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AN ENHANCED TIRE MODEL FOR DYNAMIC SIMULATION
BASED ON GEOMETRICALLY EXACT SHELLS

In the present work, a tire model is derived based on geometrically exact shells.
The discretization is done with the help of isoparametric quadrilateral finite elements.
The interpolation is performed with bilinear Lagrangian polynomials for the mid-
surface as well as for the director field. As time stepping method for the resulting
differential algebraic equation a backward differentiation formula is chosen. A mul-
tilayer material model for geometrically exact shells is introduced, to describe the
anisotropic behavior of the tire material. To handle the interaction with a rigid road
surface, a unilateral frictional contact formulation is introduced. Therein a special
surface to surface contact element is developed, which rebuilds the shape of the tire.

1. Introduction

Acting as an interface between the car and the road, the tire model plays
an important role in dynamic vehicle simulations. In commercial and scien-
tific applications there exist several different modeling approaches for tires.
When the tire model has to be embedded into a multi body system (MBS),
lumped parameter models of varying complexity consisting of springs and
dampers [10] are used, as well as simple data curve fits [13]. Very de-
tailed but computationally demanding three dimensional finite element (FE)
models are used for crash and misuse simulations [14]. A coupling of such
3D-FE tire models to MBS simulations is mostly not feasible due to the
large number of degrees of freedom. Our purpose is to develop a continuum
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mechanical based structural model, which requires only modest amounts of
computational resources so that a coupling with a MBS simulation is viable.

In [15], a tire model based on the geometrically exact shell theory of
[17] was introduced, where finite elements (FE) are used for the spatial
discretization [1]. The backward differentiation formula (BDF) was chosen
as time stepping method for the arising differential algebraic equation (DAE)
[3]. The developed tire model is able to handle pressure loads as well as fric-
tionless contact with a rigid road surface. Also a special kind of orthotropic
material is available, where one principal direction is parallel to the normal
of the midsurface. The tire model is able to interact with a MBS simulation
via co-simulation, with the rim forces and displacements as interface. In this
work we enhance this discrete shell based tire model from [15] by adding a
multi layered material model and frictional contact.

This work is structured as follows. First the equations of motion of the
discrete shell are briefly derived in Section 2. After that, in Section 3 a multi
layered material model is integrated in the shell model. In Section 4 the
frictional contact formulation is presented, as well as a special discretization
of the contact surface. Typical tire test rig experiments are realized with the
developed tire model in Section 5 and compared to reference solutions. At
last we give a conclusion of our work in Section 6.

2. Equations of motion

In this section we want to indicate how the equations of motion of the
discrete shell are derived. This will be done in a concise way, for more details
we refer to [15]. To describe the motion of the shell in space we follow the
approach from [17]. Therein the configuration of the shell is given by two
functions

ϕ : ω→ R3 , d : ω→ S2 . (1)

Both are defined on a two dimensional parameter domain ω ⊂ R2. The set
S2 := {d ∈ R3|‖d‖ = 1} represents the two dimensional unit sphere embedded
in a three dimensional space. The function ϕ represents the midsuface of the
shell and d a unit vector field pointing into the direction of the material fibers.
Let h be the thickness of the shell, then its three dimensional configuration
is given by

φ(χ, ζ) = ϕ(χ) + ζd(χ) , φ : Ω→ B ⊂ R3 , (2)

with the domain Ω := ω ×
[
− h

2 ,
h
2

]
. The partial derivatives of the parameter-

ization (2) define the covariant basis of the shell continuum gα := φ,α and
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g3 := φ,3. In this work greek indexes represent the numbers {1, 2}, while small
latin letters stand for the set {1, 2, 3}. For partial derivatives the shortened
notation φ,α := ∂φ

∂χα
is used. The tangential vectors of the midsurface are

defined as aα := ϕ,α. The contravariant bases of the shell is defined by the
system of equations gi · g j = δi

j. The metrics of the continuum are given by
gi j := gi · g j and gi j := gi · g j. The corresponding metric of the midsurface
is given by aαβ = aα · aβ. As additional invariants of the shell continuum a
pseudo curvature καβ := aα · d,β + aβ · d,α and a shear field γα := aα · d are
introduced. To measure the deformation of the shell continuum, a stress free
reference configuration is defined by

