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An enriched conjugate prior for Bayesian

nonparametric inference

Sara Wade∗, Silvia Mongelluzzo† and Sonia Petrone‡

Abstract. The precision parameter α plays an important role in the Dirichlet Pro-
cess. When assigning a Dirichlet Process prior to the set of probability measures
on R

k, k > 1, this can be restrictive in the sense that the variability is determined
by a single parameter. The aim of this paper is to construct an enrichment of
the Dirichlet Process that is more flexible with respect to the precision parameter
yet still conjugate, starting from the notion of enriched conjugate priors, which
have been proposed to address an analogous lack of flexibility of standard conju-
gate priors in a parametric setting. The resulting enriched conjugate prior allows
more flexibility in modelling uncertainty on the marginal and conditionals. We
describe an enriched urn scheme which characterizes this process and show that it
can also be obtained from the stick-breaking representation of the marginal and
conditionals. For non atomic base measures, this allows global clustering of the
marginal variables and local clustering of the conditional variables. Finally, we
consider an application to mixture models that allows for uncertainty between
homoskedasticity and heteroskedasticity.

Keywords: Bayesian nonparametric inference, conjugate priors, generalized Dirich-
let, Dirichlet process, mixture models, Pólya urns, multivariate random distribu-
tion functions

1 Motivation

Conjugacy is a desirable property because the posterior distribution remains analytically
tractable; this is especially true in nonparametric inference where the posterior distribu-
tion of non-conjugate priors can be very complex. The most popular prior in Bayesian
nonparametric inference is the Dirichlet Process, and it is conjugate; if Zi | P = P are
independent and identically distributed (i.i.d.) according to P , and P is a Dirichlet pro-
cess, DP (αP0), with precision parameter α and base measure P0 on the sample space Z,
then P | Z1 = z1, . . . , Zn = zn ∼ DP (αP0 +

∑n
i=1 δzi

). However, when Z is a random
vector and P is a random probability measure on R

k, k > 1, as in many applications,
the choice of a Dirichlet process prior implies that the variability is determined by a
single parameter, α. Indeed, the precision parameter α plays an important role; it not
only reflects the strength of belief in the prior guess of P0, but also controls the ties
configuration in a random sample from P. Thus, having only one degree of freedom, α,
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in the prior can be quite restrictive.

In fact, a similar lack of flexibility arises in a parametric setting; standard conjugate
priors for the natural exponential family have only one parameter to control variabil-
ity. To overcome this issue, a general class of enriched conjugate priors (Consonni and
Veronese (2001)) have been proposed. A Dirichlet Process, DP (αP0), is characterized
by the fact that the finite dimensional distributions of the probability over any measur-
able partition,(C1, . . . , Ck), of Z, are Dirichlet with parameters (αP0(C1), . . . , αP0(Ck)).
The Dirichlet Process inherits conjugacy from the property of conjugacy of the standard
Dirichlet distribution prior for multinomial sampling, but also inflexibility from the fact
that the Dirichlet distribution, as all standard conjugate priors, has only one parameter
to control variability. The question addressed in this paper is whether one can extend
the notion of enriched conjugate priors to nonparametric inference and construct a prior
on a random probability measure over R

k, that is more flexible than the DP in allowing
more parameters to control the variability, yet is still conjugate.

Actually, Doksum’s Neutral to the Right Process (Doksum (1974)) is an extension of
the enriched conjugate Generalized Dirichlet distribution to a process, providing a more
flexible, conjugate prior for univariate random distribution functions. The Generalized
Dirichlet distribution is defined for a specific ordering of the random probabilities; thus,
extension to a multivariate random distribution is not obvious, since there is no natural
ordering in R

k.

Therefore, we start our analysis by constructing an enriched Dirichlet prior for a
multivariate random distribution when the sample space is finite. To convey the main
ideas, we will focus on the case when the random vector Z can be partitioned into
two groups, Z = (X, Y ), and the sample space can be written as the product of two
finite spaces (or in the more general case, the product of two complete separable metric
spaces, Z = X × Y). In the finite case, the enriched Dirichlet distribution is obtained
based on the reparametrization of the joint probabilities in terms of the marginal and
the conditionals.

Then, we extend this construction to a process by reparametrizing the joint random
probability measure in terms of the marginal and conditionals and assigning independent
Dirichlet Process priors to each of these terms. The parameters of the resulting enriched

Dirichlet process again include a base measure controlling the location, but there are now
many more parameters to control the variability. We show that the Dirichlet Process is
in fact a special case, which consequently, characterizes the distribution of the random
conditionals. Although many desirably properties are maintained, some are necessarily
weakened, including a clear asymmetry in the two (groups of) variables, that however
may be reasonable in several applications.

The paper is organized as follows. In Section 2, we give a brief overview of enriched
conjugate priors for the natural exponential family. In Section 3, we discuss the enriched

Dirichlet distribution in the finite case as a particular enriched conjugate prior for
multinomial sampling and provide a Pólya urn characterization. These notions are
extended to a process in Section 4. Finally, a simple application to mixture models is
illustrated using data on national test scores to compare schools in Section 5. Proofs
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are given in the Appendix.

2 Preliminaries: Enriched Conjugate Priors

For a Natural Exponential Family (NEF) F on R
d, where d represents the dimension

of the sufficient statistics, the likelihood for the natural parameter θ is given by:

Lθ(θ|s, n) = exp(θT s − nM(θ)) for θ ∈ Θ,

where s is a d-dimensional vector of the sufficient statistics, M(θ) = log
∫

exp(θT x)η(dx),
and η is a σ-finite measure on the Borel sets of R

d. The parameter space Θ is the interior
of the set N = {θ ∈ R

d : M(θ) < ∞}. More generally, we have a Standard Exponential
Family (SEF) if Θ ⊆ N , and it is non-empty and open.

A family of measures on the Borel sets of Θ whose densities with respect to the
Lebesgue measure are of the form πθ(θ|s

′, n′) ∝ Lθ(θ|s
′, n′) is called the standard con-

jugate family of priors of F relative to the parametrization θ, where the sufficient statis-
tics, s, are replaced by parameters, s′, which control the location of the prior, and the
sample size, n, is replaced by a single parameter, n′, which controls the precision; see
Diaconis and Ylvisaker (1979).

Consonni and Veronese (2001) discuss enriched conjugate priors for the NEF, moving
from the notion of conditional reducibility. A d-dimensional NEF is called k condition-

ally reducible if the density can be decomposed as the product of k standard exponential
families, each depending on their own parameters. The notion of enriched conjugate

priors involves replacing the sufficient statistics and the sample size with different hy-
perparameters within each SEF. This means giving independent standard conjugate
priors to the parameters of the conditional densities and induces a prior on the original
parameter of the NEF which enriches the standard conjugate prior by allowing for k
precision parameters. For a deeper discussion, see Consonni and Veronese (2001).

One important example is given by the Generalized Dirichlet distribution of Connor
and Mosimann (1969), which provides an enriched conjugate prior for the parameters
of a multinomial distribution; see Consonni and Veronese (2001), Example 4. Briefly,
if (N1, . . . , Nk) is multinomial given (p1 = p1, . . . ,pk = pk), one can decompose the
multinomial probability function as

p(N1 = n1, . . . , Nk = nk | p1, . . . , pk) =

p(N1 = n1 | V1)p(N2 = n2 | N1 = n1, V2) · · · p(Nk = nk | N1 = n1, . . . , Nk−1 = nk−1, Vk),

where each factor in the product is a NEF (namely, binomial), depending on its own

parameter, V1 = p1,Vi = pi/(1−
∑i−1

j=1 pj), i = 2, . . . , k−1, and Vk is degenerate at 1.

The standard, Dirichlet(α1, . . . , αk) conjugate prior corresponds to assuming Vi
indep
∼

beta(αi,
∑k

j=i+1 αj), i = 1, . . . , k−1. The enriched, or Generalized, Dirichlet conjugate

prior allows a more flexible choice of the beta hyperparameters: Vi
indep
∼ beta(αi, βi),

i = 1, . . . , k−1. It is worth underlining that some properties of the Dirichlet distribution
are necessarily weakened. In particular, the Dirichlet prior implies that any permutation
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of (p1, . . . ,pk) is completely neutral (the vector (p1, . . . ,pk) is completely neutral iff

(p1,p2/(1 − p1), ...,pk/(1 −
∑k−1

j=1 pj)) are independent). The Generalized Dirichlet
only assumes that one ordered vector (p1, . . . ,pk) is completely neutral. This makes
applications to the bivariate case of contingency tables pi,j not obvious, since there is
no natural ordering in two dimensions. The enriched conjugate prior that we propose
in the next section is a simple proposal in this direction.

