM sliding 

surfaces, is proposed to enhance the robustness and reduce the 

steady state error, whilst preserving the great property of the 

conventional NFTSM controller. A fuzzy approximator is designed 

to approximate the uncertain system dynamics and an adaptive 

law is developed to estimate the bound of the approximation error 

so that the proposed robust controller does not require a need of 

the prior knowledge of the bound of the uncertainties and faults 

and the exact system dynamics. The proposed approach is then 

applied for attitude control of a spacecraft. The simulation results 

verify the superior performance of the proposed approaches over 

other existing advanced robust fault tolerant controllers.   

 
Index Terms— Fault diagnosis, fault tolerant control, high-

order sliding mode control, nonlinear systems, sliding mode 

control. 

I. INTRODUCTION 

HE recent demands of modern automatic control systems 

are to increase the reliability and safe operation of the 

systems. To complete the mission, fault diagnosis (FD) [1-

2] and fault tolerant control (FTC) [3-5] have been developed 

over the past decades. Generally, FTC is classified into two 

classes: active fault tolerant control (AFTC) and passive fault 

tolerant control (PFTC). In AFTC [6-9], the system is operated 

based on two basic steps. In the first step, a fault 

diagnosis/fault detection and isolation (FD/FDI) scheme is 

designed to get fault information. Then, based on the received 

fault information, the nominal controller is adapted accordingly 

to change its output to compensate for the effects of faults in 

the system. This approach, therefore, requires an additional 

design of FD/FDI scheme that might increase the complexity 

and computational burden of the system. In addition, the two 
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steps operation of the AFTC may delay the fault 

compensational time, which may affect to the stability of the 

system due to the fast variation of the fault. In PFTC [10-11], a 

robust controller is designed to compensate the effects of faults, 

which is considered as an additional uncertainty in the system. 

The structure of the AFTC and PFTC are illustrated in Fig. 1. 

Since the PFTC does not need to wait for the fault information 

feedback from a FD/FDI scheme, it can compensate the fault 

effects much faster than that of the AFTC. However, the design 

of the PFTC has two major drawbacks: (1) it would require a 

prior knowledge of the bound value of the magnitude of the 

uncertainties and faults, and (2) since the design procedure is 

based on the bound value of the fault, which is the heaviest 

fault effects condition in the system, the PFTC would need a 

control technique with strong robustness.  

In the literature, several robust control techniques have been 

developed to deal with the effects of the uncertainties and/or 

disturbances and faults in the system, such as PID controller 

[12-13], neural network controller [14], fuzzy logic controller 

[15-16], or sliding mode controller (SMC) [17-20]. Among 

them, the SMC has been shown to have stronger robustness 

compared to others. Due to the benefits, the SMC has been 

widely applied for the design of FTC [21-24]. However, the 

conventional SMC has several drawbacks that reduce its 

effectiveness for real applications such as chattering, 

singularity and it does not guarantee a defined finite time 

convergence [17]. In addition, even though the SMC has a 

good robustness property in front of matched uncertainties, this 

needs to be improved when dealing with the effects of faults to 

stabilize the system quickly. To obtain a defined finite time 

convergence, terminal sliding mode (TSM) has been studied 

[25, 26]. Unlike the conventional SMC, which is designed 

based on a linear sliding surface, the TSM utilizes a nonlinear 

sliding surface, and thus it can guarantee a defined finite time 

convergence. Unfortunately, the conventional TSM provides a 

slow convergence speed and singularity phenomenon. To solve 

these two problems, fast terminal sliding mode (FTSM) [27] 

and nonsingular terminal sliding mode (NTSM) [28] have been 

developed separately. It can be seen that while FTSM can 

provide faster convergence, it has not considered solving the 

singularity phenomenon in the design. In contrast, the NTSM 

can solve the singularity problem, but, unfortunately, it 

possesses a slow convergence speed like the conventional 
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TSM. In order to obtain both fast defined finite time 

convergence and singularity elimination, nonsingular fast 

terminal sliding mode (NFTSM) control has been developed 

[29-32]. Comparison between the conventional SMC and TSM 

in terms of defined finite time convergence property and the 

properties of FTSM, NTSM and NFTSM have been discussed 

thoroughly in [29]. However, the design of the NFTSM does 

not improve the robustness of the SMC and eliminate the 

chattering. To increase the robustness of the SMC, a hybrid 

system called PID-based SMC has been developed [33-38]. 