φ0(χ, ζ) := ϕ0(χ) + ζd0(χ) , φ0 : Ω→ B0 ⊂ R3 , (3)

where again ϕ0 represents the midsurface of the shell volume and d0 is a
unit vector field, see (1). To distinguish the reference configuration from the
deformed configuration, we use capital letters for the quantities of the refer-
ence configuration. In the reference configuration it is additionally assumed
that the director is perpendicular to the tangential vectors of the midsurface
d0 · Aα = 0. The deformation gradient of the mapping between the config-
urations Φ := φ ◦ (φ0)−1 is given by F := ∇Φ = gi ⊗ Gi. As objective strain
measure [2] we choose the Green-Lagrange tensor E = FTF− Id, which may
be represented as E = Ei j(Gi ⊗ G j) . The components of this strain measure
Ei j := 1

2 (gi j −Gi j) can be decomposed in differences of the single quantities
of the two configurations

Eαβ =
1
2
(aαβ − Aαβ) + ζ

1
2
(καβ − Kαβ), Eα3 =

1
2
(γα − Γα), E33 = 0. (4)

Because of the unit length of the director there is no strain in the E33 com-
ponent, which is called plain strain in literature [4]. As usual all terms witch
are higher order one in ζ are ignored.

The work conjugated stress measure [2] of the Green-Lagrange strain
tensor is the second Piola-Kirchhoff tensor S = Si j(Gi ⊗ G j). Both tensors
are related through a material law. Because we only assume small local
strains1, we restrict ourselves to a linear dependency between stress and
strain. Therefore, it exists a fourth order tensor C := Ci jkl(Gi⊗G j⊗Gk ⊗Gk),
which describes this relation Si j = Ci jklEkl.

The components of the material tensor Ci jkl fullfill the usual symmetries
[2]. To transfer this three dimensional material law to the shell, we addi-

1 Because we choose the Green-Lagrange tensor as objective strain measure, rigid body
motions of the whole shell do not contribute to the strain measure. Hence large rotations are still
possible, which are necessary if we think about tire dynamics.
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tionally assume that the following components of the material tensors vanish
Cαβι3 = Cα333 = 0. So for the components of the strain tensor we get

Sαβ = CαβιπEιπ + Cαβ33E33, Sα3 = 2Cα3β3Eβ3, S33 = C33αβEαβ + C3333E33.
(5)

By assuming plain stress (S33 = 0) we can rearrange (5) to

Sαβ = HαβιπEιπ , Sα3 =
1
2
Hα3β3Eβ3. (6)

Here H i jkl are the components of a shell material tensors H = H i jkl(Gi ⊗
G j ⊗ Gk ⊗ Gk), which are given by

Hαβιπ =
Cαβ33C33ιπ

C3333 , Hα3β3 = 4Cα3β3 , H3333 = 0. (7)

2.1. Weak formulation and discretization

To solve the differential equation prescribing the motion of the shell
continuum, we use the variational principle for the three dimensional problem
[19] and eliminate the dependency of ζ by integration. The starting point of
the problem is to find the function Φ such that for all variations δΦ the
following holds

−
∫

B0

FS : δF dX +

∫

B0

F0 · δΦ dX =

∫

B0

d2

dt2
Φ · δΦ dX . (8)

The vector field F0 represents the external load on the shell continuum, and
ρ0 the density of the reference configuration. In this special shell kinematics
the variation of the deformation mapping is given by δΦ = δφ ◦ (φ0)−1 with
corresponding functions

δφ := δϕ + ζδd , δϕ : ω→R3 , δd :ω→ TdS2 , (9)

where TdS2 := {δd ∈ R3|δd · d = 0} is the tangential plane of S2 in d. In the
following the function describing the shell configurations and its variation
are summerized as q = (ϕ, d)T , q0 = (ϕ0, d0)T and δq = (δϕ, δd)T .