3 Finite case: Enriched Dirichlet distribution

Let {(Xn, Yn)}n∈N be a sequence of discrete random vectors with values in X × Y =

{1, . . . , k}×{1, . . . ,m}, such that (Xi, Yi) | p = p
i.i.d
∼ p, where p is a random probability

function with mass pi,j on (i, j), i = 1, . . . , k; j = 1, . . . ,m. Then, given p = p, the
vector of counts (N1,1, . . . , Nk,m), where Ni,j is the number of times the pair (i, j) is
observed in a sample ((X1, Y1), . . . , (Xn, Yn)), has a multinomial probability function

p(n1,1, ..., nk,m−1 | p1,1, ..., pk,m−1) =

n!

n1,1!...nk,m−1!(n −
∑

(i,j) 6=(k,m)

ni,j)!
p

n1,1

1,1 · · · p
nk,m−1

k,m−1 (1 −
∑

(i,j) 6=(k,m)

pi,j)
n−

∑

(i,j)6=(k,m)

ni,j

,

(1)

for ni,j ≥ 0;
∑k

i=1

∑m
j=1 ni,j = n. The standard conjugate prior for (p1,1, . . . ,pk,m) is

the Dirichlet distribution, which involves replacing the km − 1 sufficient statistics in
(1) with hyperparameters, s′ = (s′1,1, ..., s

′
k,m−1), that control the location of the prior,

and the sample size with a single hyperparameter, n′, that controls the precision of the
prior. As discussed in Section 2, a generalized Dirichlet prior is problematic in this case,
since there is no natural ordering of the probabilities pi,j .

However, a fairly natural and simple enrichment can be obtained by first applying
the linear transformation:

Ni+ =

m
∑

j=1

Ni,j for i = 1, ..., k − 1,

Ni,j = Ni,j for i = 1, ..., k j = 1, ...,m − 1,

followed by the reparametrization:

pi+ =

m
∑

j=1

pi,j for i = 1, ..., k − 1,

pj|i =
pi,j

pi+

for i = 1, ..., k − 1 j = 1, ...,m − 1,

pj|k =
pk,j

1 −
∑k−1

i=1 pi+

for j = 1, ...,m − 1.
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Define: N+ = (N1+, ..., Nk−1+);N i = (Ni,1, ..., Ni,m−1);p+
= (p1+, ...,pk−1+), and

p
i
= (p1|i, ...,pm−1|i), for i = 1, ..., k. Under this linear transformation and reparametriza-

tion, the multinomial is a k + 1 conditionally reducible NEF:

p(n+, n1, ..., nk | p
+
, p

1
, ..., p

k
) = p(n+ | p

+
)

k
∏

i=1

p(ni | p
i
, n+), (2)

(Ni,1, ..., Ni,m | ni+, p1|i, ..., pm|i) ∼ Mult
(

ni+, p1|i, ..., pm|i

)

for i = 1, ..., k,

(N1+, ..., Nk+ | p1+, ..., pk+) ∼ Mult(n, p1+, ..., pk+).

By replacing the sufficient statistics and sample size with different parameters within
each SEF in the right hand side of (2), one can create a more flexible conjugate prior.
In particular, letting (s′(+), s

′
(1), ..., s

′
(k)) denote the km − 1 location parameters and

(n′
+, n′

1, ..., n
′
k) denote the precision parameters, in terms of (p

+
,p

1
, ...,p

k
), the En-

riched Dirichlet conjugate prior is:

p1+, ...,pk+ ∼ Dir(s′1+, ..., s′k−1+, n′
+ −

k−1
∑

i=1

s′i+), (3)

p1|i, ...,pm|i ∼ Dir(s′i,1, ..., s
′
i,m−1, n

′
i −

m−1
∑

j=1

s′i,j),

where (p1+, ...,pk+), (p1|1, ...,pm|1), ..., (p1|k, ...,pm|k) are independent. We get back to

the Dirichlet distribution if n′
i = s′i+ for i = 1, ...k − 1 and n′

+ =
∑k

i=1 n′
i.

Remark 1. The Dirichlet distribution on the vector p = (p1,1, ...,pk,m) defining the
random marginal, px, py, and conditional, py|x, px|y, probability functions is charac-
terized by the properties
(i) px(·) and py|x(·|i), i = 1, . . . , k are independent, and
(ii) py(·) and px|y(·|j), j = 1, . . . ,m are independent;
see Geiger and Heckerman (1997). The Enriched Dirichlet relaxes that the indepen-
dence properties holds in both directions. We maintain (i) and allow more degrees of
freedom in the distributions of px and py|x.

Remark 2. Under the linear transformation discussed here, the multinomial could also
be viewed as a km− 1 conditionally reducible NEF; it can be written as the product of
km − 1 SEFs (namely, binomial) each depending on its own parameters. The resulting
enriched conjugate prior has km−1 parameters to control the precision and can be seen
as nested version of Generalized Dirichlet distribution of Connor and Mosimann (1969).

In the rest of the paper, we will use the following parametrization of the distributions
(3). Let α(·) be a finite measure on X and µ(·, ·) be a mapping from 2Y ×X to R+ such
that for every x ∈ X , µ(·, x) is a finite measure on (Y, 2Y). Then we assume that the
parameters in (3) are chosen in terms of α(·) and µ(·, ·):

p1+, ...,pk+ ∼ Dir(α(1), ..., α(k)), (4)

p1|i, ...,pm|i ∼ Dir(µ(1, i), ..., µ(m, i)) i = 1, ..., k,
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with the convention that if α(i) = 0 then pi+ is degenerate at 0 and if µ(j, i) = 0 then
pj|i is degenerate at 0. If α(i) > 0 and µ(j, i) > 0 for all i, j, then the enriched Dirichlet
conjugate prior induced on (p1,1, . . . ,pk,m) is:

f(p1,1, ...,pk,m−1) =
Γ(α(X ))

∏k
i=1 Γ(α(i))

k−1
∏

i=1

(

m
∑

j=1

pi,j)
α(i)−µ(Y,i)(1 −

k−1
∑

i=1

m
∑

j=1

pi,j)
α(k)−µ(Y,k)

×
k
∏

i=1

Γ(µ(Y, i))
m
∏

j=1

Γ(µ(j, i))

m−1
∏

j=1

p
µ(j,i)−1
i,j

k−1
∏

i=1

p
µ(m,i)−1
i,m (1 −

∑

(i,j) 6=(k,m)

pi,j)
µ(m,k)−1.

Clearly, the prior of the marginal probabilities (p+1, . . . ,p+m) on Y is no longer
a Dirichlet distribution, and in fact, the density may not be available in closed form.
But, we can give the following representation in terms of G-Meijer variables (Springer
and Thompson (1970)). First, remembering the Gamma representation of the Dirichlet

distribution and defining Ui
indep
∼ Gamma(α(i), 1) and Vij

indep
∼ Gamma(µ(j, i), 1), we

have the following G-Meijer representation of the vector (p1,1, ...,pk,m):

(p1,1, ...,pk,m)
d
=

(

U1V11
∑k

i=1 Ui

∑m
j=1 V1j

, ...,
UkVkm

∑k
i=1 Ui

∑m
j=1 Vkj

)

,

which is independent of
∑k

i=1 Ui

∑m
j=1 V1j , ...,

∑k
i=1 Ui

∑m
j=1 Vkj ; where the symbol

d
= denotes equality in distribution. Therefore, the marginal probabilities over Y can be
represented as the sum of G-Meijer random variables:

(p+1, ...,p+m)
d
=

(

k
∑

i=1

UiVi1
∑k

h=1 Uh

∑m
j=1 Vij

, ...,
k
∑

i=1

UiVim
∑k

h=1 Uh

∑m
j=1 Vij

)

.

