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Abstract
This paper provides an enhanced phenomenological model for shape
memory alloys (SMAs), to better model their behavior in cases where the
temperature and stress states change simultaneously. The phenomenological
models for SMAs, consisting of a thermodynamics-based-constitutive and a
phase transformation kinetics model, are the most widely used models for
engineering applications. The existing phenomenological models are
formulated to qualitatively predict the behavior of SMA systems for simple
loadings. In this study, we have shown that there are certain situations in
which these models are either not correctly formulated, and therefore are not
able, to predict the behavior of SMA wires or the formulation is not
straightforward for engineering applications. Such cases most often occur
when the temperature and stress of the SMA wire change simultaneously,
such as the case of rotary SMA actuators. To this end, a rotary
SMA-actuated robotic arm is modeled using the existing constitutive
models. The model is verified against the experimental results to document
that the model is not able to predict the behavior of the SMA-actuated
manipulator, under certain conditions.

1. Introduction

Shape memory alloys (SMAs) are a group of metal alloys that
exhibit the characteristics of either large recoverable strains or
large force due to temperature and/or load changes. The unique
thermomechanical property of the SMAs is due to the phase
transformation from the austenite (parent) phase to martensite
(product) phase and vice versa. These transformations take
place because of changes in the temperature, stress, or a
combination of both. In the stress-free state, an SMA material
at high temperature exists in the parent phase. The parent
or austenite phase usually is a body centered cubic crystal
structure. When the temperature of the material decreases
the phase transforms into martensite which is usually a face
centered cubic structure. In the stress-free state the martensite
phase exists in multiple variants that are crystallographically
similar but are oriented in different habit planes [1].

The observable macroscopic mechanical behavior of
SMAs can be separated into two categories: the shape memory
effect and pseudoelastic (superelastic) effect. In the shape
memory effect, an SMA material exhibits a large residual
strain after the loading and unloading. This strain can be
fully recovered upon heating the material. In the pseudoelastic
effect, the SMA material achieves a very large stain upon
loading that is fully recovered in a hysteresis loop upon
unloading [1]. SMAs show different mechanical behaviors
at different temperatures. Some of the SMA stress–strain
behaviors are illustrated in figure 1.

Since shape memory material behavior depends on
stress and temperature and is intimately connected with the
crystallographic phase of the material and the thermodynamics
underlying the transformation process, the formulation
of adequate macroscopic constitutive laws is necessarily
complex [2]. There has been an extensive body of research
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Figure 1. Mechanical behavior of a shape memory alloy. The nonlinear portion of the plot is due to detwinning the martensite variants or
transforming the austenite to martensite. (a) T < As at the beginning material is fully martensitic; (b) Ms < T < As at the beginning
material is fully austenitic; (c) As < T < Af at the beginning material is fully austenitic; (d) T > Af at the beginning material is fully
austenitic [1].

on modeling the phase transformation and thermomechanical
behavior of SMAs that is mostly devoted to one-dimensional
SMA components. Brinson et al have divided these models
into four categories [3]:

(1) models based on thermodynamics and derived from a free
energy formulation [4–9],

(2) mathematical models for the dynamics of phase boundary
motion [10–12],

(3) constitutive laws based on micromechanics concepts using
energy dissipation guidelines [13, 14], and

(4) phenomenological laws based on uniaxial stress–strain–
temperature data [15, 16, 1].

These constitutive models are each aimed at describing
a different aspect of shape memory behavior and address
the thermomechanical behavior of SMAs due to the phase
transformation process on different scales.

Engineering applications have emphasized phenomeno-
logical models, which avoid difficult-to-measure parameters
such as free energy and use only clearly defined engineering
material constants. The focus of this part of the paper is on
the adequacy of the phenomenological models for describing
the behavior of the SMA elements under complex thermome-
chanical loads. This paper presents the shortcomings of the
existing phenomenological models in predicting the behavior
of SMA-actuated systems under complex thermomechanical
loadings. The second part of the paper introduces an enhanced
phenomenological model to address these shortcomings.

