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Abstract: In wireless sensor networks, tree-based routing can achieve a low control overhead and
high responsiveness by eliminating the path search and avoiding the use of extensive broadcast
messages. However, existing approaches face difficulty in finding an optimal parent node, owing
to conflicting performance metrics such as reliability, latency, and energy efficiency. To strike a
balance between these multiple objectives, in this paper, we revisit a classic problem of finding an
optimal parent node in a tree topology. Our key idea is to find the best parent node by utilizing
empirical data about the network obtained through Q-learning. Specifically, we define a state space,
action set, and reward function using multiple cognitive metrics, and then find the best parent node
through trial and error. Simulation results demonstrate that the proposed solution can achieve better
performance regarding end-to-end delay, packet delivery ratio, and energy consumption compared
with existing approaches.

Keywords: wireless sensor networks (WSNs); tree-based routing; reinforcement learning; Q-learning;
multiple objectives

1. Introduction

A wireless sensor network (WSN) enables the automation of industrial sites through
the collection, exchange, and analysis of data between interconnected sensor devices. One
of the promising WSN applications is a real-time monitoring system in which sensor nodes
collect data and forward them to a sink node through a multi-hop transmission. For the
freshness of data, the monitoring system has a strong demand for real-time communica-
tion; hence, it is important to design a low-latency and highly reliable routing protocol.
Specifically, a routing protocol for monitoring applications has the following requirements:

(a) High reliability: Considering the limited transmission range of sensors, sampled
data should be forwarded to the destination through a multi-hop transmission after self-
configuration of a network. However, if data are frequently dropped owing to poor
link quality between sensors, the service requirements, especially for mission-critical
applications, cannot be satisfied.

(b) Low latency: The data sampled from sensors should be delivered to the destination
quickly; otherwise, it will not be possible to respond to emergencies. In particular, stale
data are fatal for patients with serious illness in a health monitoring system. Hence, it
is necessary to build the shortest path or reduce the queuing delay via load balancing to
forward the data to the destination in a timely manner.

(c) Energy efficiency: Sensors for monitoring applications are typically installed in a
wild field where battery replacement is difficult. If the energy of a specific node is quickly
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exhausted, it leads to a decrease in the network lifetime. Thus, it is necessary to reduce
the additional energy consumption owing to network maintenance or to balance energy
consumption between sensors.

Conventional ad hoc routing protocols [1,2] can ensure reliable transmission and satisfy
service requirements of source nodes in WSNs; however, they involve a high computational
cost (i.e., control-message overhead) for sensors to maintain routing paths. To reduce
the energy consumption from the control overhead, tree-based routing can be a feasible
solution in WSNs. The parent selection is a key role of a tree-based routing protocol because
the links between parent and child nodes are used as routing paths. Conventional tree
routing [3] uses the number of hops to the sink as a decision criterion for parent selection.
Each source node can build the shortest path to the sink by choosing a node with the least
number of hops as a parent node. This approach can provide a low latency; however, it
cannot ensure reliable transmission because the link quality between the parent node and
the child node is not considered in the parent selection process.

To build a stable tree topology, some studies [4,5] adopt the link quality as a decision
criterion. However, they do not consider the load balancing during the parent selection;
hence, an excessive load can be placed on a specific node, resulting in significant packet loss.
To prevent congestion, some studies [6–8] propose a load-aware parent selection algorithm;
however, they do not jointly consider link quality and energy efficiency. Although energy-
aware parent selection schemes are proposed [9–13], they also cannot jointly achieve the
above service requirements. These tree-based routing protocols address diverse parent
selection problems independently; hence, they cannot jointly improve multiple performance
metrics, such as the transmission reliability, end-to-end delay, and energy consumption.