3.1 Enriched Pólya Urn

An alternative way to define the Enriched Dirichlet distribution is based on a Pólya
urn scheme, which will be useful in extending the distribution to a process. In the
bivariate setting, the standard Pólya urn scheme describes the predictive distribution
of a sequence of random vectors. An urn contains pairs of balls of color (i, j) ∈ X × Y.
A pair of balls is drawn from the urn and replaced along with another pair of balls of
the same colors. The random vector, (Xn, Yn), is equal to (i, j) if the n-th pair drawn
is of color (i, j).

Alternatively, we can consider one urn containing just X-balls and k urns, say Y |i
urns, containing only Y -balls. We first draw an X-ball from the X-urn and replace it
along with another ball of the same color, and then, depending on color of the X-ball,
draw a Y-ball from urn associated to X-ball drawn, and replace it along with another
ball of the same color. In this case, the random vector, (Xn, Yn), is equal to (i, j) if the
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n-th X-ball drawn is of color i and the Y ball associated with it is of color j. If the
number of Y -balls in the Y |i urn is equal to the number balls of color i in the X-urn,
the two urn schemes are equivalent.

The Enriched Pólya Urn scheme enriches this urn scheme by relaxing the constraints
that the number of Y -balls in the Y |i urn has to equal the number of X-balls of color i
in the X-urn for i = 1, ..., k. More precisely, the number of balls in each urn is specified
as follows:

❼ α(i) is the number of X-balls of color i

❼ µ(j, i) is the number of Y -balls of color j in the Y |i urn

where α(X ) =
∑k

i=1 α(i) is the total number of balls in the X-urn and µ(Y, i) =
∑m

j=1 µ(j, i) is the total number of balls in the Y |i urn for i = 1, ..., k. This urn scheme
implies the following predictive distribution:

Pr(X1 = i, Y1 = j) =
α(i)

α(X )

µ(j, i)

µ(Y, i)
,

P r(Xn+1 = i, Yn+1 = j|X1 = i1, Y1 = j1, .., Xn = in, Yn = jn)

=
α(i) +

∑n
h=1 δih

(i)

α(X ) + n

µ(j, i) +
∑n

h=1 δjh,ih
(j, i)

µ(Y, i) +
∑n

h=1 δih
(i)

.

Theorem 1. Let {(Xn, Yn)}n∈N
be a sequence of random vectors taking values in

{1, ..., k} × {1, ...,m} with predictive distributions characterized by an Enriched Pólya
urn scheme with parameters α(·) and µ(·, ·). Then,

1. the sequence of random vectors {(Xn, Yn)}n∈N
is exchangeable, and its de Finetti

measure is an Enriched Dirichlet distribution with parameters α(·) and µ(·, ·).

2. as n → ∞, the sequence of the predictive distributions pn(i, j) = Pr(Xn+1 =
i, Yn+1 = j|X1 = i1, Y1 = j1, .., Xn = in, Yn = jn) converges a.s with respect to
the exchangeable law to a random probability function, p; and p is distributed
according to the Enriched Dirichlet de Finetti measure.

The proof is an extension of that used for the standard Pólya urn (see Ghosh and
Ramamoorthi (2003), pages 94-95). The first step is to show the sequence of random
vectors is exchangeable. Next, computing their finite dimensional distributions and us-
ing de Finetti’s Representation Theorem, the random vectors are shown to be i.i.d given
the random variables (p1+, ...pk+,p1|1, ...,pm|k) = (p1+, ...pk+, p1|1, ..., pm|k) which are
distributed according to an Enriched Dirichlet distribution with parameters α and µ.
A detailed proof is given in the Appendix.

4 Enriched Dirichlet Process

Assume X and Y are complete and separable metric spaces with Borel σ-algebras BX and
BY . Let B be the σ-algebra generated by the product of the σ-algebras of X and Y and
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P(B) be the set of probability measures on the measurable product space (X × Y,B)
where P(BX), P(BY ) are similarly defined. For any P ∈ P(B), let PX denote the
marginal probability measure, PY |X(·|x) for x ∈ X denote a version of the conditional,
and PY |X denote the entire version of the conditional as an element of P(BY )X . Here,
we consider the Borel σ-algebra under weak convergence on P(B), P(BX), and P(BY )
and the product σ-algebra on P(BY )X . We will define a probability measure on P(B)
that is more flexible than the Dirichlet Process with respect to the precision parameter
and still retains conjugacy by extending the ideas of the Enriched Dirichlet distribution.

Note that trying to enrich the DP by using the Enriched Dirichlet in place of the
Dirichlet as the finite dimensional distributions, i.e., defining a random P such that
(P(A1 × B1), . . . ,P(Ak × Bm)) ∼ Enriched Dirichlet distribution, would not succeed
because finite additivity holds only with a specification of the parameters that is equiv-
alent to the Dirichlet distribution.

Instead, we use directly the idea of the Enriched Dirichlet distribution, which defines
a prior for the joint by first, decomposing it in terms of the marginal and conditionals
and then, assigning independent conjugate priors to them. If X ,Y are general spaces, it
is a delicate issue to establish that such an approach induces a prior on the joint. In par-
ticular, given a prior on P(BX)×P(BY )X , the map (PX , PY |X) →

∫

(·)
PY |X(·|x)dPX(x)

induces a prior on P(B) if it is jointly measurable in (PX , PY |X), which is not true in
general. Fortunately, if the prior for the marginal concentrates on the set of discrete
probability measures and independence assumptions hold, the prior on the marginal and
conditionals can be restricted to a subspace of P(BX)×P(BY )X that has measure one,
and on this subspace, the mapping is measurable, which is shown after the following
definition.

Definition 2. Let α be a finite measure on (X ,BX) and µ be a mapping from (BY ×X )
to R+ such that as a function of B ∈ BY it is a finite measure on (Y,BY ) and as a
function of x ∈ X it is α-integrable. Assume:

1. Law of Marginal, QX : PX is a random probability measure on (X ,BX) where
PX ∼ DP (α).

2. Law of Conditionals, Q
Y |X
x : ∀x ∈ X , PY |X(·|x) is a random probability measure

on (Y,BY ) where PY |X(·|x) ∼ DP (µ(·, x)).

3. Joint Law of Conditionals, QY |X =
∏

x∈X Q
Y |X
x : PY |X(·|x), x ∈ X are indepen-

dent among themselves.

4. Joint Law of Marginal and Conditionals, Q = QX ×QY |X : PX is independent of
{

PY |X(·|x)
}

x∈X
.

The joint law of the marginal and conditionals, Q, induces the law, Q̃, of the stochastic
process {P(C)}C∈B through the following reparametrization:

P(A × B)
d
=

∫

A

PY |X(B | x)dPX(x), for any set A × B ∈ BX × BY . (5)
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This process is called an Enriched Dirichlet Process (EDP) with parameters α and µ,
and is denoted P ∼ EDP (α, µ).

The following arguments verify that the four conditions in definition (2) induce
a distribution for the random joint probability measure. In particular, we define a
subspace of P(BX) × P(BY )X that has measure one, such that on this subspace, the
mapping (PX , PY |X) →

∫

(·)
PY |X(·|x)dPX(x) is measurable.

First note that in order for
{

PY |X(·|x), x ∈ X
}

to be a set of conditional random
probability measures, the following two properties need to be satisfied:

1. ∀x ∈ X , PY |X(·|x) is a probability measure on (Y,BY ) a.s Q
Y |X
x .

2. ∀B ∈ BY , as a function of x, PY |X(B|x) is BX measurable a.s QY |X .

The first item is satisfied since PY |X(·|x) ∼ DP (µ(·, x)) implies PY |X(·|x) ∈ P(BY ) with
probability one. The second property follows from results of Ramamoorthi and Sangalli
(2006). In particular, letting ∆ be the subset of P(BY )X such that PY |X is measurable
as a function of x, they show that if PY |X(·|x) are independent among x ∈ X , then

the product measure, QY |X =
∏

x∈X Q
Y |X
x , given by Kolmogorov’s Extension Theorem,

assigns outer measure one to ∆.

Let PD(BX) denote the set of discrete probability measures on the measurable space
(X ,BX). From properties of the DP, QX(PD(BX)) = 1. Therefore, by independence
of PX and PY |X , the set PD(BX) × ∆ has Q-measure one. Again, by results of Ra-
mamoorthi and Sangalli (2006), on PD(BX) × ∆, for A × B ∈ BX × BY , the function
(PX , PY |X) →

∫

A
PY |X(B|x)dPX(x) is jointly measurable in (PX , PY |X). These results

imply that we can define a prior, Q̃, on P(B) induced from Q restricted to PD(BX)×∆
via the map (PX , PY |X) →

∫

(·)
PY |X(·|x)dPX(x).

