
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 19, NO. 2, APRIL 2011 227

An Enhanced Type-Reduction Algorithm
for Type-2 Fuzzy Sets

Chi-Yuan Yeh, Wen-Hau Roger Jeng, and Shie-Jue Lee, Member, IEEE

Abstract—Karnik and Mendel proposed an algorithm to com-
pute the centroid of an interval type-2 fuzzy set efficiently. Based
on this algorithm, Liu developed a centroid type-reduction strat-
egy to carry out type reduction for type-2 fuzzy sets. A type-2 fuzzy
set is decomposed into a collection of interval type-2 fuzzy sets by
α-cuts. Then, the Karnik–Mendel algorithm is called for each in-
terval type-2 fuzzy set iteratively. However, the initialization of the
switch point in each application of the Karnik–Mendel algorithm
is not a good one. In this paper, we present an improvement to Liu’s
algorithm. We employ the previously obtained result to construct
the starting values in the current application of the Karnik–Mendel
algorithm. Convergence in each iteration, except the first one, can
then speed up, and type reduction for type-2 fuzzy sets can be car-
ried out faster. The efficiency of the improved algorithm is analyzed
mathematically and demonstrated by experimental results.

Index Terms—α-Cut, α-plane, centroid type reduction, fuzzy
inference, Karnik–Mendel algorithm, membership function, type-
1 fuzzy set, type-2 fuzzy system.

I. INTRODUCTION

T
YPE-1 fuzzy sets, which represent uncertainties by num-

bers in the range [0, 1], have been widely applied in

fuzzy systems in different areas of applications [1]. However,

the membership functions of type-1 fuzzy sets are often overly

precise. They require that each element of the universal set be

assigned a precise real number [2]. Type-2 fuzzy sets, instead,

have been proposed for which the associated membership de-

grees are allowed to be uncertain and denoted as type-1 fuzzy

sets [3]–[9]. Some successful applications of fuzzy systems us-

ing type-2 fuzzy sets have been published, such as automatic

control [10]–[12], function approximation [13], [14], data clas-

sification [15]–[17], and medical applications [18], [19], but

most of them use interval type-2 fuzzy sets which are special

type-2 fuzzy sets. This may be due to the reason that the in-

ference involving type-2 fuzzy sets is more complex and less

efficient than that involving interval type-2 fuzzy sets.

Type reduction is one of the major steps involved in type-2

fuzzy inference. It does the work of reducing a type-2 fuzzy

Manuscript received December 12, 2009; revised July 27, 2010; accepted July
27, 2010. Date of publication November 18, 2010; date of current version April
4, 2011. This work was supported by the National Science Council (NSC) under
Grant NSC-97-2221-E-110-048-MY3 and Grant NSC-98-2221-E-110-052.

The authors are with the Department of Electrical Engineering, National
Sun Yat-Sen University, Kaohsiung 804, Taiwan (e-mail: leesj@mail.ee.
nsysu.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TFUZZ.2010.2093148

set to a type-1 one. A type-2 fuzzy system contains a set of

type-2 fuzzy rules in which variables are expressed in terms of

type-2 fuzzy sets. When providing desired inputs, one would

like to obtain a crisp-valued output deduced from the type-2

fuzzy sets contained in the system. Usually, the aggregated re-

sult combined from the deduced conclusions of individual rules

is a type-2 fuzzy set. One then has to apply type reduction to

reduce the obtained type-2 fuzzy set to a type-1 set. Following

this, defuzzification is applied to convert the obtained type-1

fuzzy set into a crisp number. Usually, type reduction is much

more time-consuming than defuzzification. Therefore, making

type reduction more efficient can do good to the growing interest

in using type-2 fuzzy systems [20]–[25]. Recently, several type-

reduction methods for type-2 fuzzy sets have been proposed.

Liu [26] proposed a centroid type-reduction strategy using

α-cuts to decompose a type-2 fuzzy set into a collection of

interval type-2 fuzzy sets and then applying the Karnik–Mendel

algorithm [27] to do type reduction for each interval type-2

fuzzy set. Coupland and John [28] proposed a geometric-based

defuzzification method for type-2 fuzzy sets. It was claimed to

be faster than type-reduction-based method. However, it has a

limitation on the form of fuzuy sets being used. Rotationally

symmetrical membership functions are to be avoided in a prac-

tical system. Lucas et al. [29] also applied type reduction to

land-cover classification [17]. In this study, a centroid is calcu-

lated for each vertical slice, which is a type-1 fuzzy set. The

calculated centroids are then combined to form a type-reduced

set. There are also other type-reduction methods. For example,

Tan and Wu [30] introduced the concept of equivalent type-1

fuzzy sets. By replacing a type-2 fuzzy set with a collection of

equivalent type-1 fuzzy sets, type reduction can be simplified

to deciding which equivalent type-1 fuzzy set to employ in a

particular situation. A genetic algorithm (GA) was developed to

select the equivalent type-1 fuzzy set in the evolution process.

In this paper, we propose an improvement to Liu’s algorithm

for type-2 fuzzy sets. In Liu’s algorithm, the initialization of

the switch point in each application of the Karnik–Mendel al-

gorithm is not a good one. We employ the previously obtained

result to construct the starting values in the current application

of the Karnik–Mendel algorithm. As a result, unnecessary com-

putations and comparisons are avoided. Convergence in each

iteration, except the first one, can speed up and type reduc-

tion can be done faster. The rest of this paper is organized

as follows. Section II introduces some basic fuzzy concepts.

Section III describes type reduction for type-2 fuzzy sets.

Section IV presents the improved type-reduction algorithm.

Mathematical work on efficiency analysis is also provided

in this section. Section V gives an example for illustration.

1063-6706/$26.00 © 2010 IEEE

228 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 19, NO. 2, APRIL 2011

Fig. 1. Type-2 fuzzy set.

Experimental results are presented in Section VI. Finally, a con-

clusion is given in Section VII.

II. BASIC FUZZY CONCEPTS

A type-2 fuzzy set Ã on a given universal set X is character-

ized by the membership function μÃ (x, u), where x ∈ X , and

u ∈ Jx ⊆ [0, 1] and can be represented as [27]

Ã = {((x, u), μÃ (x, u)) | ∀x ∈ X,∀u ∈ Jx} (1)

in which 0 ≤ μÃ (x, u) ≤ 1. We refer to μÃ (x) =
∫

u∈Jx
μÃ (x, u)/u as a secondary membership function

which is a type-1 fuzzy set. Obviously, Ã can also be repre-

sented as Ã = {(x, μÃ (x)) | ∀x ∈ X}. Fig. 1 shows a type-2

fuzzy set where μÃ (a) and μÃ (b) are explicitly shown.

When X is discretized into n points x1 , x2 , . . . , xn , Ã
becomes

Ã =

n
∑

i=1

[

∫

u∈Jx i

μÃ (xi , u)/u

] /

xi . (2)

The centroid of Ã can then be defined as follows [27]:

C(Ã) =

∫

u1 ∈Jx 1

· · ·

∫

un ∈Jx n

[μÃ (x1 , u1)⋆· · ·⋆μÃ (xn , un)]

/

∑n
i=1 xiui

∑n
i=1 ui

(3)

where ⋆ is the minimum t-norm operator. Note that if Ã is a

type-1 fuzzy set, C(Ã) is a scalar [1]. If Ã is an interval type-2

fuzzy set, C(Ã) is an interval set [27], [31]–[33]. If Ã is a type-2

fuzzy set, C(Ã) is a type-1 fuzzy set [26]–[28].