The idea of the PID-based SMC is to bring the advantages of 

the integral component of the PID controller into the design of 

SMC to increase its robustness. However, all the current 

existing PID-based SMC controllers in the literature only 

consider the linear sliding surface, and therefore they have the 

same drawbacks as the conventional SMC such as singularity 

and undefined finite time convergence. In a demand of real 

applications, there is a need to combine the properties of PID 

and NFTSM to obtain a defined finite time convergence and 

enhance the robustness of the system. However, according to 

the best of the author’s knowledge, there have been no 
approaches in the literature to make this adventure. This was 

because, according to our observation, the combination 

between PID and NFTSM might increase the control order and 

complexity of the system (see Eq. (7)) that may lead to 

difficulty in reconstruction of the control law.  

The remaining issue of the SMC is the chattering 

phenomenon. In the literature, several approaches have been 

proposed to eliminate the chattering, such as boundary layer 

method [17], disturbance observer [39], or high-order sliding 

mode (HOSM) control [40-45]. Among them, HOSM control is 

preferred to be employed rather than other techniques since it 

not only eliminates the chattering but also increases the 

precision of the system. The idea of the HOSM is to increase 

the order of the system such that the reconstructed 

discontinuous control input are under integral and therefore, the 

chattering is much reduced [40-45]. Similar idea to the HOSM 

controller, full-order sliding mode control (FOSM) has been 

proposed [46]. The FOSM takes the full order of the sliding 

variable into the design of the sliding surface, and thus a 

continuous reaching law can be reconstructed. In the 

conventional approach, the HOSM was motivated to eliminate 

the chattering of the conventional SMC. However, due to the 

great properties of both HOSM and NFTSM, there is a desire 

to combine the benefits of both to obtain defined finite time 

convergence, chattering elimination and high accuracy 

simultaneously. In the literature, some hybrid control methods, 

which combine the benefits of TSM and supper-twisting 

HOSM, have been developed [32]. However, the combined 

techniques provide new issues such as they increase the 

complexity of the system. In addition, the stability of the system 

have not been proved properly in these designs, and therefore 

the stability of the system may not be guaranteed for the system 

in some conditions. Therefore, there is a need to develop a 

hybrid system that integrates the properties of the HOSM into 

PID and NFTSM by using a more efficient way.  

Generally, the design of the PFTC would require a prior 

knowledge of the exact dynamic model of the system and the 

bound value of the uncertainties and faults [38]. However, 

these parameters are expensive and difficult to be obtained in 

advance in real applications. In order to estimate the bound 

value of these parameters, several simple adaptive techniques 

have been developed for conventional SMC [38, 47-49] and 

HOSM [50-51]. However, it should be noted that the amount of 

the chattering are proportional to the magnitude of the sliding 

gain. Therefore, when the magnitude of the unknown function 

is big, the sliding gain is slowly adapted to a big value to 

guarantee the existing condition of the SMC. Unfortunately, 

this provides a slow convergence speed and big chattering. In 

an attempt to approximate the unknown system model, 

approximation techniques based on adaptive neural networks 

(NN) [52-54] or fuzzy logics [55-56] have been widely 

developed. As a result, adaptive neural sliding modes [57-59] 

or adaptive fuzzy sliding modes [60-63] have been proposed. 

Due to the approximation capability of the NN or fuzzy logic 

over the simple adaptive law approaches, the convergence 

speed of the system is faster and the chattering is much reduced 

since the sliding gains just need to approximate the NN/fuzzy 

logic error, which is usually very small. One of the advantages 

of the fuzzy logic over NN is that it takes the human knowledge 

about the system into the design, and thus the controller could 

be able to provide a good tracking response. However, 

integrating fuzzy logic into the new hybrid system, which 

includes PID, NFTSM and HOSM, generates a new issue since 

this combination may violate the stability of the system if it is 

not designed properly. Therefore, this requires an appropriate 

design procedure and stability proof to guarantee the 

performance and the stability of the whole hybrid system. 

In this paper, a novel robust FTC based on an adaptive fuzzy 

PID-based NFTSM is developed for uncertain nonlinear 

systems. In this approach, a new PID-NFTSM sliding surface, 

which integrates the great features of the PID and NFTSM 

sliding surfaces, is developed to enhance the robustness and 

reduce the steady state error of the system, whilst guaranteeing 

a defined finite time convergence of the state variables. In 

addition, different from the conventional combination between 

NFTSM and HOSM [32], the great property of the HOSM is 

integrated into the hybrid PID-NFTSM in an intelligent way 

without damaging the stability of the system. Moreover, by 

integrating an adaptive fuzzy approximator into the PID-

NFTSM controller, the proposed adaptive fuzzy PID-NFTSM 

controller could eliminate the requirement of the prior 

knowledge of the bound information of the uncertainties and 

faults in the design. The proposed approaches can be applied 

for a class of second-order nonlinear systems. In this paper, we 

simulate the performance of the attitude control of a spacecraft 

as an example. The simulation results verify that the proposed 

adaptive fuzzy PID-NFTSM provides superior performance 

compared to other advanced robust control and robust FTC 

techniques, such as NFTSM [31], third order sliding mode 



 

 

(TOSM) [38] and FOSM [46]. 