2. SMA phenomenological models

In 1986, Tanaka [17] presented a unified one-dimensional
martensitic phase transformation model. His study
was restricted to the stress-induced martensite phase
transformation. The basic assumption was that the
thermomechanical process of the material is fully described
by three state variables: strain, temperature, and martensite
fraction. The martensite fraction (ξ ), as an internal variable,
characterizes the extent of the martensite phase transformation.
Choosing the Helmholtz free energy and using the Clausius–
Duhem inequality, Tanaka developed the constitutive equation
in the rate form, showing that the rate of stress is a
function of the strain, temperature, and martensite fraction
rates. If the expression for free energy is known, the free

energy minimization may determine the equilibrium state
and therefore the relation of the martensite fraction with
applied stress and temperature. Instead, based on the study
of the transformation kinetics, Tanaka assumed an exponential
kinetics function.

The kinetics equation describes the phase transformation
fraction as an exponential function of stress and temperature:

ξM→A = exp[Aa(T − As) + Baσ ]

ξA→M = 1 − exp[Am(T − Ms) + Bmσ ]
(1)

where Aa, Am, Ba, and Bm are material constants in terms
of transition temperatures, As, Af , Ms, and Mf . Tanaka
qualitatively showed that the pseudoelasticity, ferroelasticity
(partial pseudoelasticity), and shape memory effect can be
described using a combination of the presented constitutive
and kinetics models. The thermomechanical loadings that
were considered are either isothermal mechanical loading or
changing the temperature under stress-free conditions. An
advantage of this model is that the parameters are simply
determined by mechanical experiments.

Motivated by the need for a unified and theoretical
constitutive model for SMA material, in 1990, Liang and
Rogers developed a new phenomenological model based on
the Tanaka model [18]. In their model Liang and Rogers
adopted Tanaka’s constitutive equation. For the phase kinetics,
however, they assumed a cosine relationship to describe the
martensite fraction as a function of the stress and temperature.
Additionally, they assumed that the material properties are
constant. The phase transformation kinetics equation for the
heating is

ξ = ξM

2
cos[aA(T − As) + bAσ ] +

ξM

2
. (2)

The phase transformation equation for the cooling is

ξ = 1 − ξA

2
cos[aM(T − Mf) + bMσ ] +

1 + ξA

2
(3)

where aA = π
Af −As

, aM = π
Ms−Mf

are two material constants,
and Af , As, Mf , and Ms are austenite final, austenite start,
martensite final and martensite start temperatures, respectively.
The two other material constants are defined as bA = − aA

CA

and bM = − aM
CM

. CA and CM indicate the influence of stress
on these four transformation temperatures. Furthermore, ξM
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and ξA are the martensite fraction reached before heating and
cooling, respectively.

The argument for the cosine functions should be between
0 and π , which means that the transformation takes place only
if the temperature is in the transformation range:

As � T � Af or Mf � T � Ms. (4)

Equivalently, the stress range for the martensite to austenite
phase transformation is defined as

CA(T − As) − π

|bA| � σ � CA(T − As) (5)

and the corresponding stress range for the austenite to
martensite transformation is defined as

CM(T − Mf) − π

|bM| � σ � CM(T − Mf ). (6)

In 1993, Brinson [1] developed a one-dimensional model
for SMAs based on the previous works of Tanaka and Liang.
The same constitutive equation that was initially introduced
by Tanaka was adopted considering the same thermodynamics
principles. For the phase transformation kinetics, however,
Brinson used Liang’s model rewritten as

ξ = ξ0

2
cos

[
aA

(
T − As − σ

CA

)]
+

ξ0

2
. (7)

for CA(T − Af) < σ < CA(T − As), and

ξ = 1 − ξ0

2
cos

[
aM

(
T − Mf − σ

CM

)]
+

1 + ξ0

2
(8)

for CM(T −Ms) < σ < CM(T −Mf). Although it is not stated
by Brinson, one can assume that equation (7) is for heating
(martensite to austenite transformation) and equation (8) is
for cooling (austenite to martensite transformation). CA and
CM are defined as material properties defining the relationship
between temperature and the critical stresses that induce the
transformation.