III. TYPE REDUCTION

The work of type reduction is to find the centroid type-reduced

set, i.e., (4), for a given type-2 fuzzy set Ã. Karnik and Mendel

[27] developed an efficient algorithm for the case when Ã is an

interval type-2 fuzzy set. Based on the Karnik–Mendel (KM)

algorithm, Liu [26] proposed a method for the case when Ã
is a general type-2 fuzzy set. Both algorithms assume that the

universal set is discrete. If the universal set X is continuous,

sampling on X is performed before using them.

A. Karnik–Mendel Algorithm

Given an interval type-2 fuzzy set Ã on a univer-

sal set X = {x1 , x2 , . . . , xn}, where x1 < x2 < · · · < xn ,

let μÃ (x1), μÃ (x2), . . . , μÃ (xn) be intervals [I1 , I1], [I2 , I2],
. . . , [In , In], respectively. The KM algorithm [27] can find the

centroid type-reduced set, i.e., (4), which is an interval [b, b], as

follows. Initially, compute

t =

∑n
j=1 xj ((Ij + Ij)/2)
∑n

j=1(Ij + Ij)/2
. (4)

Then, set t to b, which is called the left initial value. We locate

b in X . Let xk ≤ b < xk+1 . We set L = k, which is called the

left switch point, and update b as follows:

b =

∑L
j=1 xj Ij +

∑n
j=L+1 xj Ij

∑L
j=1 Ij +

∑n
j=L+1 Ij

. (5)

We locate b in X again. Let xk ≤ b < xk+1 . Then, we update L
also by L = k. If L has a different value than before, we continue

to update b by (5). Otherwise, we are done with the computation

of b. Next, we set t to b, which is called the right initial value

and locate b in X . Let xk ≤ b < xk+1 . We set L = k, which is

called the right switch point, and update b by

b =

∑L
j=1 xj Ij +

∑n
j=L+1

xj Ij

∑L
j=1 Ij +

∑n
j=L+1

Ij

. (6)

We locate b in X again. Let xk ≤ b < xk+1 . Then, we update

L also by L = k. If L has a different value than before, we

continue to update b by (6). Otherwise, we are done with the

computation of b. The KM algorithm can be summarized below.

procedure Karnik–Mendel(Ã, X)

Initialize b and b to t computed by (4);

Determine L and L;

call KM-In(Ã, X , b, b, L, L);

return [b, b], L, and L;

endprocedure

procedure KM-In(Ã, X , b, b, L, L)

do

Lo = L;

Update b by (5) and L accordingly;

while(L �= Lo);

do

L
o

= L;

Update b by (6) and L accordingly;

while (L �= L
o
);

endprocedure

Wu and Mendel [31] proposed an enhanced KM (EKM) al-

gorithm in which the initial values of L and L are estimated as

follows:

L =
n

2.4
, L =

n

1.7
. (7)

YEH et al.: ENHANCED TYPE-REDUCTION ALGORITHM FOR TYPE-2 FUZZY SETS 229

Besides, a better initialization is used to reduce the number of it-

erations. The termination condition of the iterations is changed

to remove one unnecessary iteration and a subtle computing

technique is used to reduce the computational cost of each

iteration.

B. Liu’s Algorithm

Liu [26] proposed a method for type reduction for gen-

eral type-2 fuzzy sets for the case that the secondary mem-

bership functions are convex type-1 fuzzy sets. A type-1

fuzzy set is convex if its every α-cut, i.e., α > 0, is a con-

tinuous interval. Suppose that we are given such a type-2

fuzzy set Ã on a universal set X = {x1 , x2 , . . . , xn}, where

x1 < x2 < · · · < xn . Let α1 , α2 , . . . , αk be k real num-

bers, and αi ∈ [0, 1], 1 ≤ i ≤ k. For each αi , we take αi-

cuts of the secondary membership functions of Ã at x1 ,

x2 , . . . , xn and let them be intervals [I(x1 |αi), I(x1 |αi)],
[I(x2 |αi), I(x2 |αi)], . . . , [I(xn |αi), I(xn |αi)]. Group these n
intervals and we have the α-plane α i Ã for Ã, which is an inter-

val type-2 fuzzy set on X . By applying the KM algorithm on
α i Ã, we get a centroid type reduced interval [bi , bi] for α i Ã. The

centroid type-reduced set, i.e., Oy , for Ã can then be derived as

Oy ≈

k
⋃

i=1

αi

/

[bi , bi] (8)

by the first decomposition theorem of type-1 fuzzy sets [1].

Let α = [α1 , α2 , . . . , αk]. Liu’s algorithm can be summarized

below.

procedure Liu(Ã, X , α)

for i = 1 to k
Take the α-plane α i Ã for Ã on X;

call Karnik–Mendel(α i Ã, X) and obtain the

centroid type-reduced interval [bi , bi] for α i Ã;

endfor;

Obtain the type-reduced set Oy for Ã by (8);

endprocedure

Some properties for the centroid, including a nesting property,

were stated in [34]. Note that we can adopt the EKM algorithm

[31] to replace the KM algorithm in the above code. To get a

crisp, defuzzified value y for Ã as output, we can calculate the

COG of (8).

IV. IMPROVED TYPE REDUCTION ALGORITHM

In Liu’s algorithm, the calculation of the type-reduced interval

of each α-plane is done independently. The information obtained

in the previous iteration does not help the calculation of the

current iteration. We exploit the obtained results of the previous

iteration to set the initial values in the current iteration. As a

result, efficiency is improved.

A. Improved Algorithm

Let α1 , α2 , . . . , αk be k real numbers, and 0 ≤ α1 < α2 <
· · · < αk ≤ 1. For simplicity, we denote I(xj |αi) as Ij,i ,

and I(xj |αi) as Ij,i for 1 ≤ j ≤ n and 1 ≤ i ≤ k. For ex-

ample, the α-plane α i Ã consists of the intervals [I1,i , I1,i],

[I2,i , I2,i], . . . , [In,i , In,i]. For αk , we apply the KM algorithm

on αk Ã and obtain the centroid type-reduced interval [bk , bk],
the left switch point Lk , and the right switch point Lk . For any

αi , i = k − 1, k − 2, . . . , 2, 1, we exploit Li+1 and Li+1 , which

are the left switch point and the right switch point obtained from

the previous iteration for αi+1 , to do initial settings for αi as

follows:

Li = Li+1 , Li = Li+1 (9)

bi = ti =

∑L i
j=1 xj Ij,i +

∑n
j=L i +1 xj Ij,i

∑L i
j=1 Ij,i +

∑n
j=L i +1 Ij,i

(10)

bi = ti =

∑L i

j=1 xj Ij,i +
∑n

j=L i +1
xj Ij,i

∑L i

j=1 Ij,i +
∑n

j=L i +1
Ij,i

. (11)

Note that, unlike Liu’s algorithm, the initial values for bi and

bi are set differently and are related to the information derived

earlier. Then, we call KM-In(α i Ã,X, bi , bi , Li , Li) to obtain the

centroid type-reduced interval [bi , bi], the left switch point Li ,

and the right switch point Li for αi . Let α = [α1 , α2 , . . . , αk].
The improved algorithm can be described below.

procedure Improved(Ã,X,α)

for i = k down to 1
Take αi-cuts of the secondary membership

functions of Ã at x1 , x2 , . . . , xn ;

Let these αi-cuts be [I1,i , I1,i], [I2,i , I2,i],

[In,i , In,i];

Form these αi-cuts as the α-plane α i Ã for Ã
on X;

if(i = k)

call Karnik–Mendel(αk Ã,X) and obtain [bk , bk],
Lk , Lk for αk Ã;

else

Initialize Li and Li by (9);

Initialize bi and bi by (10) and (11),

respectively;

call KM-In(α i Ã,X, bi , bi , Li , Li)

to obtain [bi , bi], Li , Li for α i Ã;

endif;

endfor;

Obtain the type-reduced set Oy for Ã by (8);

endprocedure

Note that the α-cuts with larger values are processed first.