The remainder of this paper is constructed as follows. 

Section II presents the problem formulation and notations. 

Section III introduces a PID-NFTSM controller. Section IV 

describes the design of the adaptive fuzzy PID-NFTSM. 

Simulation results for attitude control of a spacecraft are given 

in Section V. Section VI provides conclusions.  

II. PROBLEM STATEMENT AND NOTATIONS 

A. Problem formulation 

In this paper, we consider the following general second-order 

nonlinear system [23, 38]: 

1 2

*
2

x = x

x = f(x) + G(x) u + d
  (1) 

where the state variables of the system are  T1 2x = x ,x , with 

 1 1x ,...,
T n

nx x   and  2 1 2x ,...,
T n

n nx x  , the 

smooth functions f(x) n  and G(x) n m  denote the 

system dynamics with the initial values f(0) 0 , the input 

component  * * *
1u ,..., m

mu u   with m n  denotes the 

actuator and the component  1d ,...,
T n

nd d   indicates 

the possibly uncertainties and/or disturbances in the system. 

In this paper, we consider a type of actuator fault called loss-

of-effectiveness (LOE) since it is usually occurred in wide 

practical applications [13-16, 31-32]. To describe actuator fault 

due to the LOE, the control input of (1) can be expressed as 

[23]: 

*u u u   (2) 

where u  denotes the actuator faults, 
*u  and  u  are the 

actual and the designed control value, respectively. 

From (1) and (2), the dynamics system (1) can be rewritten 

as below when one or multiple actuator faults occurs: 

1 2

2

x = x

x = f(x) + G(x)u+ G(x) u d

=f(x) + G(x)u+ (x, u ) d

 
  

 (3) 

where (x, u ) = G(x) u n    .  

 

Assumption 1: The following condition is assumed for 

analysis in the next sections: 

 
  x, u,

x,t
d d

M
dt

 
    (4) 

where  x, u, d   is a function, which will be defined later 

after (8), and  is a constant parameter.  
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Fig.1. Structure of (a) AFTC and (b) PFTC. 

 

The objective of this paper is to develop a strong robust FTC 

law u  such that the performance of the system is always 

guaranteed no matter whether the existing of uncertainties, 

disturbance and faults. 

B. Notations 

The following notations have been employed across the 

paper to reduce the length of sentences: 

s sPID PID NFTSM , u uPID PID NFTSM ,  

u uAF adaptive fuzzy PID NFTSM . 

III. DESIGN OF A ROBUST PROPORTIONAL-INTEGRAL-

DERIVATIVE (PID)-NONSINGULAR FAST TERMINAL SLIDING 

MODE CONTROLLER 

In this subsection, we develop a robust PID-NFTSM to 

explore the properties of the PID and NFTSM controllers. First, 

a nonsingular fast terminal sliding mode (NFTSM) sliding 

surface is selected as [29-32]: 

[ ] [ / ]
1 1 1 2 2s x x x p q

NFTSM k k
    (5) 

where 1
nxn

k   and 2
nxn

k   are positive matrices, 

respectively, p  and q  are positive odd numbers satisfying the 

relation 1 / 2p q   and /p q  .  

Then, a PID-NFTSM sliding surface is proposed as 

s
s s s NFTSM

PID p NFTSM i NFTSM d

d
K K K

dt
    (6) 

where the derivative of the NFTSM sliding surface is computed 

as  

 / 1
1

2 1 1 2 2 2 2

s
x x x x x

p q
NFTSMd p

k k
dt q


      (7) 

From (6) we can see that the proposed sliding surface has a 

form of NFTSM and PID sliding surfaces. Therefore, the 



 

 

proposed sliding surface possesses the benefits of both 

approaches such as fast transient response, lower steady state 

error, nonsingular fast defined finite time convergence. These 

properties are very significant and essential for FTC systems 

since they can compensate the fault effects and stabilize the 

system much faster. In addition, looking up to (7) we can see 

that it has a form of FOSM and therefore the chattering 

problem can be eliminated as the same manner to the FOSM. 