With the transformation theorem and the surface measure dχ̄ = det(aαβ)dχ
the part of the internal work from (8) splits into two summands:

∫

Ω

Si jδEi jdζdχ̄ =

∫

Ω

EαβHαβιπδEιπdζdχ̄ +

∫

Ω

Eα3Hα3ι3
s δEι3dζdχ̄. (10)
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Therefore membrane stretching and bending have no influences on transverse
shearing and vice versa. The first term of (10) is further split into

∫

Ω

EαβHαβιπδEιπdζdχ̄ =

∫

ω

1
2
(aαβ − Aαβ)(H

αβιπ
m δaιπ + Hαβιπ

c δκιπ)dχ̄ (11)

+

∫

ω

1
2
(καβ − Kαβ)(H

αβιπ
c δaιπ + Hαβιπ

b δκιπ)dχ̄. (12)

With the approximation Gi j = Ai j the variable ζ can by eliminated by inte-
gration, which yields

Hαβιπ
m :=

∫ h
2

− h
2

Hαβιπdζ , Hαβιπ
c :=

∫ h
2

− h
2

ζHαβιπdζ , Hαβιπ
b :=

∫ h
2

− h
2

ζ2Hαβιπdζ.

(13)

In the same way the integration of the second summand of (10) is executed.
The two remaining parts of (8) are integrated over ζ in a similar way, see
[15] for more details.

After the thickness variable is eliminated, we discretize the problem
spatially, using the same quadrilateral FE approach as in [1]. Therein the
midsurface as well as the director field are interpolated locally by bilinear
Lagrangian shape functions

qh =

N∑

I

qIN I , qI = (ϕI ,dI)T ∈ R6. (14)

The discrete values qI are positioned in the nodes of the FE-mesh. The same
is done for the reference configuration q0 and the variation δq. Substituting
these approximations into the integrated equation (8), we end up with a DAE
for the motion of the discrete nodal variables q = (q1, . . . , qN) of the shell
model

Mq̈ = −R(q) + GT (q)λ + F , (15)
0 = g(q). (16)

The constraint equation (16) and the corresponding force G(q)λ arise from
the unit length condition of the director ‖d‖ = 1, which is enforced in the
nodes of the FE-mesh. The equations (15) - (16) are integrated in time
making use of the BDF-formula [3].

3. Material model

In [15] a three dimensional orthotropic material model was transferred
to the shell formulation. This is possible, if one principal direction of the
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material points into the normal direction of the midsurface in the reference
configuration. The variation of the material in the thickness direction due to
the skew basis is neglected by the approximation Gi j ≈ Ai j. Therefore the
components of the material tensor H i jkl do not depend on ζ any more and
the integration is straight forward.

In this work we want to include a multi layered material construction
in thickness direction. We assume that the layers are firmly connected. Let
N be the number of layers in thickness direction. By hI the height of the
I-th layer is given. The thickness h of the whole shell continuum is given
by the sum over all layers as: h =

∑N
I=1 hI . The material of each layer is

assumed to be isotropic or orthotropic, like in [15]. Therefore each layer has
its own material tensor Ci jkl

I and could be transferred to a shell material H i jkl
I

as shown in (7). The coefficients of the material tensor of the whole shell
continuum are reproduced by a piecewise defined function

H i jkl
Lam(ζ) =



H i jkl
1

(
ζ + h

2

)
∈ [0, h1]

...
...

H i jkl
N

(
ζ + h

2

)
∈ [h − hN, h]

. (17)

In each layer of the shell we make the approximation Gi j
I ≈ Ai j, where Gi j

I
is the metric of I-th layer and Ai j those of the midsurface of the whole
continuum. Therefore we can examine the integration from (13) over the
thickness on each layer and sum up the results

Hαβιπ
m :=

∫ h
2

− h
2

Hαβιπ
Lam (ζ)dζ =

N∑

I=1

hIH
αβιπ
I , (18)

Hαβιπ
c :=

∫ h
2

− h
2

ζHαβιπ
Lam (ζ)dζ =

N∑

I=1


h2

I

2
+

−
h
2

+

I−1∑

J=1

hJ

 hI

 Hαβιπ
I , (19)

Hαβιπ
b :=

∫ h
2

− h
2

ζ2Hαβιπ
Lam (ζ)dζ=

N∑

I=1


h3

I

3
+h2

I


I−1∑

J=1

hJ − h
2

+hI


I−1∑

J=1

hJ − h
2


2 Hαβιπ

I .