B. Some Observations

Our proposed improved algorithm has a better compu-

tational complexity than Liu’s algorithm. We present some

observations. The proofs for them can be found in the Appendix

at the end of the paper.

Lemma 1: Given a set of data X = {x1 , x2 , . . . , xn} and

nonnegative weights w1 , w2 , . . . , wn , let c be the centroid of X

230 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 19, NO. 2, APRIL 2011

defined by

c =

∑n
j=1 xjwj

∑n
j=1 wj

(12)

where
∑n

j=1 wj > 0. Then, we have
∑n

j=1(xj − c)wj = 0.

Lemma 2: Given a set of data X = {x1 , x2 , . . . , xn}, and

nonnegative weights w1 , w2 , . . . , wn with
∑n

j=1 wj > 0, let

c be the centroid of X and c′ be another number. Then,
∑n

j=1(xj − c′)wj < 0 if and only if c < c′.

Proposition 1: Given an interval type-2 fuzzy set Ã on X =
{x1 , x2 , . . . , xn}, where x1 < x2 < · · · < xn , with the mem-

bership degrees being intervals [I1 , I1], [I2 , I2], . . . , [In , In],
respectively, let the centroid type-reduced interval, the left

switch point, and the right switch point obtained by the KM

algorithm be [b, b], L, and L, respectively. Then, we have

L
∑

j=1

(xj − b)Ij +

n
∑

j=L+1

(xj − b)Ij = 0 (13)

L
∑

j=1

(xj − b)Ij +

n
∑

j=L+1

(xj − b)Ij = 0. (14)

Lemma 3: Suppose Ã is a type-2 fuzzy set on X =
{x1 , x2 , . . . , xn}, as described in Section III-B. Let α1 and

α2 be two real numbers with 0 ≤ α1 < α2 ≤ 1. Let the αi-cuts,

i = 1 and 2, of the secondary membership functions of Ã at

x1 , x2 , . . . , xn be [I1,i , I1,i], [I2,i , I2,i], . . . , [In,i , In,i]. Form

these two collections of α-cuts as two α-planes α1 Ã and α2 Ã,

respectively. Let L1 and L1 be the left and right switch points

for α1 Ã, and L2 and L2 for α2 Ã, which are obtained by the KM

algorithm. Then, we have L2 ≥ L1 , and L2 ≤ L1 .

Theorem 1: Suppose Ã is a type-2 fuzzy set on X =
{x1 , x2 , . . . , xn}, as described in Section III-B, and α1 and α2

are two real numbers with 0 ≤ α1 < α2 ≤ 1. Let the αi-cuts,

i = 1 and 2, of the secondary membership functions of Ã at

x1 , x2 , . . . , xn be [I1,i , I1,i], [I2,i , I2,i], . . . , [In,i , In,i]. Form

these two collections of α-cuts as two α-planes α1 Ã and α2 Ã,

respectively. Let [bi , bi], Li , Li be the centroid type-reduced in-

terval, the left switch point, and the right switch point obtained

from the application of the KM algorithm on α i Ã, i = 1, 2.

Then, we have

b2 ≥

∑L2
j=1 xj Ij,1 +

∑n
j=L2 +1 xj Ij,1

∑L2
j=1 Ij,1 +

∑n
j=L2 +1 Ij,1

≥ b1 (15)

b2 ≤

∑L2

j=1 xj Ij,1 +
∑n

j=L2 +1
xj Ij,1

∑L2

j=1 Ij,1 +
∑n

j=L2 +1
Ij,1

≤ b1 . (16)

From Lemma 3 and Theorem 1, we can easily obtain

the following order relationships involved in our improved

algorithm:

b1 ≤ t2 ≤ b2 ≤ t3 ≤ . . . ≤ bk−1 ≤ tk ≤ bk (17)

b1 ≥ t2 ≥ b2 ≥ t3 ≥ . . . ≥ bk−1 ≥ tk ≥ bk . (18)

Note that ti is the left initial value of (10) and that ti is the right

initial value of (11) for i = k − 1, k − 2, . . . , 2, 1.

C. Complexity Comparison

Now, we are ready to give a complexity comparison between

Liu’s algorithm and our improved algorithm. We are concerned

about two numbers, average count and compare count. The av-

erage count is the number of initialization, i.e., (4), (10), or (11),

and updates, i.e., (5) or (6), to be performed. These five equations

can be regarded as doing the average of xj , 1 ≤ j ≤ n. For (4),

the xj ’s are averaged with the weights (Ij + Ij)/2, 1 ≤ j ≤ n;

for (5), the weights are I1 , I2 , . . . , IL , IL+1 , . . . , In , respec-

tively, etc. The compare count is the number of comparisons

with xi , 1 ≤ i ≤ n, to be done. Furthermore, we consider worst

cases. Note that in a call to the KM algorithm, one needs to

compare with x1 up to find the initial switch point. Then, search

is done up and down from this point. Liu’s algorithm has to do

this procedure k times. Instead, in our algorithm, we search for

Li down from Li+1 , and for Li up from Li+1 .

For Liu’s algorithm, one call to the KM algorithm is per-

formed for each αi , 1 ≤ i ≤ k. In each call of the KM algorithm,

we have to apply (4) once, and advance down iteratively to find

bi by applying (5), possibly traversing through each interval of

the lower part of the universe set, and then advance up iteratively

to find bi by applying (6), possibly traversing through each in-

terval of the upper part of the universe set. Note that (5) and (6)

need to be executed twice at the final switch point. Therefore,

the average count for one application of the KM algorithm is

n − 1 + 2 = n + 1 and the total average count involved in the

Liu’s algorithm in the worst case is k(n + 1), which is of order

O(kn). In each call of the KM algorithm, at most n comparisons

with xj , 1 ≤ j ≤ n, may be done in finding the initial value of

Li . Then at most 2n comparisons are required to obtain the

left switch point Li and the right switch point Li . The factor 2

comes from the possibility of two comparisons done with each

xj . Therefore, one call to the KM algorithm requires at most

n + 2n = 3n in compare count. The total compare count in-

volved in the Liu’s algorithm is bounded by 3kn, which is also

of order O(kn).
For our improved algorithm, we do the same procedure as

Liu’s for αk . Therefore, the average count and compare count for

αk are n + 1 and 3n, respectively. Then, we use Li+1 and Li+1

to derive [bi , bi], i = k − 1, k − 2, . . . , 2, 1. For initialization,

we apply (10) and (11). This takes 2(k − 1) in average count.

As α decreases from αk−1 to α1 , the updates go all the way

down or up from the switch points obtained from the previous

iteration. The worst case occurs when updates traverse through

each interval of the universal set. This leads to n − 1 computa-

tions. Also, both (5) and (6) need to be executed twice at the final

switch point. This leads to another 2k computations. Therefore,

the total average count involved in our improved algorithm in the

YEH et al.: ENHANCED TYPE-REDUCTION ALGORITHM FOR TYPE-2 FUZZY SETS 231

TABLE I
SUMMARY ON AVERAGE AND COMPARE COUNTS IN WORST CASES

worst case is n + 1 + 2(k − 1) + n − 1 + 2k = 4k + 2n − 2,

which is of order O(k + n). Regarding comparisons, we need at

most 2n comparisons for αi , i = k − 1, k − 2, . . . , 2, 1. Again,

the factor 2 comes from the possibility of two comparisons

done with each xj . Therefore, the compare count involved in

our improved algorithm is bounded by 3n + 2n = 5n, which

is of order O(n). Note that the complexity of Liu’s algorithm

is of quadratic order, while the complexity of our improved

algorithm is of linear order. A summary about the average and

compare counts in worst cases is listed in Table I.