Hence, the proposed sliding surface in (6) allows the system 

preserving the great properties of the PID, NFTSM and HOSM 

simultaneously.  

Combining the results in (3), (6) and (7), we have: 

 

 
 

   

/ 1

/ 1

1
2 1 1 2

2 2

2

1
1 1 2

2 2

2

s s s

x x x

f(x) + G(x) u
x

+ (x, u ) d

x
s s

x x

x f(x) + G(x) u+ (x, u ) d

s , x x, u, (x ) f(x) +

p q

p q

PID p NFTSM i NFTSM

d

p NFTSM i NFTSM d

d

NFTSM

K K

k

K p
k

q

K K K
k

p
K k

q

F d



















 

   
   

        
 

   
  

    

    





 G(x) u

 (8) 

where 
 / 1

2 2 2(x ) x
p q

d

p
K k

q



 ,  

 

 1
2 1 1 2

s , x s s

x x x

NFTSM p NFTSM i NFTSM

d

F K K

K k
 

 

  


, and 

   2x, u, (x ) (x, u ) dd         denotes the unknown 

component in the system. 

To obtain the desired system performance, the following 

controller is proposed for the system (3): 

 + 1
2u G (x) u (x )uPID eq r    (9) 

where the equivalent control is designed as 

 1
2u (x ) s ,x f(x)eq NFTSMF    (10) 

and, the reaching law is   

u ( ) (s )r PIDa sign   (11) 

where the initial value of the reaching phase is selected as 

(0) 0ru  . 
 
is a constant value, which was defined in (4), 

and a
 

is a small positive constant. The stability and 

convergence of the system is stated in Theorem 1. 

Theorem 1: Consider the system (3) with the presence of the 

uncertainties and faults. If the proposed PID-NFTSM control 

law in (9)-(11) is employed for the system (3), the stability and 

convergence of the state variables are guaranteed. 

Proof: Applying the control laws (9)-(11) to the sliding 

variable (8), we have 

 s u x, u,PID r d     (12) 

TABLE I 

SELECTED PARAMETERS OF THE CONTROLLERS 

Controller Parameters Values 

NFTSM 1 , 2 , ,p q  10 , 5, 9, 7 

 ,
 d ,  1.4, 20, 1000 

FOSM 1k , 2k , 1 , 2  10, 7, 9/23, 9/16 

c ,   1/5, 0.2 

TOSM a , b ,  ,  ,   10, 5, 10, 0.5, 0.01 

d Tl k , T  20, 0.5 

PID-

NFTSM 

, ,p i dK K K  5, 100, 0.5 

c ,  , d  1/5, 0.2, 20 

Adaptive 

Fuzzy 

PID-

NFTSM 

, ,p i dK K K  5, 100, 0.5 

c ,   1/5, 0.2 

The parameters for NFTSM sliding surface 

are selected as same as the NFTSM controller. 

 

 

Differentiating the sliding variable (12), we have 

  x, u,
s uPID r

d d

dt

 
    (13) 

Consider the following Lyapunov function candidate 

1
V= s s

2

T
PID PID  (14) 

Differentiating (14) and combining the results with (13), one 

yields 

  
  

 

V=s s

s u x,t

s ( ) (s ) x,t

s x,t s s s

T
PID PID

T
PID r

T
PID PID

PID PID PID PID

M

a sign M

M a a

  

    

     

 (15) 

where  x,tM  was defined in (4). Therefore, based on the 

Lyapunov criterion, the stability and convergence of the system 

is guaranteed. This completes the proof. 

 

Remark 1: When the PID sliding surface converges to zero, 

then the NFTSM sliding surface is convergent to zero. From 

(5), we have: 
[ ] [ / ]

1 1 1 2 2s x x x p q
NFTSM k k

    where 1x  is 

the terminal attractor of the system. The defined finite time ct  

that is taken to travel from  1x 0rt   to  1x 0r ct t   is 

given by [29]: 

1
1

1
1

1 1

1 1
x ( ) , ;1 ;

( 1) ( 1)
( 1)

x ( )

q

pr

c

r

p p
p q q qt
q p ppt

p q qk
q

k t


 





   
 
       
  

 (16) 

where   denotes Gauss’ hypergeometric function [29].  