The Brinson model does not have one of the shortcomings
of Liang model. The Liang model cannot describe the shape
memory effect, which takes place because of detwinning of the
martensite, at temperatures below Mf . Brinson separated the
martensite fraction into two fractions as the fraction induced
by stress and the fraction induced by temperature:

ξ = ξs + ξT. (9)

The constitutive equation was also modified accordingly:

σ̇ = Dε̇ + �Ṫ + �ξ̇s. (10)

The phase transformation equations are similar to the ones
presented by Liang written in terms of critical stresses.
Therefore, the Brinson model is capable of the showing shape
memory effect at lower temperature which takes place as the
result of detwinning, not as the result of the austenite to
martensite phase transformation. Furthermore, in the Brinson
model the elastic modulus and the transformation tensor were
assumed to be functions of the martensite fraction.

Brinson and Bekker developed a set of phase kinetics
laws for the austenite to detwinned martensite and martensite

to austenite phase transformations [19, 20]. These phase
transformation models predict the martensite fraction as a
function of the loading path Ł, initial state of the material ξ0,
stress σ , and temperature T at time t .

ξ(t) = �(T (t), σ (t); ξ0)(T,σ)∈Ł (11)

where

�(T (t), σ (t); ξ0) =




FA(T , σ ; T0, σ0; ξ0),

if Ł ∈ [A] and Ł ↑↑ nA

FM(T , σ ; T0, σ0; ξ0),

if Ł ∈ [M] and Ł ↑↑ nM

FD = ξ0,

otherwise.

(12)

The functions FA, FM, and FD are branches of the phase
kinetic law, n is the normal vector to the phase transformation
strip. According to equation (12), the martensite to austenite
phase transformation takes place if the loading path Ł and the
normal vector to the austenite start temperature line have a
component in the same direction (Ł ↑↑ nA).

3. SMA-actuated robotic arm

In order to further investigate the SMA phenomenological
models, an SMA-actuated robotic arm is studied in this
section. Using the existing phenomenological models, the
system is modeled, the derived model is simulated, and the
simulation results are compared with experimental data. The
shortcomings of the SMA models in predicting the complete
behavior of the SMA-actuated arm are studied using the
simulation results of the system. Using a dead-weight system
that is actuated by an SMA wire, the model shortcomings
are experimentally studied, in part II. An enhanced model
is developed to address the shortcomings of the existing
SMA phenomenological models. Furthermore, based on the
enhanced phenomenological model, a general procedure for
modeling systems that are actuated by shape memory alloys is
presented.

The one-degree-of-freedom shape memory alloy (SMA)
actuated arm is shown in figure 2. The shape memory effect
(SME) is not reversible; the SMA wire must be deformed by
a bias force in martensite to repeat the movement. There are
two ways of providing the bias force and therefore two types
of SMA actuator. One actuator, called bias type, is composed
of an SMA element and a bias spring. The other, called
differential type, is made of two SMA elements. In our design
the robotic arm is actuated with a bias-type SMA wire actuator
where the bias force (torque) is provided by the linear spring
and the weight of the moving arm. Therefore, the generating
torque is the difference between the bias torque and SMA wire
torque.

When the SMA wire is heated beyond the activation
temperature it contracts due to the phase transformation from
martensite to austenite. The temperature is raised using the
resistive electrical (Joule) heating. Upon cooling, the wire’s
temperature drops, causing the austenite to martensite phase
transformation. As a result the SMA wire is elongated under
the effect of the bias torque. While elongating, the twinned
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Figure 2. The one-degree-of-freedom arm, actuated by SMA NiTi wire, with a bias spring.

(This figure is in colour only in the electronic version)

martensite changes to the stress-preferred martensite. The
initial length of the SMA wire, that is guided by the pulleys, is
chosen in a way that upon full contraction it can rotate the arm
from its initial position at −45◦ to the top position at +90◦.

