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ABSTRACT

Short hairpin RNAs (shRNAs) transcribed by RNA
polymerase III (Pol III) promoters can trigger
sequence-selective gene silencing in culture and
in vivo and, therefore, may be developed to treat
diseases caused by dominant, gain-of-function type
of gene mutations. These diseases develop in
people bearing one mutant and one wild-type gene
allele. While the mutant is toxic, the wild-type per-
forms important functions. Thus, the ideal therapy
must selectively silence the mutant but maintain the
wild-type expression. To achieve this goal, we
designed an shRNA that selectively silenced a
mutant Cu,Zn superoxide dismutase (SOD1G93A)
allele that causes amyotrophic lateral sclerosis.
However, the ef®cacy of this shRNA was relatively
modest. Since the allele-speci®c shRNA has to
target the mutation site, we could not scan other
regions of SOD1 mRNA to ®nd the best silencer. To
overcome this problem, we sought to increase the
dose of this shRNA by enhancing the Pol III pro-
moter. Here we demonstrate that the enhancer from
the cytomegalovirus immediate-early promoter can
enhance the U6 promoter activity, the synthesis of
shRNA and the ef®cacy of RNA interference (RNAi).
Thus, this enhanced U6 promoter is useful where
limited choices of shRNA sequences preclude the
selection of a highly ef®cient RNAi target region.

INTRODUCTION

RNA interference (RNAi) can mediate sequence-selective
suppression of gene expression in a wide variety of eukaryotes
by introducing short RNA duplexes (small interfering RNAs
or siRNAs) with sequence homologies to the target gene (1,2).
Furthermore, short hairpin RNAs (shRNAs) transcribed in vivo
under the control of RNA polymerase III (Pol III) promoters
can trigger degradation of corresponding mRNAs similar to

siRNAs and inhibit speci®c gene expression (3±11).
Constructs that synthesize shRNA have been incorporated
into viral vectors and these vectors can mediate RNAi in
culture as well as in vivo (12±16). Therefore, Pol III±shRNA
constructs may be developed to mediate long-term silencing of
dominant, gain-of-function mutant genes that cause diseases.

In diseases caused by a gain-of-function type of mutation,
the mutant is toxic but the wild-type performs important
functions. Therefore, the ideal therapy should selectively
silence the mutant gene but maintain the wild-type gene
expression. Although opinions vary (17±19), many experi-
ments have shown that siRNAs and shRNAs can discriminate
between mRNAs that differ at a single nucleotide and
selectively degrade the perfectly matched mRNA, while
leaving the mRNA with a single nucleotide mismatch
unaffected (7,9,12,17,20). The discriminating siRNA or
shRNA must include the altered nucleotide in its sequence
and, in most instances, the optimal design places the altered
nucleotide near or at the middle of the siRNA or shRNA. This
limits the sequence selection in designing siRNA or shRNA
around the site of mutation. Because the sequence of siRNA or
shRNA greatly in¯uences the ef®cacy of RNAi (18,21), the
sequences surrounding the mutation site may not be optimal
and could produce poor inhibitors of the mutant gene.

We have designed an shRNA-expressing construct con-
trolled by a Pol III U6 promoter (22) to silence a mutant Cu,Zn
superoxide dismutase (SOD1G93A) allele that causes amyo-
trophic lateral sclerosis (ALS), a fatal degenerative motor
neuron disease (23). While testing the ef®cacy of this shRNA,
we found it selectively inhibited the expression of a mutant
SOD1G93A but did not affect SOD1WT (24). However, the
ef®cacy of RNAi produced by this construct was relatively
modest, which might affect the ultimate therapeutic ef®cacy.
One way to overcome this problem was to increase the dose of
the shRNA by enhancing the Pol III promoter activity. We
realized that some snRNAs are synthesized by Pol II while
others are synthesized by Pol III, and they share enhancer
elements (25±30). Hence, a Pol II enhancer might be able to
enhance the Pol III transcription. We tested this by placing the
enhancer from the cytomegalovirus (CMV) promoter near the
U6 promoter and demonstrated that this enhanced the U6
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promoter activity, increased the shRNA synthesis and
strengthened the silencing of the target gene. This enhanced
promoter may be broadly useful in similar situations in
targeting other disease-associated mutants.