(20)

These coefficients could be put into (12) without changing anything in the
following discretization. If orthotropic materials should be used, two edges
of each FE must by parallel to get a constant orientation inside the element,
see [15]. Then for each element and each of its layers the orientation of
the material is given by one constant angle. As the coefficients from (18)-
(20) depend on the reference configuration only, they can be computed in
preprocessing.
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In the tire each layer is made of reinforced material, which consists of
two isotropic materials: the matrix material (Em, νm) and the material of the
fiber (E f , ν f ). The percentage amount of reinforcements is given by V f , for
the ratio of the matrix material directly follows Vm = 1−V f . With the help of
the so called rules of mixture [9] the orthotropic material data of each layer
could be calculated. In this work we us the approach of Halpin and Tsai [8].

4. Unilateral frictional contact

We want to simulate the frictional contact interaction between a rigid
road and the shell representing the tire. The contact surface of the road is
usually given by a hight profile h : R2 → R as a two dimensional surface

X(s1, s2) =
(
s1 s2 h(s1, s2)

)T
. (21)

Its tangential vectors are given by Tα := ∂X
∂sα

, which define the normal vector
of the surface N := T1×T2

‖T1×T2‖ The contact surface Bc of the shell is given by a
function

x(χ) = x(q(χ),χ) , x : ω→ R3 , ∂Bc := x(ω) , (22)

which depends on the configuration of the deformed shell. We are using the
concept of master- and slave-surface, see [20]. Hence, for every point in the
tire surface (slave) we are looking for a contact point in the road surface
(master). The closest distance point X̃ of the road surface is defined for a
fixed x ∈ Bc as

‖X̃ − x‖ ≤ ‖X(s1, s2) − x‖ , ∀s1, s2. (23)

For each point of Bc the distance function is defined as

dN(x) := (x − X̃)T Ñ, (24)

where Ñ is the normal vector of the surface in the closest distance point.
With this function we can derive the KKT -conditions [20] for the frictionless
contact

pN ≥ 0 , dN ≥ 0 , pNdN = 0, (25)

where pN is the normal contact pressure. To ensure (25), we introduce the
normal gap function and its variation as

gN(x) =


0 dN(x) ≥ 0
dN(x) dN(x) < 0

, δgN =


0 dN(x) ≥ 0
δxTN dN(x) < 0

. (26)
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The normal contact force is given by pN = εNgN(x) with a constant penalty
parameter εN > 0. Hence, the contribution of the normal contact to the
balance of momentum is given by

GN =

∫

Bc

εNgNδgNdx =

∫

ω

εNgNδgN x̄dχ , (27)

where x̄ is the Jacobian determinant of (22).

4.1. Tangential contact

To compute the frictional contact between the tire and the road, we
have to evaluate the path gT of a particle in contact on the master-surface.
Hereby two cases are distinguished: Either the particle is sticking on the
surface, hence, there is no relative movement between both surfaces in this
point ġT = 0, or the particle is sliding on the surface, hence, a reaction force
proportional to the normal contact force is acting on the particle tT = µpN

ġT
‖ġT‖ ,

where µ is the coefficient of friction.
To handle both cases, a method from theory of plasticity is used [19].

The glide path is divided in a reversible elastic ge
T and a irreversible plastic

part gp
T, such that gT = gp

T + ge
T holds. The elastic part represents sticking.

With a penalty stiffness εT > 0 the corresponding traction force is given by

tT = εTge
T . (28)

The plastic part of the glide path is given due to an evolution equation.
This equation is derived by maximizing the dissipative power of sliding
with respect to the traction force tT, which is additionally restricted by the
condition

fC(tT) := ‖tt‖ − µpN ≤ 0 . (29)

The solution of this optimization task is given by the following problem:
Find tT and λ f such that the equations

ġp
T = −λ f

∂ fc
∂tT

, (30)

λ f ≤ 0 , 0 ≥ fC(tT) , λ f fC(tT) = 0, (31)

hold, where (31) are the KKT-conditions of the tangential contact. The dis-
crete evolution of the plastic part of the glide path and the discrete traction
forces are evaluated by means of the radial return algorithm [7].
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The implicit Euler method is used to evaluate the evolution equation
(30). Let gpn