The model for the SMA-actuated arm consists of phase
transformation kinetics, heat transfer, SMA wire constitutive,
and arm dynamic model blocks. The input is voltage (to the
SMA wire applied through an amplifier) and the outputs are
the arm angular position, arm angular velocity, the SMA wire’s
temperature, stress, and the martensite fraction.

4. Heat transfer model

The SMA wire heat transfer equation consists of electrical
(Joule) heating and natural convection:

mcp
dT

dt
= I 2 R − hc Ac(T − T∞). (13)

The SMA wire that is used in the system is Ni–Ti alloy. Its
diameter is 150 µm and the parameters in the heat transfer
equation are: m = (ρπ d2

4 ) is mass per unit length of wire,
ρ is density of wire, d is diameter of wire, Ac = (πd) is
circumferential area of the unit length of wire, cp is specific
heat, I is electrical current, R is resistance per unit length of
wire, T is temperature of wire, T∞ is the ambient temperature,
and hc is the heat convection coefficient. Although here we
assumed that the hc and R are both constant, a detailed analysis
on heat transfer as well as resistance analysis of the SMA wire
can be found in the appendix.

5. Wire constitutive model

The wire constitutive model shows the relationship between
stress, strain and temperature. We used the phenomenological
model presented by Tanaka [17] and later completed by
Liang [18] and Brinson [1]. The basic equation is

σ̇ = E ε̇ + θTṪ + �ξ̇ (14)

where E is the Young’s modulus, θT is the thermal expansion
factor, � = −EεL is the phase transformation contribution
factor, and εL is the maximum recoverable strain.

6. Phase transformation model

For simulating the constitutive equation, the value of the
martensite fraction derivative needs to be known at each instant
of time. Based on the hysteresis behavior of SMA wires, a
cosine phase kinetics model is developed by Liang [16]. The
phase kinetics model needs temperature and stress to calculate
the fraction. Due to the hysteresis behavior of SMA wires the
equations for heating and cooling are different.

7. Reverse transformation

The reverse transformation equation describing the phase
transformation from martensite to austenite (heating) is

ξ = ξM

2
{cos[aA(T − As) + bAσ ] + 1} (15)

where ξ is martensite fraction, which has a value between
1 (martensite phase) and 0 (austenite phase). ξM is the
minimum martensite fraction the wire reached during the
cooling. aA = π

Af −As
(◦C−1) is a curve-fitting parameter, T

is the wire’s temperature, σ is the wire’s stress, As is the
austenite phase start temperature, Af is the austenite phase
final temperature, and bA = −aA

CA
and CA are curve-fitting

parameters.
Therefore, the derivative equation for heating can be

written as

ξ̇ = −ξM

2
sin[aA(T − As) + bAσ ][aA Ṫ + bAσ̇ ]. (16)

If A′
s = (As + σ

CA
) < T < (Af + σ

CA
) = A′

f .

Otherwise ξ̇ = 0. Here A′
s and A′

f are the stress modified
austenite start and final temperatures, respectively.

8. Forward transformation

The forward transformation equation describing the phase
transformation from austenite to martensite (cooling) is

ξ = 1 − ξA

2
cos[aM(T − Mf) + bMσ ] +

1 + ξA

2
(17)

1300



An enhanced SMA phenomenological model: I

Table 1. Modeling parameters and their numerical value.

Parameter Description Unit Value

m SMA wire’s mass per unit length kg 1.14 × 10−4

Ac SMA wire’s circumferential area per unit length m2 4.712 × 10−4

Cp Specific heat of wire kcal kg−1 ◦C−1 0.2
R SMA wire’s resistance per unit length � 45
T∞ Ambient temperature ◦C 20
hc Heat convection coefficient J m−2 ◦C−1 s