Obviously, this map is not 1 − 1. In fact, the definition of the EDP states that
the four conditions hold for the joint distribution of (PX ,PY |X) for a fixed version
of the conditional, and this induces a prior on the joint. However, from the induced
prior on the random joint probability measure, we can obtain the joint distribution of
PX and PY |X through the mapping P → (PX ,PY |X) defined from any version of the
conditional. In the next section, we show that although the mapping is not 1-1, the
joint law of PX and PY |X defined from any version of the conditional and the induced
law of the joint probability measure still satisfies the conditions in definition (2) through
an extension of the enriched Pólya urn scheme to the infinite case.

4.1 Enriched Pólya Sequence

Similar to Blackwell and MacQueen (1973), we define an Enriched Pólya sequence which
extends the enriched Pólya urn scheme to the case when X and Y are complete separable
metric spaces.
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Definition 3. The sequence of random vectors {(Xn, Yn)}n∈N taking values in X × Y
is an Enriched Pólya sequence with parameters α and µ if:

1. For A ∈ BX and for all n ≥ 1,

Pr(X1 ∈ A) =
α(A)

α(X )
,

P r(Xn+1 ∈ A | X1 = x1, ..., Xn = xn) =
α(A) +

∑n
i=1 δxi

(A)

α(X ) + n
.

2. For B ∈ BY and for all n ≥ 1,

Pr(Y1 ∈ B | X1 = x) =
µ(B, x)

µ(Y, x)
,

P r(Yn+1 ∈ B | Y1 = y1, ..., Yn = yn, X1 = x1, ..., Xn = xn, Xn+1 = x)

=
µ(B, x) +

∑nx

j=1 δyx,j
(B)

µ(Y, x) + nx

,

where nx =
∑n

i=1 δxi
(x) and {yx,j}

nx

j=1 = {yi : xi = x, i = 1, ..., n}.

In words, the predictive distributions characterizing the Enriched Pólya sequence
can be interpreted in terms of draws from urns as follows; initially, there is an X-urn
containing α(X ) balls of color 0. A ball is first drawn from the X-urn, and once drawn,

its true color, x1, is revealed (where x1 is the realization of a draw from P0X(·) = α(·)
α(X ) ).

A ball of color x1 is added to the urn along with a ball of color 0, so that the urn is now
composed of α(X ) balls of color 0 and one ball of color x1. Once the true color x1 of
the X-ball is revealed, a Y |x1-urn is created with µ(Y, x1) balls of color 0. Next, a ball
is drawn from the Y |x1-urn, and similarly, once drawn its true color is revealed to be

y1 (where y1 is the realization of a draw from P0Y |X(·|x1) = µ(·,x1)
µ(Y,x1)

). This ball is then

added to the Y |x1-urn along with a ball of color 0, so that the urn contains µ(Y, x1)
balls of color 0 and one ball of color y1.

At the next stage, we again first draw a ball from the X-urn. We can either draw a
0 ball or an x1 ball. If an x1 ball is drawn, we replace it along with another ball of the
same color and then draw a Y-ball from the Y |x1 urn. If the X-ball drawn is of color 0,
then once drawn its true color is revealed, x2. We add a ball of color x2 to the X-urn
and create a Y |x2 urn with µ(Y, x2) balls of color 0. This process is repeated, so that
a new Y |x urn is created for each new value of X that is observed.

Note that if P ∼ EDP (α, µ) and the random vectors (X1, Y1), ...(Xn, Yn) given
P = P are i.i.d and distributed according to P , then {(Xn, Yn)}n∈N

is an enriched
Pólya sequence. Conversely, the following theorem proves that if {(Xn, Yn)}n∈N

is an
Enriched Pólya sequence, then given a random probability measure P = P , the random
vectors (X1, Y1), ...(Xn, Yn) are i.i.d and distributed according to P where the joint
distribution of (PX ,PY |X) defined from any fixed version of the conditional satisfies
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the four conditions in defintion (2). Therefore, in addition to the fact that the de
Finetti measure of an Enriched Pólya sequence is an Enriched Dirichlet Process, this
theorem also shows that the induced law of the random joint from the four conditions
in defintion (2) still maintains those properties even though the mapping is not 1 − 1.

Theorem 4. If {(Xn, Yn)}n∈N is an Enriched Pólya sequence with parameters α and
µ, then {(Xn, Yn)}n∈N is an exchangeable sequence and its de Finetti measure is an
Enriched Dirichlet Process with parameters (α, µ).

For a quick sketch of the proof, we start by showing that the sequence {(Xn, Yn)}n∈N

is exchangeable, and then apply de Finetti’s Theorem. Next, after reparametrizing in
terms of the marginal and conditonals, we verify the de Finetti measure satisfies the
four conditions in the definition of the EDP. A detailed proof is given in the Appendix.

4.2 Properties

Define P0X(·) = α(·)
α(X ) and for every x ∈ X , P0Y |X(·|x) = µ(·,x)

µ(Y,x) . From well-known

properties of the Dirichlet distribution, we have:

Proposition 1. If P ∼ EDP (α, µ), for A ∈ BX , B ∈ BY ,

❼ E[PX(A)] = P0X(A); Var(PX(A)) = P0X(A)(1−P0X(A))
α(X )+1 .

❼ ∀x ∈ X , E[PY |X(B | x)] = P0Y |X(B|x);

Var(PY |X(B|x)) =
P0Y |X(B|x)(1−P0Y |X(B|x))

µ(Y,x)+1 .

❼ E[P(A × B)] =
∫

A
P0Y |X(B|x)dP0X(x) := P0(A × B).

Therefore, similar to the DP, the location of the EDP is determined by the base
measure P0, but the there are now many more parameters to control the precision,
namely α(X ) and µ(Y, x) for every x ∈ X . The following proposition states that the
DP is in fact a special case of the EDP.

Proposition 2. P ∼ EDP (α, µ) with µ(Y, x) = α(x), ∀x ∈ X is equivalent to P ∼
DP (α(X )P0).

The proof relies on the urn characterization of both processes; we show that an
Enriched Pólya sequence is equivalent to a Pólya sequence with parameter α(X ) P0(·),
if µ(Y, x) = α(x), ∀x ∈ X . A more detailed proof is given in the Appendix.

As a by-product of this proposition, if P ∼ DP (α(X )P0), the law of the random
conditionals is PY |X(·|x) ∼ DP (α(x)P0Y |X(·|x)), where PY |X(·|x) are independent
among x ∈ X . In general, the marginal base measure can assign positive mass to
countably many locations. Any random conditional probability measure associated with
x that has positive mass under the marginal base measure will be a DP with precision
parameter equivalent to the mass under the marginal base measure times α. Since a
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DP with precision parameter 0 is degenerate on a random location with probability
one, the random conditional probability measures associated with all other x’s will be
degenerate at some y ∈ Y with probability one. Thus, in the case when P0 is non-
atomic, a DP implies assuming the conditionals are independent and degenerate a.s.,
which is consistent with results in Ramamoorthi and Sangalli (2006).

As noted by Ferguson (1973), a prior for nonparametric problems should have large
topological support. The following theorem shows that the EDP has full weak support.
Here, X = R

k1 and Y = R
k2 , implying X × Y = R

k where k = k1 + k2.

Theorem 5. Let S0 denote the topological support of P0. If P ∼ EDP (α, µ), then the
topological support of P is

M0 = {P ∈ P(B) : topological support(P ) ⊆ S0} .

4.3 Posterior

Just as the finite dimensional Enriched Dirichlet distribution is conjugate to the multi-
nomial likelihood, the Enriched Dirichlet Process is also conjugate for estimating an
unknown distribution from exchangeable data. More precisely,

Proposition 3. If (Xi, Yi) | P = P
iid
∼ P , where P ∼ EDP (α, µ), then

P | x1, y1, ..., xn, yn ∼ EDP (αn, µn),

where αn = α +
∑n

i=1 δxi
,

∀x ∈ X µn(·, x) = µ(·, x) +

nx
∑

j=1

δyx,j
; nx =

n
∑

i=1

δxi
(x), {yx,j}

nx

j=1 = {yj : xj = x}.