T be the plastic part of the tangential gap at time step tn, then we
get for the next time step

gpn+1

T = gpn

T +
−λn+1

‖tn+1
T ‖

tn+1
T . (32)

The two unknowns λn+1 and tn+1
T are computed such that the KKT-conditions

(31) are ensured at tn+1. Therefore a trial stress is computed by assuming
that the particle is purely sticking

t̃T = εT

(
gk+1

T − gpk

T

)
. (33)

If 0 ≥ f̃C(t̃T) holds, the trail stress is accepted tk+1
T = t̃T and from (31) follows

that λn+1 = 0. Otherwise, if we have 0 < f̃C(t̃T), the trail stress is projected
to

tn+1
T = t̃T − λn+1εT

t̃T
‖t̃T‖

. (34)

Because fc(tn+1
T ) = 0 must hold in this case, the remaining unknown is given

by

λn+1
f =

1
εT

(‖t̃T‖ − µpN). (35)

Now the plastic part of the tangential gap can be computed as in (32).
The variation of the slip path gT can be obtained by differentiating the

optimality condition of the nearest contact point (23) with respect to time,
see [18]. Since the road surface is not in motion and we assume that the
normal penetration into the road surface is negligibly small, this variation is
given by

δgT = (Id − Ñ ⊗ Ñ)δx. (36)

Hence, for the contribution of the tangential contact to the balance of mo-
mentum we get

GT =

∫

Bc

ttδgT
t dx =

∫

ω

ttδgT
t x̄dχ. (37)

4.2. Discretization of the contact surface

To incorporate the contact force in the discrete equation of motion (15)-
(16), the integrals (27) and (37) must be discretized. This could be done with
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a node to segment approach for example, where the contact is evaluated in
the nodes of the FE mesh. As discussed in [15], this approach is not able
to detect small obstacles. Therefore, the discretization of the FE formulation
with bilinear interpolation inside the element was used, and the contact was
evaluated at the Gaussian integration points. In this approach the circum-
ferential discretization degenerates to a polygon with a discrete number of
edges. This results in a drawback if the tire is rolling on flat ground: In Fig. 1
the problem is visualized by the comparison of a rolling rigid polygon and
a rigid circle.

Fig. 1. A rigid ring and a rigid octagon rolling over a flat surface

To eliminate this problem, we use the discrete director in addition to the
midsurface points to create the element wise contact shape. This should be
done such that the tangential vectors of the surface are perpendicular to the
discrete directors in the nodes of the FE mesh. In [11] such an interpolation
is realized with a biquadratic shape function. This approach has the drawback
that no turning points inside the element could be realized. This may result in
strange contact shapes for some situations [12]. To circumvent that problem,
we choose the bicubic Hermite-Polynomials as local shape functions for the
contact surface. We will explain the procedure on a one dimensional example,
where two points xα with normal information dα should be interpolated.

The cubic Hermite polynomials are given over the interval [0, 1] by

H1(s) = (1 + 2s)(1 − s)2, H2(s) = s2(3 − 2s),
H3(s) = s(1 − s)2, H4(s) = s2(s − 1).

(38)

Therefore the interpolation of the curve reads

x(s) = x1H1(s) + x2H2(s) + m1H3(s) + m2H4(s). (39)

At the end nodes of the interpolation curve we obtain by straightforward
computation

x(0) = x1 , x(1) = x2 , x′(0) = m1 , x′(1) = m2. (40)
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Therefore mα must be chosen such that mα · dα = 0 holds. With the help of
the rotation matrix

R(dα,b) :=
‖b‖

‖dα × b‖ (Id − dα ⊗ dα) ∈ R3×3 with b = x2 − x1, (41)

the tangential vectors are given by

mα = R(dα, b)b, (42)

and mα · dα = 0 holds obviously. Additionally the length of the tangential
vectors are equal to the distance between the interpolated points ‖mα‖ = ‖b‖.
If this approach is used locally to construct a curve from many given points
and normals, the direction of tangential vectors of resulting local curves are
equal in the nodes, Nevertheless, its magnitudes could differ. Therefore, the
curve is not continuously differentiable.