To address this problem, some studies [14–18] attempt to select the best parent node
taking into account multiple cognitive metrics. To jointly achieve multiple objectives, they
employ a linear weighted-sum method in which each node calculates the weighted cost by
integrating multiple metrics. However, the linear weighted-sum method adopts subjective
weights, which are often less objective and reduce their acceptance within the scientific
community. As a result, they cannot provide a flexible trade-off between performance
metrics. To overcome this limitation, in our previous work [19], we proposed a multi-
criteria decision making (MCDM)-based parent selection scheme. The proposed scheme
finds the best parent node by determining the relative importance of multiple decision
criteria using the analytical hierarchy process (AHP) [20] and then derives the weighted
cost using the simple additive weighting (SAW) method [21]. However, the decision
maker needs to calculate the weights of each metric based on its preference or background
knowledge of the target network. In addition, it is challenging to find an optimal parent
node in a large-scale WSN because the scale of WSNs is growing and the deployment is
more complex.

To eliminate the bias of a decision maker and make adaptive decisions in a complex
deployment scenario, in this work, we extend our previous work with the specific goal of
achieving multiple objectives, such as high reliability, low latency, and energy efficiency.
To find the best parent node, we use empirical data about the target network obtained
through Q-learning. Specifically, we define a state space, action set, and reward function
using multiple cognitive metrics, and then find the best parent node through trial and error.

The main contributions of this work are summarized as follows:

• To jointly achieve multiple objectives in WSNs, in this work, we revisit the classic
problem of finding an optimal parent node in the tree-based routing. Specifically, we
propose an enhanced tree-based routing protocol based on reinforcement learning
(RL);

• To cope with various network scenarios, e.g., link breakage and congestion, we propose
multiple cognitive metrics. Specifically, in addition to hop count, three types of
cognitive metrics are formulated: weighted average of received signal strength, buffer
occupancy ratio, and power consumption ratio. These metrics affect the decision rules
in tree routing;
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• We present the system model for applying RL algorithm in WSNs and specify the
basic operations of the proposed tree-based routing protocol. Specifically, we specify
concrete algorithms for loop detection and parent update, as well as tree construction
using build and hello messages;

• To make adaptive decisions in a complex deployment scenario, we define a state space,
action set, and reward function. The agent recognizes the network state with the
proposed cognitive metrics and finds the best parent node with the highest reward
through trial and error;

• Through a comparative study using diverse simulations, we verify that the proposed
parent selection scheme supports a reasonable trade-off between the performance
metrics, i.e., end-to-end delay, packet delivery ratio, and energy consumption.

2. Related Work

The routing protocol has an important role in a WSN, ensuring a reliable transmission
and satisfying the QoS of individual nodes. The node batteries of a network in the wild
are difficult to replace; hence, the routing protocols should create a routing path at low
computational cost. In reactive routing protocols, e.g., ad hoc on-demand distance vector
(AODV) routing [1], a source node sends a route request message whenever it needs a
routing path to the destination node. To maintain a reliable routing path, the node periodi-
cally broadcasts control messages and checks the status of the links with its neighboring
nodes. Reactive routing can guarantee a reliable transmission in a network in which the
nodes frequently move, such as mobile ad hoc networks; however, the control overhead is
significantly increased to maintain the routing paths.

To reduce the number of control messages, proactive routing protocols, e.g., optimized
link state routing protocol [2], select nodes with high connectivity between neighboring
nodes as the parent nodes. To maintain the topology information, the parent nodes are
obliged to broadcast control messages periodically. This table-driven routing can minimize
the number of control messages because only the parent nodes broadcast the topology
information; however, the broadcast overhead and memory usage are increased when
there is a large amount of node information to be transmitted. Moreover, in a network
in which the nodes frequently move, the control overhead significantly increases because
topology information must be frequently broadcast. To reduce the energy consumption
from the broadcast overhead, tree-based routing is the best solution for a small-scale WSN.
A tree-based routing protocol consists of one root node and multiple sensor nodes, which
have parent–child relationships and are interconnected based on a tree structure. Each node
chooses the optimal parent node and forwards the data to the parent until it reaches the
root node. Tree-based routing can eliminate a path search and avoid extensive broadcast
messages. The communication links between parent and child nodes are used as routing
paths, and parent selection is a key aspect of the tree-based routing protocol.