The proof of conjugacy is straightforward; one simply has to demonstrate that given
the random sample the four conditions in the definition of EDP hold with the updated
parameters specified above. The first two conditions, the fact that the marginal and
conditionals are DPs with updated parameters, follow from conjugacy of the DP. The
last two conditions, independence of the marginal and conditionals and independence
among the conditionals, follow by combining the fact that a priori independence holds
with independence of the random vectors (X1, ..., Xn) and (Y1, ..., Yn|X1 = x1, ..., Xn =
xn) and independence of the random vectors {Yx,j}

nx

j=1 among x ∈ X .

Posterior consistency is a frequentist validation tool that is useful in Bayesian non-
parametric inference where the infinite dimension of the parameter space can make
specification of a prior challenging and cause the prior to strongly influence the pos-
terior even with large amounts of data. One of the reasons that makes the Dirichlet
Process so appealing is that the posterior is weakly consistent for any probability mea-
sure, Π, on the product space under the assumption that the sequence of random vectors
are distributed according to the i.i.d. product measure Π∞. Another important prop-
erty that the EDP maintains is posterior consistency. The proof requires that for a set
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A × B ∈ BX × BY , the posterior expectation of P(A × B) converges to Π(A × B) a.s.
Π∞ and its posterior variance goes to zero. In the following lemma, the variance of the
probability over a set A × B ∈ BX × BY is specified.

Lemma 1. If P ∼ EDP (α, µ), for A × B ∈ BX × BY ,

V ar(P(A × B)) =
1

α(X ) + 1

∫

A

P0Y |X(B|x)(1 + µ(Y, x)P0Y |X(B|x))

µ(Y, x) + 1
dP0X(x) (I1)

+
α(X )

α(X ) + 1

∫

A

∫

{x}

P0Y |X(B|x)(1 − P0Y |X(B|x))

µ(Y, x) + 1
dP0X(x′)dP0X(x) (I2)

−
1

α(X ) + 1

∫

A

∫

{x}

P0Y |X(B|x)2dP0X(x′)dP0X(x) (I3)

−
1

α(X ) + 1

∫

A

∫

A\{x}

P0Y |X(B|x′)P0Y |X(B|x)dP0X(x′)dP0X(x). (I4)

Theorem 6. If P ∼ EDP (α, µ), then, for Π ∈ P(B), the posterior distribution, Qn,
of P converges weakly to δΠ for n → ∞, a.s. Π∞.

The proofs are given in the Appendix.

4.4 Square-Breaking Construction

The following square-breaking representation of the EDP is a direct result of Sethura-
man’s stick-breaking representation of the DP (Sethuraman (1994)).

Proposition 4. If P ∼ EDP (α, µ), it has the following square-breaking a.s. represen-
tation:

P =

∞
∑

i=1

∞
∑

j=1

πX
i πY

j|iδX∗
i

,Y ∗
j|i

,

where: πX
1 = V X

1 ; πX
i = V X

i

∏i−1
h=1(1 − V X

h ), with

V X
i

i.i.d
∼ beta(1, α(X )), X∗

i

i.i.d
∼ P0X ,

and for i = 1, 2, ... : πY
1|i = V Y

1|i; πY
j|i = V Y

j|i

∏j−1
h=1(1 − V Y

h|i), with

V Y
j|i|X

∗
i = x∗

i

i.i.d
∼ beta(1, µ(Y, x∗

i )), Y ∗
j|i|X

∗
i = x∗

i

i.i.d
∼ P0Y |X(·|x∗

i ),

and the sequences
{

V X
i

}∞

i=1
, {X∗

i }
∞
i=1,

{

V Y
j|1|X

∗
1 = x∗

1

}∞

j=1
,
{

V Y
j|2|X

∗
2 = x∗

2

}∞

j=1
, ... and

{

Y ∗
j|1|X

∗
1 = x∗

1

}∞

j=1
,
{

Y ∗
j|2|X

∗
2 = x∗

2

}∞

j=1
, ... are independent.

For an alternative view of this proposition, consider a square of area one; we break
off rectangles of the square defined by a width of πX

i and length of πY
j|i and we assign

the area of that rectangle, πX
i πY

j|i, to a random location (X∗
i , Y ∗

j|i).
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Note that while a closed form for the finite dimensional distributions of PY may
not be available, we can obtain a square-breaking construction for the random marginal
probability measure on (Y,BY ),

PY =

∞
∑

i=1

∞
∑

j=1

πX
i πY

j|iδY ∗
j|i

,

where the distribution of
{

πX
i

}∞

i=1
,
{

πY
j|i

}∞

i,j=1
,
{

Y ∗
j|i

}∞

i,j=1
is specified above.

4.5 Clustering Structure

The clustering structure in a sample from P ∼ EDP is characterized by the predictive
rule. In particular, the predictive rule states that if P0 is non-atomic, for A × B ∈
BX × BY :

Pr(Xn+1 ∈ A, Yn+1 ∈ B|x1, y1, ..., xn, yn)

=
α(X )

α(X ) + n
P0(A × B) +

∑

x∗
i
∈A

ni

α(X ) + n

(

µ(B, x∗
i ) +

∑ni

j=1 δyij
(B)

µ(Y, x∗
i ) + ni

)

.

Thus, the pair (Xn+1, Yn+1) is either a “new-new” , “old-new” , or “old-old” pair with
probabilities obtained by replacing the set A×B with the sets (X \ {x1, ..., xn})× (Y \
{y1, ..., yn}), {x1, ..., xn} × (Y \ {y1, ..., yn}), or {x1, ..., xn} × {y1, ..., yn} respectively.
Let (x∗

1, ..., x
∗
dn

) be the unique values of (x1, ..., xn) where dn is the number of unique
values and (y∗

i,1, ..., y
∗
i,dni

) be the unique values of (yi,1, ..., yi,ni
) where dni

is the number

of unique values in this set. Succinctly, the clustering structure is described as follows:

Xn+1, Yn+1 =











new-new, (Xn+1, Yn+1) ∼ P0 wp α(X )
α(X )+n

;

old-new, x∗
i , i = 1, ..., dn, Yn+1 ∼ P0Y |X(·|x∗

i ) wp ni

α(X )+n

µ(Y,x∗
i )

µ(Y,x∗
i
)+ni

;

old-old, x∗
i , i = 1, ..., dn, y∗

i,j , j = 1, ..., dni
wp ni

α(X )+n

ni,j

µ(Y,x∗
i
)+ni

.

This gives a “two-level” clustering which reduces to the global clustering of the DP if
µ(Y, x) = 0 for all x ∈ X .

4.6 Comparison with different approaches

In recent literature, there have been many proposals of generalizations of the Dirich-
let process, particularly, dependent Dirichlet Processes. Such an approach exploits
marginal conditional independence. One considers a collection of random variables
{Yj , j ∈ J } and assumes that they are conditionally independent, that is, for any
j1, . . . , jm ∈ J , Yj1 , . . . , Yjm

| Fj1 , . . . , Fjm
∼
∏m

i=1 Fji
(·). Then, a prior is given on the

family of random distributions {Fj , j ∈ J }, such that the Fj ’s are dependent.

A first proposal along these lines was given by Cifarelli and Regazzini (1978), who

assumed that Fj | λ
i.i.d
∼ DP (αF0(·;λ)), with λ ∼ H(λ). A very interesting develop-

ment is the Hierarchical Dirichlet Process proposed by Teh et al. (2006), who model
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the random base measure F0 nonparametrically, assuming F0 ∼ DP (γH). A further
development is the Nested Dirichlet Process (Rodriguez et al. (2006)) where the model

is given as Fj | G
i.i.d
∼ G and G ∼ DP (αDP (γH)). The general and clever scheme given

by the Dependent Dirichlet Processes (DDP; MacEachern (1999)), induces dependence
across the Fj ’s by exploiting the stick breaking representation of the Dirichlet process
and by assuming dependent weights and atoms along j.

Dependent DPs define the law of a collection of distribution functions {Fj , j ∈ J }
indexed by a non random covariate. If we simply replace J with X , this does not
necessarily define the law of the conditionals. In particular, since the covariate is non
random, no σ-algebra on X is considered, and thus, measurability with respect to BX

a.s. is not required. If measurability with respect BX a.s. is satisfied, this is a model on
the random conditionals and does not induce a prior on the random joint distribution
of (X, Y ).