V. EXAMPLE

We give an example here to illustrate how the improved

algorithm differs from Liu’s algorithm. Let Ã be a type-2

fuzzy set. Let us assume that after sampling, we have X =
{x1 , x2 , . . . , x6}, where x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 =
5, and x6 = 6. The secondary membership functions of Ã at

these sampled points are shown in Fig 2. Suppose that we

take k = 3, and let α1 = 0.1, α2 = 0.5, and α3 = 1.0. We

take α3-cuts of the secondary membership functions and have

[I1,3 , I1,3] = [0.3, 0.7], [I2,3 , I2,3] = [0.4, 0.8], [I3,3 , I3,3] =

[0.4, 0.8], [I4,3 , I4,3] = [0.5, 0.9], [I5,3 , I5,3] = [0.4, 0.8],

and [I6,3 , I6,3] = [0.3, 0.7]. These six intervals form the interval

type-2 fuzzy set α3 Ã. Similarly, we have α2 Ã contain-

ing the six intervals [I1,2 , I1,2] = [0.1, 0.9], [I2,2 , I2,2] =

[0.2, 0.8], [I3,2 , I3,2] = [0.3, 1.0], [I4,2 , I4,2] = [0.4, 1.0],

[I5,2 , I5,2] = [0.3, 0.9], [I6,2 , I6,2] = [0.1, 0.8], and α1 Ã con-

taining the six intervals [I1,1 , I1,1] = [0.0, 1.0], [I2,1 , I2,1] =

[0.0, 1.0], [I3,1 , I3,1] = [0.1, 1.0], [I4,1 , I4,1] = [0.2, 1.0],

[I5,1 , I5,1] = [0.0, 1.0], [I6,1 , I6,1] = [0.0, 1.0].
Liu’s algorithm works as follows.

1) For α3 = 1.0, we apply the KM algorithm on α3 Ã. First,

we initialize b3 and b3 by (4) and have b3 = b3 = t =
3.514. Since x3 ≤ 3.514 ≤ x4 , we have L3 = 3. For this,

the average count is 1, and the compare count is 3. Note

that we compared 3.514 against x1 , x2 , and x3 . Then,

we update b3 by (5) and have b3 = 3.000, from which we

have L3 = 3. This time the average count is 1, and the

compare count is 1 by comparing 3.000 against x3 . Note

that the value of L3 does not change. Therefore, we are

done with b3 . The average count and compare count for

obtaining b3 are 1 + 1 = 2 and 3 + 1 = 4, respectively.

Now we proceed with b3 . Obviously, the initial values

of b3 and L3 are 3.514 and 3, respectively. We update

b3 by (6), and have b3 = 4.029. Since x4 ≤ 4.029 ≤ x5 ,

we have L3 = 4. For this, the average count is 1 and

the compare count is 3. Note that we compared 4.029

against x3 and x4 . The value of L3 changes; therefore, we

update it again by (6) and have b3 = 4.032, from which

we have L3 = 4. This time the average count is 1, and the

compare count is 1 by comparing 4.032 against x4 . Note

that the value of L3 does not change. Therefore, we are

done with b3 . The average count and compare count for

obtaining b3 are 1 + 1 = 2 and 2 + 1 = 3, respectively.

This completes the iteration for α3 . In summary, we obtain

[b3 , b3] = [3.000, 4.032], L3 = 2, L3 = 4, average count

= 2 + 2 = 4, and compare count = 4 + 3 = 7.

2) For α2 = 0.5, we apply the KM algorithm on α2 Ã.

By repeating the same procedure as above, we obtain

[b2 , b2] = [2.536, 4.556], L2 = 2, L2 = 4, average count

= 5, and compare count = 9.

3) For α1 = 0.1, we apply the KM algorithm on α1 Ã.

By repeating the same procedure as above, we obtain

[b1 , b1] = [1.615, 5.462], L1 = 1, L1 = 5, average count

= 7, and compare count = 13.

The results obtained from Liu’s algorithm are shown in

Table II. The centroid type-reduced set is depicted in Fig. 3.

The corresponding crisp, defuzzified output is 3.535.

Our improved algorithm works as follows.

1) For α3 = 1.0, our algorithm runs exactly as Liu’s algo-

rithm. Therefore, [b3 , b3] = [3.000, 4.032], L3 = 3, L3 =
4, average count = 4, and compare count = 7.

2) For α2 = 0.5, we exploit L3 to obtain b2 . First, we set

L2 = L3 = 3, and calculate the initial value of b2 by (10),

and have b2 = t2 = 2.629. Since x2 ≤ 2.629 ≤ x3 , we

have L3 = 2. For this, the average count is 1 and the com-

pare count is 2. Note that we compared 2.629 against x3

and x2 . The value of L3 changes, and therefore, we update

it by (5) and have b2 = 2.536, from which we have L2 = 2.

For this, the average count is 1 and the compare count is 1.

Note that we compared 2.536 against x2 . Since the value

of L2 does not change, we are done with b2 . The average

count and compare count for obtaining b2 are 2 and 3,

respectively. Now, we proceed with b2 . Again, we exploit

L3 to obtain b2 . First, we set L2 = L3 = 4, and calculate

the initial value of b2 by (11) and have b2 = 4.556, from

which we have L2 = 4. For this, the average count is 1

and the compare count is 1. Note that we compared 4.556

against x4 . Since the value of L2 does not change, we are

done with b2 . The average count and compare count for

obtaining b2 are 1 and 1, respectively. In summary, we

obtain [b2 , b2] = [2.536, 4.556], L2 = 2, L2 = 4, average

count = 2 + 1 = 3, and compare count = 3 + 1 = 4.

3) For α1 = 0.1, we exploit [L2 , L2] to obtain [b1 , b1]. Re-

peating the same procedure as above, we obtain [b1 , b1] =
[1.615, 5.462], L1 = 1, L1 = 5, average count = 4, and

compare count = 6.

The results obtained from our algorithm are also shown in

Table II. Clearly, our algorithm runs more efficiently than Liu’s

algorithm. Both average count and compare count of our algo-

rithm are smaller than those of Liu’s algorithm.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results to show

the effectiveness of our improved algorithm. We compare our

232 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 19, NO. 2, APRIL 2011

Fig. 2. Secondary membership functions of Ã at sampled points.

TABLE II
RESULTS OBTAINED FOR THE EXAMPLE

Fig. 3. Centroid type-reduced set of the example.

algorithm with four versions of Liu’s algorithm described in

Section III-B. In the first version, which was denoted as Liu-

original-KM, and was originally published in [26], locating the

appropriate range of [xk , xk+1] for each update of bi or bi is

always done from x1 up, i.e., comparing with x1 , x2 , etc. In the

second version, which was denoted as Liu-KM, we modified

the version of Liu-original-KM such that in each call of the KM

algorithm one compares with x1 up to find the initial switch

point, and then search up for bi or down for bi from this initial

point, as described in Section IV-C. The third version, which is

denoted as Liu-original-EKM, is the same as the version of Liu-

original-KM except the EKM algorithm [31], estimating initial

switch points the way as in (7), was adopted. The fourth ver-

sion, which is denoted as Liu-EKM, is the same as the version

of Liu-KM except the EKM algorithm was adopted. As can be

seen later, Liu-original-KM and Liu-KM require the same num-

bers in average count, and Liu-original-EKM and Liu-EKM

require the same numbers in average count. However, Liu-KM

and Liu-EKM save a lot of comparisons, and thus, can run

faster than Liu-original-KM and Liu-original-EKM. Our im-

proved algorithm requires fewer average and compare counts,

and runs faster than all these four versions of Liu’s algorithm.