For example, conventional tree-based routing protocols [22–24] select as the parent
node the neighbor node with the lowest number of hops to the sink node. By using the hop
count as a decision metric, they can minimize the end-to-end delay; however, the PDR is
reduced because frequent node movements degrade the link quality between the child and
parent nodes. To build a stable tree structure, the authors of [4] propose a route stability
framework in which each node calculates an overall score for each neighboring node. The
scores are weighted based on the link quality and relative distance with the neighboring
node. The neighbor node with the best overall score is selected as a parent node. In [5],
each node chooses the neighboring node with the best link quality metric as a parent
node. The link quality metric is calculated using cognitive metrics, i.e., the link packet
delivery and link stability. However, this approach does not consider the load balancing
during the parent selection process. In other words, an excessive load may be placed on
a particular node; thus, congestion occurs at certain nodes, resulting in significant packet
loss. In addition, the network lifetime is shortened due to unbalanced energy consumption
between nodes.
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To prevent congestion, the authors of [6] propose a congestion-aware tree routing
protocol. With this scheme, each node evaluates the link cost of each neighboring node, and
the node with the best link cost is selected. A weighted-sum equation is used to determine
the link cost, and the average queue size and remaining energy of the nodes are considered
in the proposed formula. The authors of [7] propose a load-aware dynamic cost function
to weight the links between the parent and child nodes. The cost of the links is updated
based on the congestion metric. If a node is congested, the value of congestion metric will
increase. In this case, it is not preferable for neighboring nodes to select this link as a parent
node. To improve the network lifetime, the authors of [9] propose an energy-aware parent
node selection algorithm. With this scheme, each node builds a hierarchical structure based
on the hop count to the sink node. If the energy level of a node is lower than half of the
original battery capacity, the node is moved one level lower in the tree model. By lowering
the hierarchical level, a node with a low battery level cannot be selected as a parent node.
The authors of [11] construct a binary tree based on the number of hops to the sink node. To
balance the energy consumption, the parent node chooses the link with the smaller number
of packets it receives from the child on the left or right. In [10,12], each node calculates the
link cost using the distance vector and remaining energy. In [13], each node selects a parent
node from the neighboring nodes with predefined cognitive parameters, which is called a
fitness function using the flower pollination algorithm. The fitness function considers the
energy consumption and distance ratios of the average distance.

Several tree-based routing protocols take multiple cognitive metrics into consideration
concurrently and aim to jointly achieve multiple objectives by considering several decision
criteria. For example, the authors of [14] take three cognitive metrics, i.e., the channel error
rate, residual energy, and buffer capacity, and integrate the proposed metrics using heuristic
coefficients. These coefficients denote the significance of each metric, and the sum of the
coefficients is equal to 1. Each node then selects the neighboring node with the highest
weighted sum as a parent node. Similarly, the authors of [15] take the link quality, residual
energy, and relay node frequency and integrate these metrics using the weighted-sum
method. The authors of [16] integrate multiple cognitive metrics, namely, the distance,
number of associated nodes, and residual energy using the weighted-sum method. The
authors of [17] integrate three cognitive metrics, such as the hop count, residual energy,
and link quality using the heuristic coefficients. The authors of [18] consider four attributes,
i.e., the link expiration time, trip time, node speed, and lifetime, and integrate them using
an “if-else” statement. However, these approaches adopt subjective weights, which are
often less objective and reduce their acceptance by the scientific community. To provide a
flexible trade-off between the conflicting objectives, in our previous work [19], we propose
a MCDM-based parent selection scheme in which each node finds the best parent node by
determining the relative importance of multiple decision criteria using the AHP and then
derives the weighted cost using the SAW method.