This approach can be easily transferred to a two dimensional surface
according to the concept of a tensor product surface, where each edge is
interpolated according to the one dimensional approach. To do that a bicubic
shape function is used

x(s, t) =

4∑

I=1

4∑

j=1

CIJHI (s)HJ(t). (43)

Additionally the mixed derivatives in the nodes of the surface could be de-
fined. We set them to zero C34 = C43 = C33 = C44 = 0, which correspondence
to the so called Ferguson patch [5]. In Fig. 2 the interpolation of such a
surface is visualized with the corresponding coefficients from (43).

Fig. 2. Tensor product with cubic Hermite-splines as boundary curves
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With this approach the integrals (27) and (37) are element-wise dis-
cretized. For the interpolation of the variation δx no tangential or normal in-
formation is used. The contact algorithm is evaluated at the discrete Gaussian
integration points as in [15].

4.3. Comparison to brush contact

In commercial tire models like [6], the contact between tire and road is
modeled by a so called brush models, which is a similar approach to the
one presented in this work. In this brush models the penalty stiffnesses are
interpreted as the stiffness of the rubber tread blocks and they are used to fit
the simulation results to the measurements. Therefore the contact evaluation
is mixed up with the material properties of the tire in a very coarse way. In
this work the penalty stiffnesses are interpreted purely as auxiliary variables
to ensure dn ≥ 0 for normal contact and gT = 0 in case of sticking. Therefore,
comparably high values are used for this constants εN = 108 and εT = 3 · 107

Especially only a scalar penalty parameter is used in the tangential case,
which could be interpreted as an isotropic tangential stiffness.

One way to include the stiffenss of the rubber blocks in the model would
be to use the outer surface of the shell continuum ϕ+ hd as contact surface.
Therefore, the shearing stiffness of the shell could be used as tangential
stiffness of the tread. However, this has not been included in the model
presented in this work. One could even think of using a reduced model
of the 3D rubber blocks, as additional element between the shell and the
contact evaluation. However, these are only ideas and not included in the
present work, but eventually will be tackled in further work.

5. Tire simulation

Finally we want to show some classical tire test rig simulations with our
model constructed from geometrically exact shells. As comparison we choose
the discrete finite-difference based multi layer shell model CDTire/3D [6].
This model has been parametrized such that the experimental results of a real
tire on a test trig could be reproduced. Therefore, we may use CDTire/3D to
perform numerical experiments for benchmarking. The physical tire has the
standardized size 245/40 R 18. As inner pressure of the tire in all simulation
2.7 [bar] is chosen. As friction coefficient µ = 1 is assumed.

First we want to calibrate the material data of the tire model presented
in this work. To do that, we choose a simple vertical stiffness simulation of a
tire. Therein the tire is flattened out against a flat rigid surface by deflecting
the rim in vertical direction. This implies a vertical reaction force on the rim.
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The relation between deflection and force produce a characteristic curve of
the tire.

The net of discrete nodes of the midsurface are given by cylindrical
revolution of the tire cross section. The directors are chosen heuristically
such that they approximate the normals of the geometrically simple reference
surface. The corresponding number of elements in the cross section are 16
and 50 in circumferential direction. A tire is build from different layers of
cord reinforced sheets, each of which can be considered a functional layer.
Following the natural concept of parameterizing these individual functional
layers [6], we are now using the multi layered material model described
in Section 3. The tread is segmented in six layers. The matrix material of
every reinforced layer is rubber. Starting from inside, the first layer purely
consists of rubber, which is modeled as an isotropic material. The second
layer is called carcass, its reinforcements are made of synthetic fibers. They
are oriented perpendicular to the direction of rotation. In the third and fourth
layer steel-cords are used to strengthen the material. The steel wires are
oriented mirror-symmetric in both layers concerning the direction of rotation.
The fifth layer is called cap ply. It is reinforced with nylon cords, which are
directed along the direction of rotation. A layer consisting purely of rubber
is the last of the six layers. For the first and the last layer, we choose a
isoptropic material model. For the others an orthotropic material model is
chosen, whose material coefficients are computed by the approach of Halpin
and Tsai [8], using the material data from Table 1 with the angle α measured
with respect to the direction of rotation. For the sidewall the two steel-cord
layers and the cap-ply are substituted by layers with the same thickness
consisting of isotropic rubber.