−1
150

EA Austenite Young modulus GPa 75.0
EM Martensite Young modulus GPa 28.0
θT SMA wire’s thermal expansion factor MPa ◦C−1 0.55
� Phase transformation contribution factor GPa −1.12
σ0 SMA wire’s initial stress MPa 75.0
ε0 SMA wire’s initial strain 0.04
T0 SMA wire’s initial temperature ◦C 20
ξ0 SMA wire’s initial martensite faction factor 1.0
As Austenite start temperature ◦C 68
Af Austenite final temperature ◦C 78
Ms Martensite start temperature ◦C 52
Mf Martensite final temperature ◦C 42
CA Effect of stress on austenite temperatures MPa ◦C−1 10.3
CM Effect of stress on martensite temperatures MPa ◦C−1 10.3
l0 Initial length of SMA wire mm 900
r Pulleys diameter mm 8.25
mp Pay load mass g 57.19
ma Moving link mass g 18.7
k Bias spring stiffness N m−1 3.871
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θ 
(d

eg
re

e)

Experiment (V = 7.2 v)
Experiment (V = 7.0 v)
Simulation  (V = 7.2 v)
Simulation  (V = 7.0 v)

– 50

– 40

– 30

– 20

– 10

0

10

20

30

Figure 3. Comparison of theoretical model simulations and
experimental results.

where ξA here is the minimum martensite fraction obtained
during heating, aM = π

Ms−Mf
is a curve-fitting parameter, Ms is

the martensite phase start temperature, Mf is the martensite
phase final temperature, and bM = −aM

CM
is a curve-fitting

parameter.
Therefore, the derivative equation for cooling can be

written as

ξ̇ = 1 − ξA

2
{− sin[aM(T − Mf) + bMσ ]}[aM Ṫ + bMσ̇ ]. (18)

If M ′
f = (Mf + σ

CM
) < T < (Ms + σ

CM
) = M ′

s.

Otherwise ξ̇ = 0. Here M ′
s and M ′

f are the stress modified
martensite start and final temperatures, respectively.

9. Kinematic model

The kinematic model describes the relationship between strain
ε and angular displacement θ . Measuring positive angle
clockwise, the equation is

ε̇ = −2r θ̇

l0
(19)

where r is the pulley’s radius and l0 is the wire’s initial length.

10. Dynamic model

The nonlinear dynamic model of the arm including spring and
payload effects is

Ie θ̈ + τg + τs + cθ̇ = τw (20)

where τw, τg, and τs are the resulting torques from the SMA
wire, gravitational loads, and spring, respectively. Ie is the
effective mass moment of inertia of the arm, and the payload,
and c is the torsional damping coefficient.

11. Model simulation and verification

The material properties of the shape memory alloy are
primarily taken from Liang [16] and Waram [21], which are
shown in table 1. Experimental evaluations, by Elahinia
and Ashrafiuon [22], have demonstrated reasonable accuracy
of the actuator model, as is shown in figure 3. The
figure compares simulation and experimental results at 7.0
and 7.2 V. Some of the differences between the simulation
and experimental results are due to parameter uncertainties
and model simplifications. Specifically, the modulus,
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Figure 4. When the arm moves beyond the maximum stress position the transformation temperatures decrease.
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Figure 5. SMA model open-loop simulation for a 7.2 V input.

transformational tensor, and thermal coefficient were all
assumed to be constant. The assumptions of a linear spring
force and viscous friction contributed to the discrepancy of the
results.

The main qualitative aspects of the SMA arm model can be
derived from figures 5 and 6. In figure 5, a 7.2 V input is applied
to the actuator and the temperature of the wire rises. The initial
martensite fraction is equal to 1 and no phase transformation
takes place as the temperature increases past the martensite
final temperature, Mf . As the wire continues to heat, the

temperature exceeds the austenite start temperature, As, and
the martensite fraction decreases—resulting in contraction of
the wire—at a rate defined by the derivative of equation (16).
In steady state, the temperature falls somewhere between
the austenite start and final temperatures, hence only partial
transformation is achieved.