3. System Model and Problem Statement
3.1. Network Model

As shown in Figure 1, there are N sensor nodes and M sink nodes. These nodes
constitute a tree topology in which the sink node is located at the top level of the tree. The
tree structure is autonomously configured via a tree routing protocol (see Section 4). The
sink node acts as a controller to aggregate the data sampled from the sensor nodes and
forms a tree structure. We assume that both the sensor node and the sink node have fixed
positions and the link quality between nodes depends on geographical positions. Each
sensor node then selects a parent node among its neighbors and passes the data to the
parent node until it reaches a sink node.
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Figure 1. An example: deployment of sink nodes and sensor nodes.

3.2. Cognitive Metrics

To select an optimal parent node according to changes in network conditions, each
node needs to recognize the current network state using multiple cognitive metrics. Recall
that the main goal of this study is to jointly achieve the high reliability, low latency, and
energy efficiency. However, there are many considerations to select the best parent node,
for example, in a scenario where multiple sensor nodes choose the same parent, a queue is
building at the parent node and thus the queueing delays increase or packets are lost. In
addition, the link quality between the parent node and the child node depends on their
geographical positions; hence, obstacles can make the transmission unreliable. To address
diverse parent selection problems, we define the following cognitive metrics.

3.2.1. Hop Count

To reduce the latency for each transmission, each node should build a shortest path to
the destination. In a tree-based routing, the number of hops to the sink node is a decisive
metric to select a parent node; that is, each node can maintain a low latency by adopting the
hop count to the sink node as a decision variable. In this work, we adopt the hop count (H)
as a decision variable to form a hierarchical tree structure and reduce the end-to-end delay.

3.2.2. Weighted Average of Received Signal Strength

The link quality between the child node and the parent node is highly dependent
on distance and obstacles. If a node chooses the node with the shortest hop to the sink
node as a parent node but the link quality is poor, packets may be lost and additional
energy consumption may increase owing to retransmission. To build a stable path, we use
the received signal strength between the child node and the candidate parent node. Each
node can easily obtain the received signal strength when it receives a hello message from
neighboring nodes.

Contrary to the cognitive metrics proposed in our previous study, we use weighted
moving average (WMA) to prevent sudden changes in measured values. The WMA gives
more weights on recent data and less on past data. That is, we multiply each measured
value by a weight. Here, the time t is based on the time of a hello message. We define a
n-period WMA of the received signal strength (P) for neighboring node i as follows:

Pi =
(w1 ∗ Pt−1

i + w2 ∗ Pt−2
i , . . . ,+wn ∗ Pt−n

i )

(w1 + w2, . . . ,+wn)
, (1)

3.2.3. Weighted Average of Buffer Occupancy Ratio

If multiple nodes select the same neighbor as a parent node, the selected parent node
will be overloaded. In other words, a buffer overflow may occur when the parent node
receives more data than it can handle. To prevent congestion, we adopt the buffer occupancy
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ratio as a decision variable to select a parent node. To prevent sudden changes in measured
data, we define a n-period WMA of the buffer occupancy ratio (B) for neighboring node
i as,

Bi =
(w1 ∗ Bt−1

i + w2 ∗ Bt−2
i , . . . ,+wn ∗ Bt−n

i )

(w1 + w2, . . . ,+ . . . wn)
, (2)

where Bt is the buffer occupancy ratio at time t, and is defined as

Bt =
Bcur

Bmax
, (3)

where Bcur is the current buffer size at time t, and Bmax is the maximum buffer size.

3.2.4. Short-Term Power Consumption Ratio

In general, it is difficult to replace the battery of the sensors deployed in the wild field.
If the energy of a specific node is quickly exhausted, it leads to a decrease in the network
lifetime. To improve the overall network lifetime, we adopt the power consumption ratio
as a decision variable to select a parent node. The power consumption ratio (E) can be
calculated as,

E =
(α− 1)Tcu ∗ Idlee + (α)L ∗ Txe + (α ∗ D)Rxe + Sleepe

Etotal
, (4)

where Tcu denotes the cumulative delay due to backoff or retransmissions. α is the number
of backoffs or frame retransmissions. L denotes the payload length. Idlee, Txe, Rxe, and
Sleepe are the amount of energy consumption for each transceiver mode, and Etotal is the
total amount of energy.