Instead, our approach gives a prior on the marginal-conditional pair and induces a
prior on the joint. For a Dirichlet Process with non atomic base measure, the random
conditionals are independent and degenerate a.s. We are extending this by allowing
for non degenerate conditionals, but we will assume independence. A further exten-
sion would allow for dependence among the random conditionals through a dependent
Dirichlet Process if measurability with respect to BX a.s. is satisfied. However, some
properties will be lost. For example, for a DDP, we would lose conjugacy, and the model
would become much more complex, and using the Hierarchical DP or the Nested DP
would remove dependence on x in the base measures for the conditionals.

Notice that the distribution of the conditional also as a random function of X is
PY |X(·|X) ∼

∑∞
i=1 πX

i δPY |X(·|X∗
i
). This resembles the prior for the Nested Dirich-

let Process, but is not directly comparable since PY |X(·|X) is a different object than
{Fj , j ∈ J }.

5 Example

We provide an illustration of the properties of the EDP prior in an application to mixture
models. The problem we consider is comparing different schools based on national test
scores. The dataset we analyze contains two different test scores for students in 65
inner-London schools. The first score is based on the London Reading Test (LRT),
taken at age 11, and the second is a score derived from the Graduate Certificate of
Secondary Education (GCSE) exams in a number of different subjects, taken at age
16. Taking into account earlier LRT scores can give a sense of the “value added” for
each school. To answer the question of which schools are most effective, we consider
modeling the relationship between LRT and GCSE for all schools. The data are available
at http:// www.stata-press.com/data/mlmus.html. School number 48 is dropped
from the dataset since only 2 students were observed.

Rabe-Hesketh and Skrondal (2005) (Chapter 4) study the following multilevel para-
metric model where Yij and Xij represent, respectively, the GCSE and LRT score for
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student i in school j:

Yij | β0j , β1j , xij
indep
∼ N(β0j + β1jxij , σ

2), (6)
[

β0j

β1j

]

i.i.d
∼ N2

([

β0

β1

]

,Σβ

)

,

where β0j and β1j are independent of Xij . The interest is in estimating the school
specific coefficients βj = (β0j , β1j). The intercept is interpreted as the school mean of
GCSE scores for the students with the average LRT score of 0. The competitiveness
of the school is captured by the school specific slope. Schools with greater slopes are
competitive; more “value” is added for students with higher LRT scores. Schools with a
slope of 0 are non-competitive; the performance of students is homogeneous regardless
of how the students scored on the LRT. If parents are to choose the best school for their
children, both average “value added” and competitiveness are important.

Maximum likelihood estimates of the parameters of the mixing distribution (Rabe-

Hesketh and Skrondal (2005)) give β̂0 = −.115, with standard error SE(β̂0) = .0199,

and β̂1 = .55, with SE(β̂1) = .3978, and estimated covariance matrix:

Σ̂β =

[

9.04 .18
.18 .0145

]

.

Empirical Bayes predictions of school specific intercept and slope were then obtained;
figures (1a) and (1b) show the plots of estimated regression lines for each school and
ranking of schools based on the intercept.
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Figure 1: Results of Linear Mixed Effect model

By visual inspection of the histograms of the empirical Bayes estimates in figures
(2a) and (2b), for the intercept and especially the slope, a normal distribution does
not fit well. This may be due to the fact that there are only 65 schools, that the
normality assumption does not hold or a combination of the two. To enlarge the class
of models, we can consider modelling the mixing distribution of the intercept and slope
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Figure 2: Assessing the model

nonparametrically. A pitfall of model (6) is that it assumes the same variability for all
schools. In fact, the wide range of the naive OLS estimates of within school variance
(not shown) supports a model which allows for school-specific variance.

Bayesian nonparametric extensions of this model would assign a DP prior on the
mixing distribution of the (β0j , β1j)’s (a DP-location mixture), assuming the same vari-
ance σ2 for each school, or model school specific variances σ2

j , with a DP prior for the

latent distribution of (β0j , β1j , σ
2
j ) (DP scale-location mixture). The EDP is an inter-

mediate choice. It may model clusters of schools that share the same variance, with
different β’s inside each cluster. We assume that

❼ Yij |xij , β0j , β1j , σ
2
j

indep
∼ N(β0j + β1jxij , σ

2
j ),

❼ βj , σ
2
j |Pβ,σ2 = Pβ,σ2

i.i.d
∼ Pβ,σ2 where βj = (β0j , β1j),

❼ Pβ,σ2 ∼ EDP (α, µ) where α = ασ2P0,σ2 and, for all σ2 ∈ R+, µ(·, σ2) =
µβ(σ2)P0,β|σ2(·|σ2).

In the analysis reported below, we fixed the baseline measures P0σ as an Inverse-
Gamma, with rate and shape parameters, respectively, 8 and 385, and P0,β|σ2(·|σ2)
as a bivariate Normal, N2(µ0, k0 σ2 Σ0), with µ0 = [0, .5]′, k0 = 1/20 and Σ0 =
[

9 3/16
3/16 1/64

]

.

Notice that if the precision parameter ασ2 ≈ 0, we get back to a DP location mixture,
and if the precision parameters µβ(σ2) ≈ 0 for all σ2 ∈ R+, we get a DP scale-location
mixture. Thus, with an EDP prior we can express uncertainty between homoskedasticity
and heteroskedasticity.

We model uncertainty about ασ2 and µβ(σ2) through Gamma hyperpriors:

ασ2 ∼ Ga(uα, vα), where we choose uα = 2 and vα = 1, and for all σ2 ∈ R+ µβ(σ2)
i.i.d
∼



376 An enriched conjugate prior for Bayesian nonparametric inference

Ga(uµβ
, vµβ

), with uµβ
= 2 and vµβ

= 1.

The MCMC scheme to compute posterior distributions is based on the algorithm
6 described in Neal (2000), which is a Metropolis-Hastings algorithm with candidates
drawn from the prior. Resampling the precision parameters is done by introducing a
latent beta-distributed variable, as described in Escobar and West (1995). The number
of iterations is set up to 20, 000 with 10% of burn-in. Looking at the trace and auto-
correlation plots, convergence appears reached for the β’s in all schools and for σ2’s in
most schools. The results are summarized in Figures (3a) and (3b), which display the
estimated regression line for each school and the ranking of schools based on average
“value added ” with empirical quantiles.

-40 -20 0 20 40

-2
0

-1
0

0
1
0

2
0

3
0

Estimated Regression for each School

LRT

G
C
S
E

(a) Estimated regression line for each school

0 10 20 30 40 50 60

-1
0

-5
0

5
1
0

Rank

A
v
e

ra
g

e
 v

a
lu

e
 a

d
d

e
d

2858

23

22

1646
3710

44
49
2553

9 4036
15171450

641338
43456134

1812
472619 8

6031 4 1 32562763
335548

42
353039

57242941
591120

5 21

51 7

2 54
3
6 62

52

(b) Ranking of Schools based on average value
added with empirical quantile

Figure 3: Results of EDP model

The MCMC posterior expectation of ασ2 is 2.5, and Figure (4) depicts the estimated
posterior values of µβ(σ2) for different values of σ2.
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Figure 4: Estimated posterior values of µβ(σ2) for different values of σ2

Neither ασ2 ≈ 0 nor µβ(σ2) ≈ 0 for all σ2, and interestingly, the estimated values
of µβ(σ2) are high for values of σ2 which are more likely a posteriori, and close to zero
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for unlikely values of σ2. Thus, the results favor a model which allows for homoskedac-
ity among some schools with a more likely value σ2 and some outlying schools with
abnormally large or small variances.

6 Final remarks

We have proposed an enrichment of the DP starting from the idea of enriched conjugate
priors. The advantages of this process are that it allows for more flexible specification
of prior information, includes the DP as a special case, and retains some desirable
properties including conjugacy and the fact that it can be constructed from an enriched
urn scheme. The disadvantages include the difficulty in obtaining a closed form for
the distribution of the joint probability over a given set and for the distribution of the
marginal probability over a measurable subset of Y. Using an EDP as the prior for
the distribution of a random vector, Z, implies one has to determine a partition of
Z into two groups and an ordering defining which group comes first. The “two-level”
clustering resulting from the EDP introduces a clear asymmetry based on the partition
and ordering chosen, and how to choose them depends on the application. There may be
a natural ordering or partition and/or computational reasons, including decomposition
of the base measure, for choosing the partition and ordering. In our example, we
partitioned the random vector (β0, β1, σ

2) into the two groups, (σ2) and (β0, β1), with σ2

chosen first due to uncertainty in homoskedasticity and decomposition of the conjugate
normal-inverse gamma base measure. One may also examine all plausible and interesting
partitions and orderings.