As is shown in figure 6, only a slightly larger voltage, 7.3 V,
results in a full transformation to austenite. The increased
voltage heats the wire enough to cause the arm to rotate through
the angle of maximum stress. At this angle, shown in figure 4,
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Figure 6. SMA model open-loop simulation for a 7.3 V input.

the stress of the SMA wire due to gravitational and spring
torques is maximum. Upon passing this angle, the stress in the
wire begins to decrease rapidly, which results in a drop in the
transformation temperatures. This drop allows the temperature
of the wire to pass through the austenite final temperature,
causing the martensite fraction to fall to zero and the wire to
achieve maximum strain.

12. SMA phenomenological models: where they fail

While the SMA phenomenological models give proper results
for most cases, there are certain complex loading cases in
which the output of these models does not match experimental
results. An example of this shortcoming is presented in this
section. The phase transformation kinetics by Liang [18]
and Brinson [1] are adopted in this study. Since in the
rotary SMA actuator the wire is always under stress, by
the bias spring, these two phenomenological models predict
similar behaviors. It is worth noting that the Brinson and
Bekker phase model covers the general loading conditions
and their corresponding phase transformations and therefore
does differentiate between the cases shown in figure 11. This
phase transformation model, however, is not easy to implement
for engineering applications since it requires finding and
updating several points along the loading path. An easy-to-use
phase transformation kinetics formulation is therefore needed
to use in conjunction with the phase transformation models
for numerical simulation of the SMA-actuated systems that
undergo complex thermomechanical loadings. To address this
need a phase transformation model is developed as presented
in the next section.

Figure 7 shows an example of the shortcomings of these
models. In this simulation, a sliding mode controller was used
to stabilize the rotary SMA actuator (for details see [23]). As

shown in the figure, the controller was not able to regulate the
arm at θd = 85◦. As figure 8 shows, the controller applied high
enough voltage such that the temperature of the wire exceeded
the austenite final temperature, in an attempt to minimize the
position error. Even though the temperature of the wire reached
beyond the austenite final temperature, according to the model,
the wire did not go through the full phase transformation, as
shown in figure 9. Therefore the arm did not reach the desired
angular position. Such a behavior has never been observed in
the experiments with the SMA-actuated arm; in other words it
has never been observed that the voltage to the SMA wire was
increased but the arm did not move accordingly unless the SMA
wire was already in the fully austenitic phase. Furthermore,
according to the aforementioned phenomenological models, if
the temperature of the SMA wire exceeds the austenite final
temperature the material reaches the fully austenitic phase
(ξ = 0), which clearly has not happened in this example.

Figure 10 illustrates why in this and similar cases the
existing phenomenological models cannot predict the behavior
of SMA wire: in the simulation, the temperature of the
SMA wire exceeded the austenite final temperature while
the temperature itself was decreasing. While the SMA wire
was cooling down, the stress of the wire decreased, which
caused the austenite final temperature to decrease. The rates
of temperature decrease for the wire and the austenite final
temperature are not equal: the SMA wire’s temperature decays
slower than the austenite final temperature; this way the wire’s
temperature—while decreasing—exceeded the austenite final
temperature. According to the existing phenomenological
models, no phase transformation takes place between the
austenite start and final temperatures unless the temperature
is increasing.

Similar cases exist in which the existing phenomenologi-
cal models cannot predict the behavior of SMA wires. Three
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such cases are illustrated in figure 11. For all the cases shown
in the figure, according to these models, the amount of phase
transformation that takes place is the same. In all three cases,
the stress of the wire decreases by the same amount, which
consequently causes the austenite start and final temperatures
to drop. This effect is shown in the figure as similar shifts
in the hysteresis loop in the (T –ξ ) plane. In figure 11(a) the
wire cools down but with a slower rate, and therefore the tem-
perature exceeds the austenite final temperature. The example
with the SMA-actuated robotic arm, as illustrated in figure 10,
in which the arm did not reach the desired position, falls in
this category. In figure 11(b) the wire cools down such that
the temperature remains between the austenite start and final.
In the third case, as shown in figure 11(c), the temperature
remains constant and still exceeds the austenite final tempera-
ture. For all these three cases with similar stress changes but
dramatically different temperature changes the existing phe-
nomenological models predict the same martensite fraction at
point 2. In other words, no further phase transformation takes
place beyond point 1.
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Figure 9. Phase transformation model problem: martensite fraction.
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Figure 10. Phase transformation model problem: stress versus
temperature.