 

 

TABLE II 

COMPARISON IN AVERAGE TRACKING ERROR (ATE) OF THE 

NFTSMC, FOSMC, TOSM, PID-NFTSM AND ADAPTIVE 

FUZZY-PID-NFTSM WHEN THE FAULT u   OCCURS 

Controller 1ATE  2ATE  3ATE  
3

1
iATE  

NFTSM 1.9972 1.2032 0.6276 3.828 

FOSM 0.2109 0.0673 0.0885 0.3667 

TOSM 0.2074 0.0322 0.0531 0.2927 

PID-NFTSM 0.0038 0.0019 0.0007 0.0064 

Adaptive 

Fuzzy PID-

NFTSM 

0.0049 0.0030 0.0016 0.0095 

 

IV. DESIGN OF A ROBUST ADAPTIVE FUZZY PROPORTIONAL-

INTEGRAL-DERIVATIVE (PID)-NONSINGULAR FAST TERMINAL 

SLIDING MODE CONTROLLER 

A. Fuzzy Logic Systems 

The fuzzy logic system is developed to map an input 

linguistic vector  1 2x , ,...,
T n

nx x x   to an output 

linguistic variable (x)y f   using a set of IF-THEN rules 

[55-56]. The ith fuzzy IF-THEN rule can be described by 

i
R : If 1x  is 1

i
A  and … and nx  is i

nA  then y  is i
B  (17) 

where 1
i

A , 2
i

A , … , i
nA  and i

B  are fuzzy sets. The output of 

the fuzzy logic system is defined as 

1 1

1 1

( )

w ψ(x)

( )

i
j

i
j

nh

i jA
i j T

nh

jA
i j

w x

y

x





 

 

 
 
 
  

 
 
 
 

 

 
 (18) 

where  h  denotes the number of total of IF-THEN rules and 

iw  is the point at which ( ) 1i iB
w  . 1 2w , ,..,

T
hw w w     is 

a vector of adjustable parameters, and 

1 2ψ(x) (x), (x),.., (x) T
h      is a fuzzy basis vector with 

(x)i  defined as 

1

1 1

( )

(x)

( )

i
j

i
j

n

jA
j

i
nh

jA
i j

x

x








 


 
 
 
 



 
 (19) 

The approximation capability of the fuzzy logic is described in 

Lemma 1. 

Lemma 1 [55-56]: For any given real continuous function f(x)  

on a compact set n  and an arbitrary 0  , there exists a 

fuzzy logic system w ψ(x)T
 such that 

TABLE III 

COMPARISON IN MAXIMUM ERROR OF THE NFTSMC, FOSMC, 

TOSM, PID-NFTSM AND ADAPTIVE FUZZY-PID-NFTSM 

WHEN THE FAULT u   OCCURS 

Controller max1E  max2E  max3E  
3

max
1

iE  

NFTSMC 0.2276 0.1385 0.0688 0.4349 

FOSM 0.0952 0.0615 0.0379 0.1946 

TOSM 0.1350 0.0534 0.0100 0.1984 

PID-

NFTSM 
0.0038 0.0021 0.0021 0.0080 

Adaptive 

Fuzzy PID-

NFTSM 

0.0053 0.0031 0.0018 0.0102 

 

 

Fig. 2. Illustration of the concepts of  maxE and cT  

x

sup f(x) w ψ(x)T 


   (20) 

where 1 2

1

ψ(x) (x), (x),..., (x) (x)
h

T
h i

i

   


      is the basis 

function vector, 1 2w , ,...,
T

hw w w    is the weight vector with 

1h   being the number of the fuzzy rules and (x)i  is chosen 

as the following form: 

2

(x ) (x )
(x) exp

T
i i

i

i

 




   
 
 
 

 (21) 

where i  is the width of the Gaussian function and 

1 2, ,...,
T

i i i in       is the center vector. 

B. Robust Adaptive Fuzzy Proportional-Integral-Derivative –
Nonsingular Fast Terminal Sliding Mode (PID-NFTSM) 

Controller 

In the developed PID-NFTSM, the design is based on the 

assumptions that the dynamic function f(x)  and the bound 

value of the unknown function  x,tM  in the assumption 1 are 

known in advance. However, it is very expensive and difficult 

to obtain these parameters in real practical applications. To 

exclude the required assumptions, an adaptive fuzzy PID-

NFTSM controller is developed in this subsection. 