In the following experiments, we use a computer with Intel(R)

Core(TM)2 Quad CPU Q6600 2.40 GHz, 4 GB of RAM to

conduct the experiments. The programming language used is

MATLAB7.0.

A. Experiment I

In this experiment, we do type reduction for a type-2 fuzzy

set Ã with the following secondary membership function [26]:

μÃ (x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

z − d(x)

p(x) − d(x)
, d(x) ≤ z ≤ p(x)

u(x) − z

u(x) − p(x)
, p(x) ≤ z ≤ u(x)

0, otherwise

, 0 ≤ z ≤ 1

u(x) = max(f1(x), f2(x))

d(x) = max(g1(x), g2(x))

f1(x) = exp

(

−
(x − 3)2

8

)

YEH et al.: ENHANCED TYPE-REDUCTION ALGORITHM FOR TYPE-2 FUZZY SETS 233

Fig. 4. Ã for experiment I.

f2(x) = 0.8 exp

(

−
(x − 6)2

8

)

g1(x) = 0.5 exp

(

−
(x − 3)2

2

)

g2(x) = 0.4 exp

(

−
(x − 6)2

2

)

p(x) = d(x) + w(x)(u(x) − d(x))

where x ∈ R, and w(x) is a randomly selected number between

0 and 1. A 3-D figure of this fuzzy set is shown in Fig. 4.

Fig. 5 shows comparisons on average count, compare count,

and execution time taken by each of the five algorithms in deriv-

ing the centroid type-reduced set for Ã. In this figure, the number

of samplings is fixed at 200. The samplings are taken evenly in

the range [0, 10], i.e., x1 = 0.05, x2 = 0.10, . . . , x200 = 10.00.

The horizontal axis indicates the number of α-cuts, k, which

varies from 5 to 100. For each k, 5 ≤ k ≤ 100, the α-cuts are

taken evenly. For example, for k = 10, we have α1 = 0.1, α2 =
0.2, . . . , α10 = 1.0. Note that in Fig. 5(a), the vertical axis is

plotted in log scale with base 10. In Fig. 5(b), we only have

three curves since Liu-original-KM and Liu-KM have identical

values in average count and Liu-original-EKM and Liu-EKM

have identical values in average count. From Fig. 5, we can see

that the compare count involved in our algorithm is around 100

to 300. However, the four Liu’s algorithms have a larger com-

pare count of about 500–40 000. Note that Liu-EKM requires

more compare counts than Liu-KM. For example, Liu-EKM

requires about 4000 in compare count for k = 25, but Liu-KM

only requires about 2000 in this case. The reason is that the EKM

algorithm estimates two different initial switch points in each it-

eration. A comparison with x1 up has to be done for both switch

points. For the KM algorithm, identical initial switch points are

estimated and one such comparison can be saved in each itera-

tion. The average count involved in our algorithm is around 20–

200. However, the four Liu’s algorithms have a larger average

count, Liu-KM around 30–500 and Liu-EKM around 20–400.

Our algorithm runs about three to five times faster than Liu-KM

and Liu-EKM and about six–15 times faster than Liu-original-

KM and Liu-original-EKM. Liu-original-EKM runs faster than

Liu-original-KM, and Liu-EKM runs faster than Liu-KM. Note

that an average count is more computation-demanding than a

compare count. Therefore, execution time heavily depends on

Fig. 5. Comparisons on (a) compare count, (b) average count, and (c) execu-
tion time for experiment I, with the number of samplings being 200.

average count. The values at certain snapshots of Fig. 5 are

shown in Table III. The defuzzified values obtained for different

α-cuts are shown in the last row in this table. To rule out random

effects in comparisons, paired samples t-tests were conducted

for two pairs of competitors, Ours versus Liu-KM and Ours ver-

sus Liu-EKM. The p-values of the tests are shown in Table IV.

Note that the lower the p-value, the more significant the result

in the sense of statistical significance. In this case, if the p-value

is less than 0.05, then there is a significant difference between

the two competitors. Apparently, our algorithm is significantly

better than Liu-KM and Liu-EKM in terms of compare count,

average count, and execution time.

Fig. 6 shows comparison results with k, the number of

α-cuts, being fixed at 20, i.e., we have α1 = 0.05, α2 =
0.10, . . . , α20 = 1.00. The horizontal axis indicates the number

234 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 19, NO. 2, APRIL 2011

TABLE III
VALUES AT CERTAIN SNAPSHOTS FOR FIG. 5

TABLE IV
p-VALUES OBTAINED FOR EXPERIMENT I, WITH THE NUMBER OF SAMPLINGS

BEING 200

of samplings, varying from 5 to 200. Samplings are done evenly

in the range [0, 10]. From this figure, we can see that the compare

count involved in our algorithm is around 50–150. However,

the four Liu’s algorithms have a larger compare count, which is

about 100–8000. The average count involved in our algorithm is

around 40–50. However, the four Liu’s algorithms have a larger

average count, Liu-KM around 70–100 and Liu-EKM around

50–80. Our algorithm runs about two to four times faster than

Liu-KM and Liu-EKM, and about two to 12 times faster than

Liu-original-KM and Liu-original-EKM. The values at certain

snapshots of Fig. 6 are shown in Table V. The defuzzified val-

ues obtained for different samplings are shown in the last row

in this table. The p-values of paired samples t-tests for the two

pairs, i.e., Ours versus Liu-KM and Ours versus Liu-EKM, are

shown in Table VI. Apparently, our algorithm is significantly

better than Liu-KM and Liu-EKM in terms of compare count,

average count, and execution time.

Two centroid type-reduced sets, i.e., one for k = 20, and the

other for k = 80, which are derived for Ã are shown in Fig. 7,

with the number of samplings being 200. Note that with k = 20,

we have a zigzag curve for the set. However, when the resolution

is set higher with k = 80, the derived set is much smoother.

B. Experiment II

In this experiment, we do type-reduction for another type-2

fuzzy set Ã with the following secondary membership function

[26]:

μÃ (x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1, d(x) ≤ z ≤ p(x)

u(x) − z

u(x) − p(x)
, p(x) ≤ z ≤ u(x)

0, otherwise

, 0 ≤ z ≤ 1

Fig. 6. Comparisons on (a) compare count, (b) average count, and (c) execu-
tion time for experiment I, with k being 20.

u(x) = max(f1(x), f2(x))

d(x) = max(g1(x), g2(x))

f1(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x − 1

2
, 1 ≤ x ≤ 3

7 − x

4
, 3 ≤ x ≤ 7

0, otherwise

YEH et al.: ENHANCED TYPE-REDUCTION ALGORITHM FOR TYPE-2 FUZZY SETS 235

TABLE V
VALUES AT CERTAIN SNAPSHOTS FOR FIG. 6

TABLE VI
p-VALUES OBTAINED FOR EXPERIMENT I, WITH k BEING 20

Fig. 7. Centroid type-reduced set derived with (a) k = 20 and (b) k = 80 for
experiment I.

f2(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x − 2

5
, 2 ≤ x ≤ 6

16 − 2x

5
, 6 ≤ x ≤ 8

0, otherwise

g1(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x − 1

6
, 1 ≤ x ≤ 4

7 − x

6
, 4 ≤ x ≤ 7

0, otherwise

Fig. 8. Ã for experiment II.

TABLE VII
VALUES AT CERTAIN SNAPSHOTS FOR FIG. 9

g2(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x − 3

6
, 3 ≤ x ≤ 5

8 − x

9
, 5 ≤ x ≤ 8

0, otherwise

p(x) = u(x) − 0.6(u(x) − d(x))

where x ∈ R. A 3-D figure of this fuzzy set is shown in Fig. 8.