Table 1.
Optimized material properties of the different layers of the tire

Em [N/m2] νm E f [N/m2] ν f V f α [deg] hi [m]

Rubber 7, 39 · 106 0, 5 1.55 · 10−3

Carcass 7, 39 · 106 0, 5 1, 33 · 108 0 0, 26 90 1, 04 · 10−3

Steel-cord 7, 39 · 106 0, 5 1, 98 · 1011 0 0, 17 −24 0, 9 · 10−3

Steel-cord 7, 39 · 106 0, 5 1, 98 · 1011 0 0, 17 24 0, 9 · 10−3

Cap-ply 7, 39 · 106 0, 5 3, 43 · 109 0 0, 26 0 0, 65 · 10−3

Rubber 7, 39 · 106 0, 5 2.5 · 10−3

The material informations of Table 1 are adopted from a datasheet of
a tire. The elastic modulus of the rubber matrix and the synthetic fibers in
the carcass are optimized such that the result of vertical stiffness simulation
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coincides with the reference solution, see Fig. 3. The optimization was per-
formed fully automatized, by minimizing the squared distance between the
two curves.

Fig. 3. Reaction force on the rim, due to the flattening of the tire against a flat rigid road

5.1. Lateral and longitudinal stiffness

We want to have a look at the lateral and the longitudinal stiffness of
the tire in the following simulation. Therefore, the tire is deflected against a
flat rigid surface until a vertical reaction force of 4 [kN] is reached. In the
lateral stiffness simulation the rim is deflected perpendicular to the running
direction of the tire. This implies a lateral reaction force on the rim. In the
longitudinal stiffness simulation the rim is deflected in the running direction
of the tire, while all rotations are locked. Therefore, a longitudinal reaction
force is acting on the rim. Again the results of the simulation are compared
with those of CDTire/3D.

In Fig. 4 the simulation results of the lateral stiffness simulation are
visualized.

The lateral deflection of the rim is plotted against the reacting force. After
the lateral force reaches the size of the vertical force the tire is sliding with a
constant reaction force in lateral direction over the flat ground. Because the
simulation results of the tire model developed in this work match with those
of CDTire/3D, the lateral stiffness of the tire is predicted correctly with our
model without doing any additional parameter modification.
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Fig. 4. Lateral and longitudinal stiffness of the tire loaded with 4 [kN] in vertical direction

The results of the longitudinal stiffness simulation can be seen in Fig. 4.
Therein, the longitudinal deflection of the rim is plotted against the reaction
force. The tire again starts to slide on the surface with a constant reaction
force, if the longitudinal reaches the vertical force. At the beginning of the
simulation, the whole contact patch is sticking on to the road surface. In
this situation both curves match pretty well. This indicates that the structural
stiffness of the tire is predicted in a correct way. When the contact points
start to slide, both curves do not match perfectly together. This could be
because the forces in the contact patch are not predicted accurate enough.
However, this results are again achieved without any further adjustments on
the parameters.

5.2. Lateral slip

In this section, we want to show a first dynamical simulation. The rim
is moved with a constant velocity of 10 [m/s] in running direction of the tire
over a flat surface with a constant vertical deflection, such that a reaction
force of 4 [kN] is acting on the rim. The rotation of the rim due to its
longitudinal movement and contact is realized via a co-simulation of the tire
model and the rim, see [15]. The duration of this simulation is five seconds.
In this time the rim is rotated about its vertical axis to simulate cornering2.

2 The vehicle drives through a curve.
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The time signal of the corresponding angle is given by

α(t) =


15π
180 sin

(
2(t−0.5)

π

)
0.5 ≤ t ≤ 4.5

0 otherwise
. (44)

In the literature, this angle is called slip angle. Due to cornering the tire
produces a lateral force on the rim. In Fig. 5 the simulation results are
visualized.

Fig. 5. Lateral slip at v = 10 [m/s]

Therein, the lateral force is plotted against the slip angle α, which results
in a curve that is characteristic for a tire. The simulation result of the tire
model developed in this work matches favorably to the reference solution.
So, we predicted the cornering behavior of the tire quite well without doing
any adjustment of the model parameters. In Fig. 5 a hysteresis could be seen
because of the movement of material point through the contact patch.