3.3. Problem Statement

To jointly achieve multiple objectives, we aim to find an optimal parent node according
to changes in network conditions. For this, we consider multiple decision criteria; however,
they are in a trade-off relationship. Hence, we aim to provide a reasonable balance between
conflicting goals (i.e., high reliability, low latency, and energy efficiency) rather than jointly
achieving them. In our previous approach [19], each node calculates the weighted sum of
multiple criteria for each neighbor, and then chooses the node with the highest weighted
value. It shows reasonable trade-offs between the performance metrics; however, the
decision maker must calculate the weight factors based on its preference or background
knowledge of the network. By contrast, in this work, RL is used to enable each node to
utilize empirical data about the network so that the parent node can be adaptively selected
according to the network state.

4. Proposed Tree Routing Protocol

As shown in Figure 2, the proposed tree routing protocol consists of several com-
ponents. Specifically, each component interacts with others to build a tree topology and
finds an optimal routing path via a parent selection. In this section, we first describe the
basic operations of the proposed routing protocol and then specify the RL-based parent
selection algorithm.

Figure 2. Proposed protocol architecture.
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4.1. Tree Construction

As illustrated in Figure 3, the sink node periodically broadcasts a build message to form
a tree structure. The build message includes the number of hops to the sink node (i.e., hop
count). When a node receives a build message, it stores the hop count in the neighbor table
and increments the hop count in the build message by one. Then, the node rebroadcasts
the build message. Since a node chooses a neighboring node with the same or fewer hops
as a parent node, the hierarchical level of nodes is autonomously determined based on the
number of hops to the sink node. In addition, each node periodically broadcasts a hello
message containing the proposed decision criteria (i.e., P, B, and E). Upon receiving the
hello messages from the neighbors, each node stores the decision criteria in the neighbor
table. These variables are used to choose a parent at each node. The details of the tree
construction are given in Algorithm 1.

Figure 3. An illustration of tree-based routing.

Algorithm 1 Tree initialization at node k.

Initialization:
Sid: The ID of sink node
Hi: The number of hops to the sink node at sensor node i
NT: Neighbor table

Algorithm:
1: if node_type = root then
2: periodically broadcast a build message Bmsg
3: else
4: periodically broadcast a hello message Hmsg
5: end if
6: upon receiving Bmsg from node i
7: Update Sid and Hi of Bmsg in NT
8: Hi in Bmsg ← Hi in Bmsg + 1
9: Broadcast Bmsg

10: Call Parent_Selection ()

4.2. Parent Selection

To provide a reasonable trade-off between multiple objectives, we aim for the node
to adaptively change its parent node according to network conditions. As illustrated
in Figures 2 and 4, each node recognizes the current network state using the proposed
cognitive metrics, and then finds an optimal parent node based on empirical data about
the network. To this end, we propose an RL-based parent selection algorithm. In this
subsection, we first define the state space, action set, and reward function using several
cognitive metrics, and then specify the RL-based parent selection algorithm.
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Figure 4. An example: RL-based parent selection.

4.2.1. RL Model

Here, we define the state, action, and reward function as follows.

• State: The state space can be defined as a set of three decision criteria, denoted by
s = {Pi, Bi, Ei}i∈N . That is, each node (i.e., agent) selects a parent node in consideration
of the link quality, congestion level, and remaining energy of the neighboring node.

• Action: The action space is defined as a set of candidate parent nodes in the neighbor
table. It should be noted that the set of candidate parent nodes only contains the
neighboring nodes with the same or fewer hops to the sink node than itself.

• Reward: Our approach to define the reward function is that if the agent selects a node
as a parent node and that action increases the frame retransmission, packet error rate,
and energy consumption, then the agent obtains a lower reward. Otherwise, the agent
gets a high reward.