Fig. 9 shows comparisons on average count, compare count, and

execution time taken by each of the five algorithms in deriving

the centroid type-reduced set for Ã. In this figure, the number of

samplings is fixed at 200. The samplings are taken evenly in the

range [0, 10]. The horizontal axis indicates the number of α-cuts,

i.e., k, which varies from 5 to 100. For each k, 5 ≤ k ≤ 100,

the α-cuts are taken evenly. From this figure, we can see that

the compare count involved in our algorithm is around 150–

350. However, the four Liu’s algorithms have a larger compare

count, which is about 700–50 000. The average count involved

in our algorithm is around 20–200. However, the four Liu’s

algorithms have a larger average count, Liu-KM around 30–550

and Liu-EKM around 30–450. Our algorithm runs about three to

five times faster than Liu-KM and Liu-EKM, and about six–15

times faster than Liu-original-KM and Liu-original-EKM. The

values at certain snapshots of Fig. 9 are shown in Table VII.

The defuzzified values obtained for different α-cuts are shown

in the last row in this table. The p-values of paired samples

t-tests for the two pairs, Ours versus Liu-KM and Ours versus

Liu-EKM, are shown in Table VIII. Apparently, our algorithm

236 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 19, NO. 2, APRIL 2011

Fig. 9. Comparisons on (a) compare count, (b) average count, and (c) execu-
tion time for experiment II, with the number of samplings being 200.

TABLE VIII
p-VALUES OBTAINED FOR EXPERIMENT II, WITH THE NUMBER OF SAMPLINGS

BEING 200

is significantly better than Liu-KM and Liu-EKM in terms of

compare count, average count, and execution time.

Fig. 10 shows comparison results with k, the number of α-

cuts, being fixed at 20. The horizontal axis indicates the number

of samplings, varying from 5 to 200. Samplings are done evenly

in the range [0, 10]. From this figure, we can see that the compare

Fig. 10. Comparisons on (a) compare count, (b) average count, and (c) exe-
cution time for experiment II, with k being 20.

count involved in our algorithm is around 50–200. However,

the four Liu’s algorithm have a larger compare count, about

150–10 000. The average count involved in our algorithm is

around 40–60. However, the four Liu’s algorithms have a larger

average count, Liu-KM around 80–120 and Liu-EKM around

60–90. Our algorithm runs about two to four times faster than

Liu-KM and Liu-EKM and about two to 14 times faster than

Liu-original-KM and Liu-original-EKM. The values at certain

snapshots of Fig. 10 are shown in Table IX. The defuzzified

values obtained for different samplings are shown in the last

row in this table. The p-values of paired samples t-tests for the

two pairs, i.e., Ours versus Liu-KM and Ours versus Liu-EKM,

are shown in Table X. Apparently, our algorithm is significantly

better than Liu-KM and Liu-EKM in terms of compare count,

average count, and execution time.

YEH et al.: ENHANCED TYPE-REDUCTION ALGORITHM FOR TYPE-2 FUZZY SETS 237

TABLE IX
VALUES AT CERTAIN SNAPSHOTS FOR FIG. 10

TABLE X
p-VALUES OBTAINED FOR EXPERIMENT II, WITH k BEING 20

Fig. 11. Derived type-reduced set with (a) k = 20 and (b) k = 80 for
experiment II.

Two centroid type-reduced sets, i.e., one for k = 20 and the

other for k = 80, derived for Ã are shown in Fig. 11, with the

number of samplings being 200. Again, the curve with k = 80
is much smoother than the curve with k = 20.

VII. CONCLUSION

We have presented an improvement to Liu’s algorithm [26]

to derive the centroid type-reduced set for a type-2 fuzzy set. In

Liu’s algorithm, a type-2 fuzzy set is decomposed, by α-cuts,

into a collection of interval type-2 fuzzy sets, and then the, KM

algorithm [27] is applied to do type reduction for each interval

type-2 fuzzy set. However, the initialization of the switch point

in each application of the KM algorithm is not good, thereby

leading to unnecessary computations and comparisons. In our

improved algorithm, the result previously obtained is employed

to construct the starting values in the current application of the

KM algorithm. As a result, average and compare counts are

reduced, and convergence in each iteration except the first one

speeds up. Through mathematical analysis and experiments, we

have concluded the superiority of our improved algorithm over

Liu’s algorithm.

APPENDIX

Proof of Lemma 1: Note that

c =

∑n
j=1 xjwj

∑n
j=1 wj

⇒

n
∑

j=1

xjwj = c

n
∑

j=1

wj

⇒

n
∑

j=1

(xj − c)wj = 0

which is the desired result.

Proof of Lemma 2: Note that from Lemma 1, we have

n
∑

j=1

(xj − c′)wj =

n
∑

j=1

(xj − c′)wj −

n
∑

j=1

(xj − c)wj

=
n

∑

j=1

[(xj − c′) − (xj − c)]wj

=

n
∑

j=1

(c − c′)wj

= (c − c′)

n
∑

j=1

wj .

Since
∑n

j=1 wj > 0, we conclude that
∑n

j=1(xj − c′)wj < 0
if and only if c < c′.

Proof of Proposition 1: Let us refer to the KM algorithm

described in Section III. For b, when convergence occurs, we

have

b =

∑L
j=1 xj Ij +

∑n
j=L+1 xj Ij

∑L
j=1 Ij +

∑n
j=L+1 Ij

from (5). Let w1 = I1 , . . . , wL = IL , wL+1 = IL+1 , . . . ,

wn = In . From Lemma 1, we get (13). For b, when convergence

238 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 19, NO. 2, APRIL 2011

occurs, by (6), we have

b =

∑L
j=1 xj Ij +

∑n
j=L+1

xj Ij

∑L
j=1 Ij +

∑n
j=L+1

Ij

which can be shown to be identical to (14) in a similar way.

Proof of Lemma 3: Let [b1 , b1] and [b2 , b2] be the centroid

type-reduced intervals obtained for α1 Ã and α2 Ã, respectively.

We prove L2 ≥ L1 here. The proof for L2 ≤ L1 can be done

similarly. By the KM algorithm, we have

xL2
≤ b2 < xL2 +1 (19)

xL1
≤ b1 < xL1 +1 . (20)

From Proposition 1, we have

L2
∑

j=1

(xj − b2)Ij,2 +
n

∑

j=L2 +1

(xj − b2)Ij,2 = 0. (21)

Let us assume that L2 < L1 . Then, we have L2 + 1 ≤ L1 , and

xL2 +1 ≤ xL1
. By (19), we have

b2 < xL1
. (22)

From (21), (22), and Lemma 2, we have

L2
∑

j=1

(xj − xL1
)Ij,2 +

n
∑

j=L2 +1

(xj − xL1
)Ij,2 < 0. (23)

Since xj < xL2 +1 for 1 ≤ j ≤ L2 , xj ≥ xL2 +1 for L2 + 1 ≤

j ≤ n, Ij,2 ≥ Ij,1 , and Ij,2 ≤ Ij,1 , (23) can lead to the follow-

ing inequality:

L2
∑

j=1

(xj − xL1
)Ij,1 +

n
∑

j=L2 +1

(xj − xL1
)Ij,1 < 0. (24)

By the assumption of L2 < L1 , we have

L2
∑

j=1

(xj − xL1
)Ij,1 +

n
∑

j=L2 +1

(xj − xL1
)Ij,1 < 0

⇒

L1
∑

j=1

(xj − xL1
)Ij,1 +

n
∑

j=L1 +1

(xj − xL1
)Ij,1 < 0

⇒

L1
∑

j=1

xj Ij,1 +

n
∑

j=L1 +1

xj Ij,1 (25)

< xL1

⎛

⎝

L1
∑

j=1

Ij,1 +

n
∑

j=L1 +1

Ij,1

⎞

⎠

⇒ xL1
>

∑L1
j=1 xj Ij,1 +

∑n
j=L1 +1 xj Ij,1

∑L1
j=1 Ij,1 +

∑n
j=L1 +1 Ij,1

= b1 (26)

which contradicts (20). Therefore, we conclude L2 ≥ L1 .