We have focused on the partition of the random vector into two groups, but most
results could be extended to any finite partition of the random vector, although this
would of course imply a further nested structure. Other future works include examining
the implied clustering structure in regression settings when the joint model is an EDP
mixture and exploring if other conjugate nonparametric priors whose finite dimensionals
are standard conjugate priors can be generalized starting from enriched conjugate priors,
such as extension of the enriched distribution, mentioned in the Remark 2, to an enriched
bivariate Neutral to the Right Processes.

We hope that having explored these features can shed light on potentialities and
limitations and encourage further developments in constructing more flexible priors for
a random probability measure on R

k.

Appendix

Proof of Theorem 1 From the predictive distribution, it follows that the joint distribution
can be expressed as:

Pr(X1 = i1, Y1 = j1, ..., Xn = in, Yn = jn) =

n
∏

l=1

α(il) +
l−1
∑

h=1

δih
(il)

α(X ) + l − 1

µ(jl, il) +
l−1
∑

h=1

δjh,ih
(jl, il)

µ(Y, il) +
∑l−1

h=1 δih
(il)

,
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which can be equivalently expressed as:

Γ(α(X ))
∏k

i=1 Γ(α(i))

∏k

i=1 Γ(α(i) + ni+)

Γ(α(X ) + n)

k
∏

i=1

Γ(µ(Y, i))
∏m

j=1 Γ(µ(j, i))

k
∏

i=1

∏m

j=1 Γ(µ(j, i) + nij)

Γ(µ(Y, i) + ni+)
. (7)

The joint distribution only depends on the number of unique pairs seen, not on the
order in which they are observed. Thus, the pairs {Xn, Yn}n∈N form an exchangeable
sequence. By de Finetti’s Representation Theorem, there exists a probability measure

Q̃ on the simplex Sk,m = {p1,1, ..., pk,m : pi,j ≥ 0 and
∑k

i=1

∑m
j=1 pi,j = 1} such that:

Pr(X1 = i1, Y1 = j1, ..., Xn = in, Yn = jn) =

∫

[0,1]km

k
∏

i=1

m
∏

j=1

p
ni,j

i,j Q̃(dp1,1, ..., dpk,m).

Define the simplexes Sk = {p1+, ..., pk+ : pi+ ≥ 0 and
∑k

i=1 pi+ = 1} and

S
(i)
m = {pi|1, ..., pi|k : pj|i ≥ 0 and

∑m
j=1 pj|i = 1} for i = 1, ...k. Let Q be the proba-

bility measure on the product of the simplexes Sk ×
∏k

i=1 S
(i)
m obtained from Q̃ via a

reparametrization in terms of (p1+, ...,pk+,p1|1, ...,pm|k). Then,

Pr(X1 = i1, Y1 = j1, ..., Xn = in, Yn = jn)

=

∫

[0,1]k×[0,1]km

k
∏

i=1

p
ni+
i+

m
∏

j=1

p
nij

j|i Q(dp1+, ..., dpm|k). (8)

Since the Dirichlet distribution is determined by its moments, combining equations (7)
and (8) implies that

p1+, ...,pk+ ∼ Dir(α(1), ..., α(k)),

p1|i, ...,pm|i ∼ Dir(µ(1, i), ..., µ(m, i)) i = 1, ..., k,

where (p1+, ...,pk+), (p1|1, ...,pm|1),..., and (p1|k, ...,pm|k) are independent.

The second part of the theorem follows from de Finetti’s results on the asymptotic
behavior of the predictive distributions for exchangeable sequences; see Cifarelli and
Regazzini (1996).

Proof of Theorem 4. We start by noting that the sequence {Xn}n∈N is a Pólya se-
quence with parameter α. Recall that the predictive distribution of a Pólya sequence
converges to a discrete random probability measure with positive mass at the count-
able number of unique values of the sequence almost surely with respect to the ex-
changeable law. Therefore, given X1 = x1, ..., Xn = xn and letting U(x1, ..., xn) de-
note the set of the unique values of {x1, ..., xn}, we have that for x∗ ∈ U(x1, ..., xn),
nx∗ =

∑n
i=1 δx∗(xi) → ∞ as n → ∞ almost surely with respect to the exchangeable

law. This implies that given {Xn = xn}n∈N, for any x∗ ∈ U({xn}n∈N), the set of ran-
dom variables, {Yx∗,j} = {Yi : Xi = x∗, i ∈ N|{Xn = xn}n∈N} is a countable sequence.
Furthermore, by assumption, for x∗

1 6= x∗
2 ∈ U({xn}n∈N), the sequences {Yx∗

1 ,j}j∈N and
{Yx∗

2 ,j}j∈N are independent Pólya sequences with parameters µ(·, x∗
1) and µ(·, x∗

2) re-
spectively. These observations imply exchangeability of the sequence {Xn, Yn}n∈N, as
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shown in the following argument.

Pr(X1 ∈ A1, Y1 ∈ B1, ..., Xn ∈ An, Yn ∈ Bn) (9)

=

∫

A1×...×An

Pr(Y1 ∈ B1, ..., Yn ∈ Bn|x1, ..., xn)dPr(x1, ..., xn).

By independence of {Yx∗
1 ,j}

nx∗
1

j=1 and {Yx∗
2 ,j}

nx∗
2

j=1 for x∗
1 6= x∗

2 ∈ U(x1, ..., xn), we have

that (9) is equal to:
∫

A1×...×An

∏

x∗∈U(x1,...,xn)

Pr(Yx∗,1 ∈ Bx∗,1, .., Yx∗,nx∗ ∈ Bx∗,nx∗ )dPr(x1, ., xn). (10)

A permutation, π, of the sets (x1 × B1), ..., (xn × Bn), is equivalent to the same per-
mutation, π, of (x1, ..., xn) and for x∗ ∈ U(xπ(1), ..., xπ(n)), a permutation, γx∗ , of
(Bx∗,1, ..., Bx∗,nx∗ ). To keep notation concise, we will let Uπ,n represent U(xπ(1), ..., xπ(n))
(and similarly, Un represent U(x1, ..., xn)).The term inside the integral is invariant to
the permutation, π, of (x1, ..., xn), and due to exchangeability of Pólya sequences, the

laws of the random vectors {Xi}
n
i=1 and {Yx∗,j}

n∗
x

j=1 are invariant to the permutations π

and γx∗ respectively. Thus, (10) is equal to:
∫

Aπ(1)×...×Aπ(n)

∏

x∗∈Uπ,n

Pr(Yx∗,1 ∈ Bγx∗ (1), .., Yx∗,nx∗ ∈ Bγx∗ (nx∗))dPr(xπ(1), ..., xπ(n))

=

∫

Aπ(1)×...×Aπ(n)

Pr(Y1 ∈ Bπ(1), ., Yn ∈ Bπ(n)|xπ(1), ., xπ(n))dPr(xπ(1), ., xπ(n))

= Pr(X1 ∈ Aπ(1), Y1 ∈ Bπ(1), ., Xn ∈ Aπ(n), Yn ∈ Bπ(n)).