4.2.2. Proposed Algorithm

To find the best parent node, we define multiple cognitive metrics (i.e., hop count,
received signal strength, buffer occupancy ratio, and power consumption ratio). Our key
idea is that each node adaptively changes its parent node according to the current network
state using the cognitive metrics. Obviously, the more cognitive metrics we consider, the
more benefits achieved when choosing the parent node; however, complex decision-making
problems may arise. To solve this problem, in this work, we present the RL-based parent
selection algorithm.

The proposed algorithm selects the node with the highest reward as a parent node.
Algorithm 2 shows the detailed process of the parent selection. Given a state s, each node
chooses a parent node among the neighboring nodes based on epsilon-greedy algorithm
(lines 4–5). When the parent node selection is complete, the node observes the reward r
and new state s′ from the network environment (lines 6–8). The node then sends a join
request to the candidate parent node (line 9). After receiving the join request message, the
selected parent node replies to the corresponding node with a join acceptance message or a
join rejection message (lines 12–18). Until the episode ends, each node finds an optimal
parent node through trial and error.

Recall that the node selects the neighboring node with the same or fewer number of
hops to the sink node than itself as a parent node; thus, the hierarchical level of nodes is
autonomously configured based on the number of hops. However, each node can select
a neighbor node in the same level (i.e., a node with the same number of hops to the sink
node) as a parent node. As a result, a cycle can be generated. To check the cycle between
the parent and child nodes, each node sends a join request message to the candidate parent
node with its list of child nodes (line 9). The node receiving the join request message detects
a loop based on the list of child nodes (lines 19–24). If a loop is not detected, the node
replies a join acceptance message. Otherwise, it returns a join rejection message.
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Algorithm 2 Parent selection at node k.

Initialization:
Nchild: List of child nodes
PID ← ∅ // The ID of parent node
Initialize Q(s, a) arbitrarily

Algorithm:
1: for each episode do
2: Initialize s
3: for each step of episode do
4: Choose a from s using policy derived from Q
5: PID ← a
6: Observe r, s′

7: Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]
8: s← s′

9: Send a join request message Jrequest with Nchild to the selected parent node (PID)
10: end for
11: end for
12: upon receiving a join request message Jrequest from node i
13: r ← Loop_Detection (Nchild of Jrequest)
14: if r = True then
15: Send a join rejection message Jreject to node i
16: else
17: Send a join acceptance message Jaccept to node i
18: end if
Function: Loop_Detection (Nchild)
19: for each node i in Nchild do
20: if my_id = i then
21: return True
22: end if
23: end for
24: return False

4.3. Rate of Parent Change

Each node should update its parent node periodically because the network condition
frequently changes in WSNs. For example, if the parent node is not updated for a long
period of time, an excessive load occurs on a specific node. To achieve a stable topology,
each node periodically updates its parent node based on hello message interval. However,
if the node frequently changes the parent node, an additional overhead may occur. In the
next section, we present the effect of the rate of parent change on the network performance.

5. Performance Evaluation
5.1. Simulation Setup

In this work, we simulate the proposed scheme using the OPNET modeler version 18.7.
The simulation parameters are given in Table 1. We conducted the simulation 100 times
with a 95% confidence interval. Specifically, we run the simulations for 3600 s and set
the network size to 5000 m × 5000 m. To build a large-scale network, we set the number
of sensor nodes to 100 and the number of sink nodes to 5. To build a tree topology, the
sink node periodically broadcasts a build message every 20 s. After receiving the build
message, each node updates the number of hops to the sink node in the neighbor table
and start to choose a parent node. In addition, all nodes periodically send a hello message
to its neighbors every 5 s. We set the sizes of the build and hello messages to 192 and
128 bits, respectively. To verify that the proposed scheme provides a reasonable trade-off
between multiple objectives by adaptively changing the parent node according to changes
in network conditions, we observe the performance metrics by varying the traffic bit rate
and bit error rate. To simulate congestion, we change the traffic bit rate from 1000 to
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5000 bits/s. In addition, we change the bit error rate from 10−2 to 10−6 in order to make
the link condition dynamic.