Rewriting (8), we have 

 
 

2

2

s s , x (x ) G(x) u

(x ) f(x) x, u,

PID NFTSMF

d





  

    
  (22) 



 

 

TABLE IV 

COMPARISON IN CONVERGENCE TIME (S) AND ELAPSED TIME 

(ET) (S) OF THE NFTSMC, FOSMC, TOSM, PID-NFTSM AND 

ADAPTIVE FUZZY-PID-NFTSM WHEN THE FAULT u   OCCURS 

Controller 1cT  2cT  3cT  
3

1
ciT

 

ET 

(PID=0.7) 

NFTSMC >20 >20 >20 >60 0.83 

FOSM 4.05 5.90 2.8 12.75 0.88 

TOSM 1.29 0.92 0.49 2.7 0.81 

PID-

NFTSM 
0.35 0.51 0.15 1.01 0.90 

Adaptive 

Fuzzy PID-

NFTSM 

0.60 0.62 0.38 1.6 1.21 

 

Based on the sliding surface (22), an adaptive fuzzy PID-

NFTSM controller can be designed as 

 + 1
2u G (x) (x ) u u uAF eq FZ r     (23) 

where the equivalent control is now selected as 

 u s ,xeq NFTSMF  (24) 

Inserting the control laws (23)-(24) into (22), we have 

 2s u u (x ) f(x) x, u,PID r FZ d        (25) 

The derivative of the sliding surface (25) is 

s u u (x, )PID r FZ N t     (26) 

where the unknown component is now represented as 

  2(x ) f(x) x, u,
(x, )

d d
N t

dt

    
  (27) 

According to (20), the unknown component can be described 

in terms of the output of a fuzzy logic system 

*(x, ) w ( ) ψ(x)T
N t t    (28) 

where *w  is the optimal weight of the fuzzy logic and   is the 

approximation error. The fuzzy approximation error   is 

assumed to be bounded by    , where   is an unknown 

constant.  

The fuzzy logic and reaching laws in (23) are now designed 

as 

ˆu w( ) ψ(x)T
FZ t  (29) 

ˆu ( ) (s )r PIDK a sign   (30) 

where ŵ  and K̂  are the estimation of the optimal weight *w  

and the bound value  , respectively. They are updated as the 

following laws: 

1ˆ sPIDK
c

  (31) 

1
ŵ s ψ(x)PID
  (32) 

where c  and   are the constant adaptive rates. It can be seen 

that the bigger the adaptive gains are the faster convergence is 

obtained. However, the large gains might lead to overestimated 

of the desired values. In practice, these values are usually 

chosen based on experiments. However, the values chosen 

based on the experiments are usually not optimal. Hence, there 

is a desire to investigate a tuning mechanism to tune the 

adaptive rates such that the system can get a good 

approximation response. This will be studied in our future 

works.  

Adding the results in (28)-(30) into (26), we have 

ˆs ( ) (s ) w( ) ψ(x)T
PID PIDK a sign t       (33) 

where * ˆw=w -w  is the fuzzy logic weight approximation error. 

The stability and convergence of the system is stated in 

Theorem 2. 

Theorem 2: Consider an uncertain nonlinear system 

described as in (3) and the proposed sliding surface in (5). If 

the proposed adaptive fuzzy PID-NFTSM controller in (23), 

(29) and (30) with the adaptive laws (31) and (32) is employed 

to control the system (3), then the stability of the system and 

the convergence of the sliding surface is guaranteed. 

Proof: Consider the following Lyapunov function 

1 1 1
V= s s w w

2 2 2

T T T
PID PID cK K    (34) 

where ˆ KK K   is the adaptive gain error. 

Differentiating the Lyapunov function (34) and combining 

the obtained result with the result in (26) and the adaptive laws 

(31) and (32), we have 

 

 

V=s s w w

ˆs ( ) (s ) w( ) ψ(x)

ˆ ˆ ˆ( K) w w

ˆ= s ( ) (s ) w( ) ψ(x)

ˆ( K) s w s ψ(x)
ˆ s s s w( )ψ(x) s

ˆ( K) s w s ψ(x

T T T
PID PID

T T
PID PID

T

T T
PID PID

T
PID PID

T T
PID PID PID PID

T
PID PID

cK K

K a sign t

c K K

K a sign t

K

K a t

K











 

    

  

   

  

    

   )

s s K s

s

T
PID PID PID

PID

a

a

   

 

 (35) 

Therefore, based on the Lyapunov criterion, the stability and 

convergence of the system is guaranteed. This completes the 

proof. 

 

Remark 2: In this paper, we employ the following second-

order exact differentiation proposed in [45] to estimate the 

parameters of position, velocity and acceleration, which are 

required to implement the controller. 
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 (36) 

Remark 3: It can be seen from (11) and (30) that the 

reconstructed discontinuous control input are under integral 

and therefore, the chattering is reduced but not totally be 

eliminated. The magnitude of chattering is proportional to the 

magnitude of the sliding gain   in (11) or K̂  in (30). Since the 

gain   is chosen as in (4) while K̂  is chosen to be bigger than 

the fuzzy approximation error, the value K̂  is much smaller 

than  , and consequently, the chattering generated by (30) is 

much smaller than the one generated by (11). As a result, the 

chattering of the adaptive fuzzy PID-NFTSM is much smaller 

than the PID-NFTSM. However, it is obvious to find out that 

the employed of fuzzy approximator will increase the 

computational burden of the system. 