Proof of Theorem 1: We prove (16) here. Equation (11) can

be proved in a similar way. From Proposition 1, we get

L i
∑

j=1

(xj − bi)Ij,i +
n

∑

j=L i +1

(xj − bi)Ij,i = 0 (27)

for i = 1 and 2. Then, we have

L2
∑

j=1

(xj − b2)Ij,1 +

n
∑

j=L2 +1

(xj − b2)Ij,1 (28)

=

L2
∑

j=1

(xj − b2)Ij,1 +

n
∑

j=L2 +1

(xj − b2)Ij,1

−

⎡

⎣

L2
∑

j=1

(xj − b2)Ij,2 +

n
∑

j=L2 +1

(xj − b2)Ij,2

⎤

⎦ (29)

=

L2
∑

j=1

(xj − b2)(Ij,1 − Ij,2)

+

n
∑

j=L2 +1

(xj − b2)(Ij,1 − Ij,2). (30)

Note that (29) is equivalent to (28), since the bracketed expres-

sion is zero when i is set to 2 in (27). By the inclusion property

of α-cuts, we have Ij,1 ≤ Ij,2 , and Ij,1 ≥ Ij,2 for 1 ≤ j ≤ n.

Furthermore, we have xj ≤ b2 for j ≤ L2 , and xj > b2 for

j ≥ L2 + 1. Therefore, (30) is less than or equal to 0. Then,

(28) is also less than or equal to 0, i.e.,

L2
∑

j=1

(xj − b2)Ij,1 +

n
∑

j=L2 +1

(xj − b2)Ij,1 ≤ 0

which results in
∑L2

j=1 xj Ij,1 +
∑n

j=L2 +1 xj Ij,1
∑L2

j=1 Ij,1 +
∑n

j=L2 +1 Ij,1

≤ b2 (31)

after rearrangements. Also, we have

L2
∑

j=1

(xj − b1)Ij,1 +

n
∑

j=L2 +1

(xj − b1)Ij,1 (32)

=

L2
∑

j=1

(xj − b1)Ij,1 +

n
∑

j=L2 +1

(xj − b1)Ij,1

−

⎡

⎣

L1
∑

j=1

(xj − b1)Ij,1 +

n
∑

j=L1 +1

(xj − b1)Ij,1

⎤

⎦ (33)

=

L1
∑

j=1

(xj − b1)Ij,1 +

L2
∑

j=L1 +1

(xj − b1)Ij,1

+
n

∑

j=L2 +1

(xj − b1)Ij,1 −

⎡

⎣

L1
∑

j=1

(xj − b1)Ij,1

YEH et al.: ENHANCED TYPE-REDUCTION ALGORITHM FOR TYPE-2 FUZZY SETS 239

+

L2
∑

j=L1 +1

(xj − b1)Ij,1 +

n
∑

j=L2 +1

(xj − b1)Ij,1

⎤

⎦ (34)

=

L2
∑

j=L1 +1

(xj − b1)(Ij,1 − Ij,1). (35)

Note that (32) is equivalent to (33), since the bracketed expres-

sion is zero when i is set to 1 in (27). The collapse of one

summation into two summations in (34) is possible because

L1 ≤ L2 due to Lemma 3. Since Ij,1 ≥ Ij,1 for 1 ≤ j ≤ n and

xj > b1 for j ≥ L1 + 1, (35) is greater than or equal to 0. Then,

(32) is also less than or equal to 0, i.e.,

L2
∑

j=1

(xj − b1)Ij,1 +
n

∑

j=L2 +1

(xj − b1)Ij,1 ≥ 0

which leads to

b1 ≤

∑L2
j=1 xj Ij,1 +

∑n
j=L2 +1 xj Ij,1

∑L2
j=1 Ij,1 +

∑n
j=L2 +1 Ij,1

(36)

after rearrangements. By combining (31) and (36), we complete

the proof for (15).

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers for their

comments, which were very helpful in improving the quality

and presentation of the paper.

REFERENCES

[1] G. J. Klir and B. Yuan, Fuzzy Set and Fuzzy Logic. Englewood Cliffs,
NJ: Prentice-Hall PTR, May 1995.

[2] L. A. Zadeh, “The concept of a linguistic variable and its application to
approximate reasoning-1,” Inform. Sci., vol. 8, pp. 199–249, Jan. 1975.

[3] Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: theory
and design,” IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 535–550, Oct.
2000.

[4] J. M. Mendel, UNCERTAIN Rule-Based Fuzzy Logic Systems. Engle-
wood Cliffs, NJ: Prentice-Hall PTR, Jan. 2001.

[5] J. M. Mendel and R. I. John, “Type-2 fuzzy sets made simple,” IEEE

Trans. Fuzzy Syst., vol. 10, no. 2, pp. 117–127, Apr. 2002.
[6] J. M. Mendel, “Computing derivatives in interval type-2 fuzzy logic sys-

tem,” IEEE Trans. Fuzzy Syst., vol. 12, no. 1, pp. 84–98, Feb. 2004.
[7] J. M. Mendel, R. I. John, and F. Liu, “Interval type-2 fuzzy logic systems

made simple,” IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp. 808–821, Dec.
2006.

[8] J. M. Mendel, “Type-2 fuzzy sets and systems: an overview,” IEEE

Comput. Intell. Mag., vol. 2, no. 1, pp. 20–29, Feb. 2007.
[9] J. M. Mendel, “Advances in type-2 fuzzy sets and systems,” Inform. Sci.,

vol. 177, no. 1, pp. 84–110, Jan. 2007.
[10] H. A. Hagras, “A hierarchical type-2 fuzzy logic control architecture for

autonomous mobile robots,” IEEE Trans. Fuzzy Syst., vol. 12, no. 4,
pp. 524–539, Aug. 2004.

[11] R. Sepúlveda, O. Castillo, P. Melin, A. Rodrı́guez-Dı́az, and O. Montiel,
“Experimental study of intelligent controllers under uncertainty using
type-1 and type-2 fuzzy logic,” Inform. Sci., vol. 177, no. 10, pp. 2023–
2048, May 2007.

[12] F.-J. Lin and P.-H. Chou, “Adaptive control of two-axis motion control
system using interval type-2 fuzzy neural network,” IEEE Trans. Ind.

Electron., vol. 56, no. 1, pp. 178–193, Jan. 2009.
[13] O. Castillo and P. Melin, “Comparison of hybrid intelligent systems, neural

networks, and interval type-2 fuzzy logic for time series prediction,” in
Proc. Int. Joint Conf. Neural Netw., Aug. 2007, pp. 3086–3091.

[14] M. H. F. Zarandi, B. Rezaee, I. B. Turksen, and E. Neshat, “A type-2
fuzzy rule-based expert system model for stock price analysis,” Expert

Syst. Appl., vol. 36, no. 1, pp. 139–154, Jan. 2009.
[15] H. B. Mitchell, “Pattern recognition using type-II fuzzy sets,” Inform.

Sci., vol. 170, no. 2–4, pp. 409–418, Feb. 2005.
[16] J. Zeng and Z.-Q. Liu, “Type-2 fuzzy Markov random fields and their

application to handwritten chinese character recognition,” IEEE Trans.

Fuzzy Syst., vol. 16, no. 3, pp. 747–760, Jun. 2008.
[17] L. A. Lucas, T. M. Centeno, and M. R. Delgado, “Land cover classification

based on general type-2 fuzzy classifiers,” Int. J. Fuzzy Syst., vol. 10, no. 3,
pp. 207–216, Sep. 2008.