Table 1. Simulation parameters.

Parameter Value

Number of sensor nodes 100
Number of sink nodes 5
Network size 5000 m × 5000 m
Simulation time 3600 s
Transmission range 300 m
Data processing rate 15,000 bits/s
Buffer size 100,000 bits
Traffic model IP traffic flow
Traffic bit rate 1000 to 5000 bits/s
Bit error rate 10−2 to 10−6

MAC 802.11
Build message interval 20 s
Hello message interval 5 s
Maximum number of episodes 4000
Maximum number of steps 300
Minimum epsilon/epsilon 0.1/1.0
Exploration ratio 0.5
Reward discount factor 0.99

We compare the performance of the proposed scheme with the linear weighted sum-
based parent selection algorithm [17] and the MCMD-based parent selection algorithm.
The linear weighted sum-based scheme considers the number of hops, buffer occupancy
ratio, link quality, and residual energy as decision metrics. Here, the weight of each metric
is fixed at the same ratio. On the other hand, the MCDM-based parent selection scheme
logically determines the relative importance between the decision metrics based on the
preferences or background knowledges of the decision maker. Specifically, in our previous
work, we (i.e., the decision maker) set the relative importance of each metric based on the
following rules. When the network is unstable, we increase the weight of the received
signal strength, leading each node to choose a parent node with good link conditions. If the
link conditions of the candidate nodes are not significantly different, each node changes
another node with a low buffer occupancy and high residual energy to a parent node.

5.2. Reliability

The main factors affecting the packet delivery ratio are buffer overflows caused by
congestion and bit errors according to the link conditions. As shown in Figure 5, all schemes
cause packet loss owing to congestion as the traffic bit rate increases. The linear weighted
sum-based scheme considers link quality in the decision-making process. However, since
the weights among the multiple metrics are equal, the parent node is rarely changed even
if a buffer overflow occurs. On the other hand, since the MCMD-based scheme has a higher
weight of the buffer occupancy ratio, packet loss owing to congestion is less than that of
the linear weighted sum-based scheme. In addition, it adaptively selects a node with good
link quality as the bit error rate increases, thus showing a better packet forwarding rate.

However, in the MCDM-based scheme, the weights between metrics cannot be
changed at runtime; thus, it has a clear limitation in that it is difficult to respond to changes
in network scenarios. In contrast, the proposed scheme shows the best performance be-
cause it learns how to cope with changes in network conditions at runtime through trial
and error.
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(a) (b)

Figure 5. Simulation results: packet delivery ratio. (a) Packet delivery ratio according to traffic bit
rate; (b) Packet delivery ratio according to bit error rate.

5.3. Latency

The main factors affecting the end-to-end delay in tree routing are the number of
hops to the sink node and the queuing delay. The traditional tree routing chooses a parent
node based on the number of hops to the sink node. This shows the best performance
when the traffic bit rate is low. However, as the traffic bit rate increases, congestion occurs
at a node with a small number of hops to the sink node, resulting in a sharp increase in
end-to-end delay. To solve this problem, the linear weighted sum-based scheme considers
the congestion metric with the number of hops in the decision-making process. As shown
in Figure 6, since the weights between the metrics are the same in the linear weighted
sum-based scheme, load distribution is not effectively performed as the traffic bit rate
increases. This increases the queuing delay and thus it shows the worst performance. In
addition, when the bit error rate increases, a node having a better link quality rather than
having a lower number of hops can be selected as a parent node; hence, the end-to-end
delay is slightly increased. In the MCMD-based scheme, load balancing is performed
properly because the decision maker pre-determines the weight of the congestion metric by
considering the network environment. However, when the bit error rate increases, a node
with a better link quality rather than with a lower number of hops is selected as a parent
node; hence, the end-to-end delay is slightly increased.