Figures 12–15 depict the same simulation results for a
simulation with SMA-actuated robotic arm. In this case the
arm was to track a changing step. Since the SMA wire did
not undergo any of the complex loading patterns, the existing
phase transformation models calculated the martensite fraction
properly.

13. Summary

The existing SMA phenomenological models were investi-
gated, using an SMA-actuated robotic arm. The model was
verified against experimental data. Using simulations, it was
shown that for cases that involve complex thermomechan-
ical loadings—in terms of simultaneous changes in stress
and temperature—the existing phenomenological models have
shortcomings. In a following paper, these shortcomings will be
further highlighted using the experimental data with a dead-
weight SMA actuator. Finally, an enhanced phenomenolog-
ical model will be presented. This mode is able to predict
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exceeding the austenite final temperature while cooling; (b) remaining in the phase transformation range while cooling; (c) exceeding
austenite final temperature with constant temperature.
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Figure 12. Phase transformation model works properly: arm
follows the desired position.

the behavior of SMA wires under complex thermomechanical
loadings.

Appendix

A.1. Heat transfer analysis

There are number of studies on the heat transfer of the
SMA materials. A representative example is the work of
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Figure 13. Phase transformation model works properly:
temperature of the SMA wire and transformation temperatures.

Bhattacharyya et al [24] in which they studied the possibility of
using the thermoelectric effect in order to improve the cooling
response of the SMA actuators. Bhattacharyya et al [25] also
worked on the characterization of the convection heat transfer
coefficient for SMA wires. They modeled the coefficient as
a linear function of the current of the wire and performed
experiments with SMA and non-SMA wires to verify the
model. Potapov and da Silva [26] used Liang’s kinematics
model for SMA elements with constant stress and constant
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Figure 14. Phase transformation model works properly: martensite
fraction.
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Figure 15. Phase transformation model works properly: stress
versus temperature.

strain in order to find both heating and cooling response times.
They assumed the convection heat transfer to be constant
and showed that the time constant is in agreement with the
experiments.

Here we have used the principle of the conservation of
energy to model the heat transfer behavior of the SMA wire.
Unlike the works of Bhattacharyya et al [25] and Potapov and
da Silva [26] we have used a convection heat transfer coefficient
that is based on the thin cylinder theory. As explained next,
the convection coefficient is found to be a function of wire
temperature.

The heat transfer model of the wire, using the principle of
conservation of energy, is written as

mCp
dT

dt
= I 2 R(ξ ) − h(T )A(T − T∞) − m�H ξ̇ (21)

where Cp is the specific heat, I and R are electric current and
resistance, respectively, h(T ) is the convection heat transfer,
A is the circumference area of the wire, T and T∞ are the

temperature of the wire and ambient, respectively, and �H is
the latent heat associated with the phase transformation [26].
This equation presents the effect of the Joule heating,
convection heat transfer, and latent heat on the internal energy
of the wire.

A.2. Convection heat transfer

Natural heat convection takes place because of buoyancy
force and the difference between cold and warm air densities.
Because of the temperature difference between the vertical
surfaces, in this case a cylindrical surface, and the ambient
a boundary layer flow develops over the lateral surface. When
the boundary layer thickness is smaller than the cylinder
diameter, the cylinder can be modeled as a vertical wall,
ignoring its curvature. In the case of a thin wire, however,
the diameter is not necessarily larger than the boundary layer
thickness and hence a different Nusselt number and therefore a
different convection coefficient should be used. The criterion
for considering a cylinder as a vertical wall is

D

l
> Ra

− 1
4

l (22)

where D and l are the cylinder’s diameter and length,
respectively, and Ral is the Rayleigh number. It can be shown
that for the SMA wire this condition is not satisfied for the
range of temperature of interest. On the other hand for vertical
thin cylinders the Nusselt number is written as