MATERIALS AND METHODS

Plasmid construction

The SOD1G93AGFP fusion plasmid was constructed as
described before (24). Brie¯y, mutant human SOD1G93A

cDNA was PCR cloned between the PmlI and PstI sites of
pCMV/myc/mito/GFP (Invitrogen). This cloning step deleted
the mitochondrial targeting sequence. U6G93Ahp was con-
structed as described (6). Similarly, U6misG93A was created
using the sequence GACAAAGCTGCTGTATCGGCT
(sense strand), which contains ®ve mismatched nucleotides
(bold) against the SOD1G93A mutant. The CMV enhancer was
PCR cloned from the pDsRed2-N1 vector (nucleotides 1±484;
Clontech) and inserted either upstream between KpnI and
NheI or downstream between NotI and SacI sites of
U6G93Ahp.

Cell culture and transfection

Human embryonic kidney cell line 293 was grown in
Dulbecco's modi®ed Eagle's medium (DMEM) supplemented

with 10% fetal bovine serum (FBS), 100 U/ml penicillin and
100 mg/ml streptomycin. Twenty-four hours before transfec-
tion, cells (70±90% con¯uency) were detached by trituration,
transferred to 6-well plates and cultured in 10% FBS-
containing medium without antibiotics. The cells were
transfected with 4 mg of the target vector SOD1G93AGFP and
8 mg of each of the hairpin vectors using Lipofectamine 2000
(Invitrogen) according to the manufacturer's instructions. The
transfection ef®ciency was ~95% in all experiments. After 24
h, the culture medium was changed to DMEM supplemented
with 10% FBS and antibiotics. At 40 h after transfection, the
cells were harvested and quickly frozen in liquid nitrogen.

Measurement of GFP ¯uorescence intensity

The harvested cells were lysed in ice-cold reporter lysis buffer
(Promega) containing protease inhibitors (complete, EDTA-
free, 1 tablet/10 ml buffer; Roche Molecular Biochemicals).
The lysate was cleared by centrifugation at 16000 g and 4°C
for 10 min. The total protein in the cleared lysate was
measured using the BCA assay (Pierce, Rockville, IL). The
total protein concentration in each sample was adjusted to
0.5 mg/ml with the reporter buffer. Fluorescence of GFP in
140 ml of sample was measured by ¯uorescence spectroscopy
(Photon Technology International) with excitation at 460 nm
and recording from 480 to 600 nm. The spectrum peak was

Figure 1. Design of hairpin constructs against mutant SOD1G93A. (A) Nucleic acid sequence surrounding the mutation site of SOD1G93A. Notice the G (bold)
in the antisense strand of the hairpin that matches with the C (bold) in SOD1G93A but mismatches with a G in SOD1WT. (B) Variations of the U6 promoter.
U6G93Ahp, authentic U6 promoter with G93A hairpin; EN-U6G93Ahp, forward CMV enhancer placed 5¢ of the U6 promoter; REN-U6G93Ahp, reverse
CMV enhancer placed 5¢ of the U6 promoter; U6G93Ahp-EN, forward CMV enhancer placed 3¢ of U6G93Ahp; U6G93Ahp-REN, reverse CMV enhancer
placed 3¢ of U6G93Ahp; EN-dU6G93Ahp, forward CMV enhancer placed 5¢ of the crippled U6 promoter with DSE deletion.
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detected at 502 nm, representing the ¯uorescence intensity of
GFP. Fluorescence in the untransfected lysate was measured
as background and subtracted from measurements of the
transfected lysates.

Western blots

Twenty micrograms of total protein were resolved on a 12%
SDS±PAGE gel and transferred onto GeneScreen Plus
membrane (Perkin Elmer). The membrane was incubated
sequentially with a sheep anti-SOD1 (BioDesign) and horse-
radish peroxidase-labeled goat anti-sheep IgG (Amersham).
The protein bands were visualized using SuperSignal kit
(Pierce) and Kodak Digital Image Station 440CF.