(a) (b)

Figure 6. Simulation results: end-to-end delay. (a) End-to-end delay according to traffic bit rate;
(b) End-to-end delay according to bit error rate.

As described above, in the MCMD-based scheme, the decision maker pre-determines
the weight of each metric based on prior knowledge of the network environment. Thus,
it performs well for pre-configured network scenarios, but cannot cope with changes in
network conditions that occur at runtime. In contrast, in the proposed scheme, each node
learns the optimal action according to the network environment through Q-learning. The
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proposed scheme shows the best performance because it can adaptively cope with changes
in network conditions.

5.4. Energy Efficiency

The main factor that increases average power consumption in tree routing is frame
retransmissions owing to packet loss caused by congestion and link breakage. In addition
to energy efficiency, in tree routing, it is necessary to balance the energy consumption
between sensor nodes to ensure the diversity of routing paths.

The traditional tree routing selects a parent node based on the number of hops to
the sink node; thus, the packet loss significantly occurs owing to congestion as the traffic
bit rate increases. As a result, additional energy consumption increases owing to frame
retransmissions. In addition, when the link quality is bad, the number of retransmissions
also increases. To address this problem, the linear weighted sum-based scheme considers
the link quality and buffer occupancy ratio together in the decision-making process, but
it is difficult to respond to changes in network conditions because the weights between
multiple metrics are not properly adjusted. As a result, as shown in Figure 7, the energy
consumption per unit time is the highest, and the number of dead nodes is the highest.

(a) (b)

(c)

Figure 7. Simulation results: power consumption ratio. (a) Power consumption ratio according to
traffic bit rate; (b) Power consumption ratio according to bit error rate; (c) Number of dead nodes
according to traffic bit rate.

The MCMD-based scheme shows better performance than the linear weighted sum-
based scheme because the decision maker knows the network environment in advance
and determines appropriate weights accordingly. However, as previously analyzed, it is
not possible to adjust the weights of metrics at runtime. By contrast, the proposed scheme
recognizes the network environment through various cognitive metrics and finds the best
policy to optimize the performance metrics through trial and error. As a result, the proposed
scheme shows better performance than the MCDM-based parent selection scheme.
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5.5. Discussion

As the traditional tree routing selects a parent node based on the number of hops to
the destination, it cannot cope with various problems, such as link breakage and congestion.
To address this problem, the linear weighted sum-based scheme jointly considers multiple
cognitive metrics, such as the hop count, link quality, buffer capacity, and residual energy
in the decision-making process. However, in the process of deriving the weighted sum, the
weights between the multiple metrics are determined to be the same; thus, it cannot cope
with changes in network conditions.

To solve this problem, the MCDM-based scheme proposed in our previous study
aims to respond to changes in network environment by logically determining the weights
between multiple metrics. However, as the decision maker pre-determines the weights of
each metric based on prior knowledge, there is a clear limitation in that the weights cannot
be changed at runtime. To overcome this limitation, the proposed scheme recognizes the
network environment using multiple cognitive metrics and finds the optimal policy to
jointly optimize the performance metrics through Q-learning. In addition, we use WMA to
prevent sudden changes in cognitive metrics. As a result, the proposed scheme provides
a flexible trade-off between conflicting performance metrics by adaptively changing the
parent node according to changes in network conditions.

6. Conclusions

To jointly achieve multiple objectives in tree routing, we revisit the classic problem of
finding an optimal parent node in a complex deployment scenario. Our key idea is to find
the best parent node by utilizing empirical data about the target network via Q-learning.
Specifically, our contributions are: (1) We propose three types of cognitive metrics to cope
with various network scenarios. (2) We present a system model for applying RL in tree
routing and specify concrete algorithms regarding the tree construnction, loop detection,
and parent update. (3) We define a state space, action set, and reward function to find the
best parent node via Q-learning. Through comprehensive simulations, we demonstrate
that the proposed parent selection scheme can strike a balance between the performance
metrics regarding end-to-end delay, packet delivery ratio, and energy consumption.
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