V. RESULTS AND DISCUSSIONS 

In order to verify the superior performance, we apply the 

proposed method to control attitude of a spacecraft. The 

dynamics system of a spacecraft can be described as the similar 

form as in [38], where the system dynamics function is      

1 2 3f(x) (x), (x), (x)
T

f f f   ,    where 1 1 2 3x ( , , )T
x x x  

 , ,
T   , 2 4 5 6x ( , , )T

x x x  , ,
T

   , and 
T

1 2x=(x ,x ) , 

1 2 3 4u ( , , , )Tu u u u , and 1 2 3d [ , , ]Td d d . The
 

three 

parameters  ,   , and   and the dynamic smooth functions 

f(x)
 
and G(x)

 
are provided as in [38]. In order to generate 

the simulation, the initial values of the position and velocity are 

assumed as  x(0) 0.7, 0.07,1.5,0.3,1.3, 0.2
T     and the 

disturbance is assumed as  d 0.5 sin( ),cos(2 ),sin(3 )
T

t t t . In 

this simulation, we consider abrupt fault only since its effects 

in the system are much stronger than that of the incipient fault. 

To simulate the effects of an abrupt fault in the system, we 

generate a fault function 

 1u 0.5 (10 ),3sin( ) 2cos( ) 10(20 ),0,0
T

F u s t t s     . It 

means that we assume the fault 1 1u 0.5F u    (the first 

actuator loss 50% its effectiveness) occurs from 10s, and the 

fault 2u 3sin( ) 2cos( ) 10F t t     occurs in the second 

actuator from the time 20s. The third and fourth actuators are 

assumed to be normal. In addition, we compare the 

performances of the proposed PID-NFTSM and Adaptive 

Fuzzy PID-NFTSM with the advanced robust controller based 

on FOSM [46] and two robust FTCs based on NFTSM [31] 

and TOSM [38]. The parameters of these controllers are 

selected as in Table I. The set of membership functions of the  
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 (c) 

Fig. 3. Time history of system states 1x , 2x , 3x   
under the effect of the 

generated fault 
 

fuzzy logic in the Adaptive Fuzzy PID-NFTSM are selected as 

follows: 

  1
2

exp 7 4
j

iA
x    ,   2

2
exp 5 4

j
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2

exp 3 4
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iA
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2
exp 1 4

j
iA

x    , 
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2

exp 0 4
j
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2
exp 1 4
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Fig. 4. Time history of system states 4x , 5x , 6x
 
under the effect of the 

generated fault 
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2
exp 5 4

j
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  9
2

exp 7 4
j

iA
x    . 

For the sake of comparison, the average tracking error (ATE), 

maximum position tracking error ( maxE ), and convergence 

time ( cT ) of the system under these controllers are also 

reported in Tables II, III and IV, respectively. The ATE used in 

this paper is defined as below: 
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Fig. 5. Time histories of four control inputs. 
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where N  is the number of sampling point. The maximum 

position tracking error   ( maxE ),    and   the convergence time  



 

 

( cT ) are computed as illustrated in Fig. 2. The tracking 

performance of the system under the inputs of the five 

controllers, NFTSM, FOSM, TOSM, PID-NFTSM and 

Adaptive Fuzzy PID-NFTSM are shown in Figs. 3, 4 and 5.  

Fig. 3 shows the position tracking performance of these 

controllers. From the Fig. 3 we can see that the NFTSM has 

less robustness compared to the other four controllers. The 

proposed PID-NFTSM and Adaptive Fuzzy PID-NFTSM 

controllers provide better performance than the FOSM and 

TOSM controllers. Particularly, as shown in Table II (column 

4), the sum of ATE of the NFTSM is 3.828, while for FOSM is 

0.3667. The controllers TOSM, PID-NFTSM and Adaptive 

Fuzzy PID-NFTSM provide lower tracking error than the 

NFTSM and FOSM and their values are 0.2927, 0.0064 and 

0.0095, respectively. According to the Table III (column 4), the 

maximum error of the PID-NFTSM (0.0080) and Adaptive 

Fuzzy PID-NFTSM (0.0102) are lower than the NFTSM 

(0.4349), FOSM (0.1946) and TOSM (0.1984). Moreover, 

according to Table IV (column 4), the convergence time of the 

PID-NFTSM (1.01) and the Adaptive Fuzzy PID-NFTSM (1.6) 