Nul = 4

3

[
7Ral Pr

5(20 + 21Pr)

] 1
4

+
4(272 + 315Pr)l

35(64 + 63Pr)D
(23)

where Pr is the Prandtl number, Nul = hl/k, and Ral =
gβ�Tl3/αν. In these definitions h is the length-averaged
heat transfer coefficient, and �T is the temperature difference
between the surface of the ambient. Also β is the volume
expansion coefficient that for the ideal gas can be shown to
be β = 1

T , where T is the absolute temperature. k, α and
ν are thermal conductivity, thermal diffusivity and kinematic
viscosity of the air calculated at the film temperature Tf =
T +T∞

2 .
Therefore the convection coefficient is a function of both

the temperature of the wire and the ambient temperature. We
assume that the ambient temperature is constant while the
wire’s temperature changes considerably. Table A.1 shows the
property of the air over the actuation temperature range [27].
The ambient temperature is assumed to be 23 ◦C. Using
these properties the convection coefficient can be calculated.
Figure A.1 shows the calculated convection heat transfer
coefficient which increases as a function of the temperature
of the wire. As shown in the figure, we have approximated it
with a linear function as h(T ) = 0.1558T + 89.33, where T is
the temperature of the wire in centigrade.

It is worth noting that the cooling rate is proportional
to the ratio of the surface area to the heat capacity. Thus
the ratio of the surface area to the volume of the wire is a
indicator of the cooling rate. The generating force on the other
hand is proportional to the sectional area of the wire. The
surface area/volume is in inverse proportion to the diameter.
Therefore, if the diameter is small, the cooling rate is fast.
However, the generating force is much smaller.
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Figure A.1. The convection heat transfer coefficient as a function of
the SMA wire temperature.

– 40 – 20 0 20 40 60 80
– 0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Angular position (degrees) 

A
pp

lie
d 

cu
rr

en
t (

A
m

p)

Moving up
Moving down

Figure A.2. The current passing through the SMA wire changes as
a hysteretic function of the angular position of the actuator.

Table A.1. Air properties as a function of the SMA wire
temperature; the ambient temperature is assumed to be
T∞ = 23 ◦C).

Tw Tf k α ν

(◦C) (K) (W m−1 ◦C−1) (m2 s−1) (m2 s−1) Pr

31 300 0.0261 2.21 × 10−5 1.57 × 10−5 0.712
51 310 0.0268 2.35 × 10−5 1.67 × 10−5 0.711
71 320 0.0275 2.49 × 10−5 1.77 × 10−5 0.710
91 330 0.0283 2.64 × 10−5 1.86 × 10−5 0.708

111 340 0.0290 2.78 × 10−5 1.96 × 10−5 0.707

A.3. Using SMA for sensing

Although SMAs are mostly used for actuation they also
have a good sensing capability. Several properties of
an SMA element change as it undergoes martensite phase
transformation. Among these properties is the resistivity of
SMAs that decreases as the temperature of the wire increases
and hence its phase transforms to austenite. Using the SMA
rotary actuator we conducted an experiment to evaluate the
change in the resistance of the SMA wire.
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Figure A.3. The voltage of the SMA wire changes as a hysteretic
function of the angular position of the actuator.
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Figure A.4. The resistance of the SMA wire changes almost as a
linear function of the angular position of the actuator.

In the experiment the applied voltage to the wire increased
incrementally while recording the current and angular position
of the moving arm. Phaser transformation is hysteretic,
therefore the voltage, current and angular position were also
recorded while the arm moved down due to the voltage drop.
Figures A.2 and A.3 show the hysteretic plot of the voltage and
current versus angular position of the actuator.

While the voltage and current both change with angular
position in a hysteretic fashion the resistance of the wire
changes almost linearly with the angle. This is shown in
figure A.4 along with the linear approximation of resistance
as a function of the angular position. The resistance is
approximated as

R = −2.914θ + 50.94. (24)

This experiment is an indication of sensing capabilities of
the SMA elements that can be further utilized.
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