Northern blot analysis

Cellular RNA was isolated with TRI reagent (Sigma). Twenty
micrograms of total RNA were fractionated on a 15%
polyacrylamide gel and transferred to HybondÔ-N+

membrane (Amersham). The membrane was probed with
32P-labeled synthetic RNA oligonucleotide complementary to
the antisense strand of the G93A hairpin.

RESULTS AND DISCUSSION

The shRNA against SOD1G93A (G93Ahp) contains a stem that
is homologous to SOD1G93A mRNA but has a mismatched
nucleotide with SOD1WT at the middle of the stem (Fig. 1A).
When transfected into cultured cells, this shRNA selectively
inhibited the expression of SOD1G93A but did not affect the
expression of SOD1WT (24) (also see below). However, the
RNAi ef®cacy of this shRNA was relatively poor (see below).
We therefore sought to increase the potency of this shRNA by
increasing its expression. We modi®ed the U6 promoter by
placing the enhancer from the CMV immediate-early pro-
moter near the U6 promoter, either upstream or downstream
from U6G93Ahp and in either forward or reverse orientation
(Fig. 1B).

We co-transfected each of the seven constructs containing
various combinations of U6 promoter, G93Ahp and CMV
enhancer, with a target construct that encoded a SOD1G93A and
GFP fusion protein (SOD1G93AGFP), into human 293 cells.
Northern blot analysis demonstrated that addition of the CMV
enhancer near U6G93Ahp in all four con®gurations (Fig. 1)
increased the expression of G93Ahp (Fig. 2). Deletion of the
distal sequence element (DSE), an obligatory component of
the U6 promoter (25±28), abolished expression of G93Ahp
even in the presence of the enhancer (Fig. 2). Quanti®cation of
SOD1G93AGFP expression by GFP ¯uorescence using a
¯uorometer (31) showed that, compared with SOD1G93AGFP
alone transfection (Fig. 3A and B, 1), G93Ahp produced by
the unmodi®ed U6 promoter (U6G93Ahp) inhibited
SOD1G93AGFP expression modestly (Fig. 3A and B, 2).
Attaching the CMV enhancer in all four con®gurations to
U6G93Ahp (Fig. 1B) enhanced the inhibition of
SOD1G93AGFP expression to a similar degree (Fig. 3A and
B, 3±6). Deletion of the DSE abolished the inhibition of
SOD1G93AGFP expression (Fig. 3A and B, 7). Finally, U6
promoter directed synthesis of mismatched shRNA did not
show any inhibitory activity towards the target gene (Fig. 3A
and B, 8).

Western blot using a polyclonal anti-SOD1 antibody
con®rmed the above ®nding and, furthermore, showed that
the enhanced synthesis of G93Ahp only inhibited
SOD1G93AGFP expression but did not affect the endogenous
human SOD1 levels (Fig. 3C), indicating that the high levels
of G93Ahp expression do not affect the speci®city of G93Ahp
for the mutant SOD1G93A.

Our results demonstrate that the CMV enhancer can
enhance U6 promoter activity and increase the production of
shRNA. This modi®ed promoter may be useful where limited
choices of shRNA sequences preclude the selection of a highly
ef®cient RNAi target region and, therefore, could be used for
selective inhibition of mutant gene expression in vitro and
in vivo and to develop therapies for diseases caused by
dominant, gain-of-function gene mutations.
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Figure 2. Northern blot detecting the G93Ahp transcripts. Total RNA was
extracted from human 293 cells doubly transfected with SOD1G93AGFP and
various U6G93Ahp constructs (Fig. 1B). G93Ahp was detected using a
32P-labeled 21 nt RNA probe complementary to the antisense strand of the
hairpin stem. Note the enhanced expression of the shRNA in cells
transfected with the U6G93Ahp constructs containing the CMV enhancer.
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