5.3. Longitudinal slip

Finally we want to simulate the accelerating and breaking of a tire. To
do that, a longitudinal slip experiment is realized. Therein, the rim is moving
with a constant velocity in rotational direction, while the rotation velocity
of the rim is varied in time. To examine the simulation the rotation velocity
ω0 of free rolling3 tire must be evaluated. The longitudinal slip κ is defined

3 Free rolling is defined such that no torque is acting on the rim about the rotation axis of
the tire.
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as relative difference of the current rotational velocity ω and free rolling
velocity ω0

κ :=
ω − ω0

ω0
. (45)

The simulation is executed in the time interval [0, 5]. In contrast to the lateral
slip simulation in this experiment also the rotation of the rim is prescribed.
This is done via a time signal for the longitudinal slip, which implies the
rotational velocity

ω(t) =
(
1 + κ(t)

)
ω0 with κ(t) =


sin

(
2(t−0.5)

π

)
0.5 ≤ t ≤ 4.5

0 else
. (46)

Because of the different model approaches, both simulated tire models have
different rotation velocities ω0 for the same translation velocity v = 10 [m/s].
However, because the longitudinal slip is defined relative to ω0, we can
compare both models.

In Fig. 6 the results of both simulations are visualized. Therein, the
longitudinal slip is plotted against the longitudinal force. Both simulation
results match quite well. Similar as in the longitudinal stiffness simulation
differences occur, when the particles in the contact patch start sliding. Due to
the stick and slip history of the material points moving through the contact
patch, there is a hysteresis in the graph in Fig. 6 similar as in the lateral slip
simulation.

Fig. 6. Longitudinal slip at v = 10 [m/s]
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5.4. Discussion of the results

In the simulations it could be shown that the simulation model could
predict the tire characteristic curves, after the material has been adjusted
only for the vertical stiffness experiment. As reference the commercial tire
model CDTire/3D was used, which has been parametrized by real tire mea-
surements. In comparison of the computing time of both models, the model
presented in this work is of factor eight slower then CDTire/3D. But in
comparison to 3D FE-models, which has similar predictive behavior, if the
material data is known, the geometric exact shell model is at least a factor
100 faster.

In this work, only purely longitudinal or lateral slip was simulated. A
combined slip experiments, which occurs in vehicle dynamics for example
when the car is cornering and braking at the same time, was not investigat-
ed. In these scenario the pressure distribution in the contact patch becomes
important, as in the single slip experiments. It could also be, that in this ap-
plication case the stiffness of the tread blocks has to be taken into account,
see subsection 4.3. To investigate the combined slip experiment will be the
topic of further work.

A more detailed discussion of the geometric exact shell tire model and
its capabilities could be found in [16].

6. Conclusion and outlook

In this work the tire model from [15] is improved by a multilayer material
model and a more complex contact model, which includes lateral contact.
With this enhanced model it is possible to predict the dynamical behavior
of a tire, while the adjustment of the parameters is done only via a simple
vertical stiffness experiment.

Manuscript received by Editorial Board, September 16, 2015;
final version, June 07, 2016.
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Udoskonalony model opony do symulacji dynamicznej oparty na powłokach geometrycznie
dokładnych

S t r e s z c z e n i e

Praca przedstawia opracowanie modelu opony w oparciu o koncepcję powłoki geometrycznie
dokładnej. Dyskretyzację przeprowadzono z pomocą izoparametrycznych czworokątnych elemen-
tów skończonych. Do interpolacji wykorzystano wielomiany Lagrange’a, zarówno dla powierzchni
pośrednich, jak i pola kierunku. Zastosowano formułę różniczkowania wstecznego jako metodę
dyskretyzacji czasowej dla wynikowych równań różniczkowo-algebraicznych. Wprowadzono wielo-
warstwowy model materiału powłoki geometrycznie dokładnej by opisać anizotropowe właściwoś-
ci materiału opony. W celu wyznaczenia interakcji między oponą i twardą nawierzchnią dro-
gi wprowadzono sformułowanie jednostronnego kontaktu ciernego. Uzyskano tą drogą specjalny
międzypowierzchniowy element kontaktowy, który odtwarza kształt opony.
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