are faster than the NFTSM (>60), FOSM (12.75) and the  

TOSM (2.7). Therefore, according to the above results we can 

conclude that the proposed PID-NFTSM and Adaptive Fuzzy 

PID-NFTSM provide better performance than the NFTSM, 

FOSM and TOSM controllers. Unsurprisingly, the PID-

NFTSM provides higher performance compared to the 

Adaptive Fuzzy PID-NFTSM since it was designed based on 

the assumption that the system dynamics and the bound value 

of the uncertainties and faults were known in advance and the 

sliding gain was chosen as a big value, which generates a 

bigger chattering; this will be shown later in Fig. 5. The 

comparison results between PID-NFTSM and NFTSM verify 

that the employed of PID sliding surface combined with 

NFTSM has improved the transient responses and reduced the 

steady state error of the system. The proposed PID-NFTSM and 

Adaptive-Fuzzy PID-NFTSM controllers impose the system 

converged very fast, low oscillation and low steady state error. 

However, the disadvantages of the PID-NFTSM and Adaptive 

Fuzzy PID-NFTSM are that the computational times are 

higher, 0.90(s) and 1.21(s) compared to 0.83(s), 0.88(s) and 

0.81(s) of the NFTSM, FOSM and TOSM, respectively, as 

shown in Table IV (column 5). However, as compared to the 

simple PID controller (the computational time of the PID 

controller is 0.70 as shown in Table IV), which is known as 

one of the simplest control methods, the proposed approaches, 

PID-NFTSM (0.90) and Adaptive Fuzzy PID-NFTSM (1.21), 

provide acceptable computational burdens. Therefore, it is 

potential to implement the proposed algorithms in real-time 

practical applications.    

Fig. 4 shows the velocity tracking performance of the five 

controllers. It is obvious to see that the proposed PID-NFTSM 

and Adaptive Fuzzy PID-NFTSM controllers provide better 

performances compared to the NFTSM, FOSM and TOSM 

controllers. The continuous control inputs of the proposed PID-

NFTSM and Adaptive Fuzzy PID-NFTSM compared to other 

controllers are shown in Fig. 5.  It can be seen from the Fig. 5 

that the control inputs of the Adaptive Fuzzy PID-NFTSM are 

smoother compared to the PID-NFTSM, NFTSM, FOSM and 

TOSM. This result verifies the benefit of the employed of fuzzy 

logic into the PID-NFTSM as discussed in Remark 3. From the 

reported results above, we can conclude that the proposed 

Adaptive Fuzzy PID-NFTSM is the best in term of transient 

response, tracking accuracy, chattering elimination and no 

requirement of prior knowledge of the uncertainties and faults 

information. 

Remark 4: The elapsed time used in Table IV in this paper is 

the time that Matlab is used to complete 30second simulation 

time. This may not reflect the true computational burden of the 

controllers but it can be used to provide a general idea about 

the comparison in computational time among controllers.     

Remark 5: In this paper, we design a robust FTC to 

compensate for the effects of actuator or component faults only. 

The proposed method may not be able to compensate for the 

sensor faults. The sensor faults detection and compensation 

will be investigated in our future work. 

VI. CONCLUSIONS 

This paper develops a novel adaptive fuzzy PID-NFTSM 

controller for robust fault tolerant control of a class of second-

order uncertainty nonlinear systems to obtain high performance 

of fault tolerant control system. The integration between PID 

and NFTSM is significant since it improves the robustness and 

transient response of the system a lot, while preserving the 

great features of the NFTSM such as lower tracking error and 

defined finite time convergence. In addition, this integration 

provides a full order control system and therefore the chattering 

is reduced as the same manner to FOSM. The employed of the 

fuzzy logic could help to eliminate the need of the prior 

knowledge of the uncertainties and faults and reduce the 

chattering as well. The stability of the whole hybrid system is 

guaranteed based on Lyapunov criteria. The proposed approach 

is applied for attitude control of a spacecraft, and the 

simulation results verify that the proposed approach provides 

very fast transient response, lower steady state error, fast 

convergence and less chattering.  

In the future works, we will study the effects of the controller 

parameters such as the adaptive gains to the performance of the 

system and verify the performance of the designed controllers 

in practical experiments. We will also investigate the effects of 

the sensors faults in the controller system.  
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