[18] R. I. John, P. R. Innocent, and M. R. Barnes, “Neuro-fuzzy clustering
of radiographic tibia image data using type-2 fuzzy sets,” Inform. Sci.,
vol. 125, no. 1–4, pp. 65–82, Jun. 2000.

[19] L. D. Lascio, A. Gisolfi, and A. Nappi, “Medical differential diagnosis
through type-2 fuzzy sets,” in Proc. IEEE Int. Conf. Fuzzy Syst., May
2005, pp. 371–376.

[20] O. Castillo and P. Melin, “A new approach for plant monitoring using
type-2 fuzzy logic and fractal theory,” Int. J. General Syst., vol. 33,
no. 2/3, pp. 305–319, Apr. 2004.

[21] P. Melin and O. Castillo, “An intelligent hybrid approach for industrial
quality control combining neural networks, fuzzy logic and fractal theory,”
Inform. Sci., vol. 177, no. 7, pp. 1543–1557, Apr. 2007.

[22] N. R. Cazarez-Castro, L. T. Aguilar, and O. Castillo, “Hybrid genetic-
fuzzy optimization of a type-2 fuzzy logic controller,” in Proc. 8th Int.

Conf. Hybrid Intell. Syst., Sep. 2009, pp. 718–725.
[23] N. R. Cazares-Castro, L. T. Aguilar, and O. Castillo, “Designing type-2

fuzzy logic system controllers via fuzzy Lyapunov synthesis for the output
regulator of a servomechanism with nonlinear backlash,” in Proc. IEEE

Int. Conf. Syst., Man Cybern., Oct. 2009, pp. 268–273.
[24] J. R. Castro, O. Castillo, P. Melin, and A. Rodrı́guez-Dı́az, “A hybrid

learning algorithm for a class of interval type-2 fuzzy neural networks,”
Inform. Sci., vol. 179, no. 13, pp. 2175–2193, Jun. 2009.

[25] R. Martı́nez, O. Castillo, and L. T. Aguilar, “Optimization of interval type-
2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot
using genetic algorithms,” Inform. Sci., vol. 179, no. 13, pp. 2158–2174,
Jun. 2009.

[26] F. Liu, “An efficient centroid type-reduction strategy for general type-2
fuzzy logic system,” Inform. Sci., vol. 178, no. 9, pp. 2224–2236, Apr.
2008.

[27] N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy set,” Inform.

Sci., vol. 132, no. 1-4, pp. 195–220, Feb. 2001.
[28] S. Coupland and R. John, “A fast geometric method for defuzzification of

type-2 fuzzy sets,” IEEE Trans. Fuzzy Syst., vol. 16, no. 4, pp. 929–941,
Aug. 2008.

[29] L. A. Lucas, T. M. Centeno, and M. R. Delgado, “General type-2 fuzzy
inference systems: Analysis, design and computational aspects,” in Proc.

Int. Conf. Fuzzy Syst., Jul. 2007, pp. 1–6.
[30] W.-W. Tan and D. Wu, “Design of type-reduction strategies for type-2

fuzzy logic systems using genetic algorithms,” in Adv. Evol. Comput.

Syst. Des., 2007, vol. 6, pp. 169–187.
[31] D. Wu and J. M. Mendel, “Enhanced Karnik–Mendel algorithms,” IEEE

Trans. Fuzzy Syst., vol. 17, no. 4, pp. 923–934, Aug. 2009.
[32] S. Greenfield, F. Chiclana, S. Coupland, and R. I. John, “The collaps-

ing method of defuzzification for discretised interval type-2 fuzzy sets,”
Inform. Sci., vol. 179, no. 13, pp. 2055–2069, Jun. 2009.

[33] S. Greenfield, F. Chiclana, and R. I. John, “Type-reduction of the discre-
tised interval type-2 fuzzy set,” in Proc. 18th IEEE Int. Conf. Fuzzy Syst.,
Aug. 2009, pp. 738–743.

[34] J. M. Mendel, F. Liu, and D. Zhai, “α-plane representation for type-2
fuzzy sets: Theory and applications,” IEEE Trans. Fuzzy Syst., vol. 17,
no. 5, pp. 1189–1207, Oct. 2009.

Chi-Yuan Yeh was born in Tainan, Taiwan, in 1971.
He received the B.S. and M.S. degrees in business
administration in 2002 and 2004, respectively, from
Shu-Te University, Kaohsiung, Taiwan. He is cur-
rently working toward the Ph.D. degree with the
Department of Electrical Engineering, National Sun
Yat-Sen University, Kaohsiung.

His current research interests include machine
learning, data mining, and soft computing.

Mr. Yeh received the Best Paper Award at the 2008
International Conference on Machine Learning and

Cybernetics.

240 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 19, NO. 2, APRIL 2011

Wen-Hau Roger Jeng was born in Taipei County,
Taiwan, in 1978. He received the B.S. degree from
National Chengchi University, Taipei, in 2001 and
the M.S.E.E. degree from National Sun Yat-Sen Uni-
versity, Kaohsiung, Taiwan, in 2009.

He is currently with the Department of Electrical
Engineering, National Sun Yat-Sen University. His
current research interests include machine learning
and data mining.

Shie-Jue Lee (M’90) was born in Kin-Men, Taiwan,
on August 15, 1955. He received the B.S. and M.S.
degrees in electrical engineering in 1977 and 1979, re-
spectively, from National Taiwan University, Taipei,
Taiwan, and the Ph.D. degree in computer science
from the University of North Carolina, Chapel Hill,
in 1990.

He joined the faculty of the Department of Elec-
trical Engineering, National Sun Yat-Sen University
(NSYSU), Kaohsiung, Taiwan, in 1983, where he has
been a Professor in the department since 1994. He has

been the Director of the Center for Telecommunications Research and Develop-
ment, NSYSU (1997–2000), the Director of the Southern Telecommunications
Research Center, National Science Council (1998–1999), and the Chair of the
Department of Electrical Engineering, NSYSU (2000–2003). He is currently
the Deputy Dean of the Academic Affairs and the Director of the NSYSU-III
Research Center. His current research interests include artificial intelligence,
machine learning, data mining, information retrieval, and soft computing.

Dr. Lee received the Distinguished Teachers Award from the Ministry of Ed-
ucation, Taiwan, in 1993. He was awarded by the Chinese Institute of Electrical
Engineering for Outstanding M.S. Thesis Supervision (1997). He received the
Distinguished Paper Award from the Computer Society of the Republic of China
(1998), the Best Paper Award from the Seventh Conference on Artificial Intel-
ligence and Applications (2002), the Best Paper Award from the International
Conference on Machine Learning and Cybernetics (2008), and the Best Paper
Award of Cloud Computing and Virtualization (2010). He received the Distin-
guished Research Award from National Sun Yat-Sen University (1998) and the
Distinguished Teaching Award from National Sun Yat-Sen University in 1993
and 2008, respectively. He also received the Distinguished Mentor Award from
National Sun Yat-Sen University in 2008. He was the Program Chair for the
International Conference on Artificial Intelligence, Kaohsiung, Taiwan, in De-
cember 1996, the International Computer Symposium—Workshop on Artificial
Intelligence, Tainan, Taiwan, in December 1998, and the Sixth Conference on
Artificial Intelligence and Applications, Kaohsiung, in November 2001. He is a
member of the IEEE Systems, Man, and Cybernetics Society, the IEEE Com-
putational Intelligence Society, the Association for Automated Reasoning, the
Institute of Information and Computing Machinery, the Taiwan Fuzzy Systems
Association, and the Taiwanese Association of Artificial Intelligence.