De Finetti’s Representation Theorem states that there exists a random probability
measure, P, with distribution Q̃ on P(B) such that:

Pr(X1 ∈ A1, Y1 ∈ B1, ., Xn ∈ An, Yn ∈ Bn) =

∫

P(B)

n
∏

h=1

P (Ah × Bh)dQ̃(P ), (11)

and 1
n

∑n
h=1 δA×B(Xh, Yh)

d
→ P(A × B) a.s. with respect to the exchangeable law

as n → ∞ where P ∼ Q̃. The distribution Q̃ determines the joint distribution, Q, of
the marginal and a fixed version of the conditionals. Reparametrizing in terms of the
marginal and conditionals implies:

Pr(X1 ∈ A1, Y1 ∈ B1, ., Xn ∈ An, Yn ∈ Bn)

=

∫

P(BX )×P(BY )X

n
∏

h=1

∫

Ah

PY |X(Bh|x)dPX(x)dQ(PX ,
∏

x∈X

PY |X(·|x)). (12)

A simple application of the results of Blackwell and MacQueen (1973) for Pólya urn
sequences, verifies that the first two conditions in the definition of the EDP hold. In
particular, for any finite partition A1, ..., Ak ⊆ BX , define the simple measurable func-
tion, φ(x) = i if x ∈ Ai for i = 1, ..., k. Noting that {φ(Xn)}n∈N

, is a Pólya sequence

with parameter α ◦ (φ)−1 taking values in the finite space {1, ..., k}, implies:

PX(φ−1(1), ...,PX(φ−1(k))) ∼ Dir(α(φ−1(1)), ..., α(φ−1(k)))

⇔ PX(A1), ..,PX(Ak) ∼ Dir(α(A1), .., α(Ak)).
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Similarly, for any finite partition B1, .., Bm ⊆ BY , define the simple measurable function
ϕ(y) = j if y ∈ Bj . For any x∗ ∈ U({xn}n∈N), the sequence {ϕ(Yx∗,j)}j∈N

is a Pólya

sequence taking values in the finite space {1, ...,m} with parameter µ(ϕ−1(·), x∗). Again,
it follows that:

PY |X(ϕ−1(1)|x∗), ...,PY |X(ϕ−1(m)|x∗) ∼ Dir(µ(ϕ−1(1), x∗), ..., µ(ϕ−1(m), x∗))

⇔ PY |X(B1|x
∗), ...,PY |X(Bm|x∗) ∼ Dir(µ(B1, x

∗), ..., µ(Bm, x
∗)). (13)

The unique values of the Pólya sequence are actually draws from P0X(·) = α(·)
α(X ) and

can therefore take any value in X . Thus, (13) holds for any x ∈ X . Finally, we need
to show the last two conditions in the defintion of the EDP hold. Exchangeability of
the pairs implies exchangeability of the sequence {Yi|Xi = xi}i∈N. Therefore, by de
Finetti’s theorem:

Pr(Y1 ∈ B1, ..., Yn ∈ Bn|x1, ..., xn) (14)

=

∫

P(BY )Un

∏

x∗∈Un

nx∗
∏

j=1

PY |X(Bx∗,j |x
∗)dQ

Y |X
Un

(
∏

x∗∈Un

PY |X(·|x∗)). (15)

Independence of the exchangeable sequences
{

Yx∗
1 ,j

}

j∈N
and

{

Yx∗
2 ,j

}

j∈N
for x∗

1 6= x∗
2

implies:

Pr(Y1 ∈ B1, ..., Yn ∈ Bn|x1, ..., xn) =
∏

x∗∈Un

Pr(Yx∗,1 ∈ Bx∗,1, ..., Yx∗,nx∗ ∈ Bx∗,nx∗ )

=
∏

x∗∈Un

∫

P(BY )

nx∗
∏

j=1

PY |X(Bx∗,j |x
∗)dQ

Y |X
x∗ (PY |X(·|x∗)). (16)

Comparing (15) and (16) shows that Q
Y |X
Un

=
∏

x∗∈Un
Q

Y |X
x∗ . Since the unique values

of {x1, ...xn} are realizations of P0X and can take any value in X , independence of
{

PY |X(·|x)
}

x∈X
among x ∈ X follows. Therefore, (14) can be equivalently written as:

Pr(Y1 ∈ B1, ..., Yn ∈ Bn|x1, ..., xn) =

∫

P(BY )X

n
∏

h=1

PY |X(Bh|xh)d(
∏

x∈X

QY |X
x (PY |X(·|x))).

Now combining this result with the fact that {Xn}n∈N
is an exchangeable sequence

implies:

Pr(X1 ∈ A1, Y1 ∈ B1, ., Xn ∈ An, Yn ∈ Bn)

=

∫

A1×·×An

Pr(Y1 ∈ B1, ., Yn ∈ Bn|x1, ., xn)dPr(x1, ., xn)

=

∫

P(BX )

∫

A1×·×An

∫

P(BY )X

n
∏

h=1

PY |X(Bh|xh)d(
∏

x∈X

Q
Y |X
x (PY |X(·|x)))d(

n
∏

h=1

PX(xh))dQ
X(PX)

=

∫

P(BX )

∫

P(BY )X

n
∏

h=1

∫

Ah

PY |X(Bh | xh)dPX(xh)d(
∏

x∈X

Q
Y |X
x (PY |X(· | x)))dQ

X(PX). (17)
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Comparing (12) with (17) implies that Q = QX ×
∏

x∈X Q
Y |X
x , i.e independence of PX

and
{

PY |X(·|x)
}

x∈X
.

Proof of Proposition 2 We show that an Enriched Pólya sequence is equivalent to a Pólya
sequence with parameter α(X ) P0(·), if µ(Y, x) = α(x), ∀x ∈ X . For an Enriched Pólya
sequence with parameters α, µ and for A ∈ BX , B ∈ BY , since lim

µ(Y,x)→α(x)
Pr(Y1 ∈

B | X1 = x) = P0Y |X(B|x), then if µ(Y, x) = α(x), ∀x ∈ X , Pr(X1 ∈ A, Y1 ∈ B) =
P0(A × B). The joint predictive distribution is given by,

Pr(Xn+1 ∈ A, Yn+1 ∈ B|X1 = x1, Y1 = y1, ..., Xn = xn, Yn = yn)

=

∫

A

µ(B, x) +
∑nx

j=1 δyx,j (B)

µ(Y, x) + nx

d

(

α(x) +
∑n

i=1 δxi(x)

α(X ) + n

)

. (18)

Rewriting this as the sum of the integrals over the sets A\{x1, ..., xn} and A∩{x1, ..., xn}
and replacing µ(Y, x) with α(x), we get (18) is equal to,

α(X )

α(X ) + n
P0(A \ {x1, ..., xn} × B) +

∑

x∈A∩{x1,...,xn}

α(x)P0Y |X(B|x) +
nx
∑

j=1

δyx,j (B)

α(x) + nx

α(x) + nx

α(X ) + n

=
α(X )

α(X ) + n
P0(A × B) +

n

α(X ) + n

n
∑

i=1

δxi,yi(A, B)

n
.

Proof of Theorem 5 This proof is based on the proof of Theorem 3.2.4 in Ghosh and
Ramamoorthi (2003). To show M0 is the topological support - the smallest closed set
of measure one - it is enough to show that M0 is a closed set of measure one, such that
for every Π ∈ M0, Q(U) > 0 for any neighborhood U of Π.

First, we show M0 is closed. If Pn ∈ M0, then Pn(S0) = 1 for all n and if Pn
weakly
→ P ,

then for any closed set C ∈ B, lim supn Pn(C) ≤ P (C). Together these imply P (S0) = 1,
or equivalently, P ∈ M0.

Secondly, the set M0 has measure one. This follows from the square breaking con-
struction of P. Since X∗

i , Y ∗
j|i ∼ P0 implies δX∗

i
,Y ∗

j|i
(S0) = 1 a.s.,

∑∞
i=1 πX

i = 1 a.s., and

for all i,
∑∞

j=1 πY
j|i = 1 a.s, then P(S0) = 1 a.s. (⇔ Q(M0) = 1).

Lastly, our theorem will be proved if we show that for any Π ∈ M0 and any neighbor-
hood U of Π, Q (U) > 0. By extension of Proposition 2.5.2 in Ghosh and Ramamoorthi
(2003), there exists points q1,j < ... < qnj ,j in R for j = 1, .., k, and δ > 0, such that

U
∗ =

{

P ∈ P(B) : |P (

k
∏

j=1

[qij ,j , qij+1,j)) − Π(

k
∏

j=1

[qij ,j , qij+1,j))| < δ and

Π(∂
k

∏

j=1

[qij ,j , qij+1,j)) = 0 for i = 1, ..., nj , j = 1, ..., k

}

⊆ U.
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Define Ai1,..,ik1
=
∏k1

j=1[qij ,j , qij+1,j) and Bi1,..,ik2
=
∏k2

j=k1+1[qij ,j , qij+1,j) and without
loss of generality, we denote these sets as A1, ..., AN and B1, ..., BM . If P0(An×Bm) = 0,
then δX∗

i
,Y ∗

j|i
(S0) = 0 a.s. and P(An×Bm) is degenerate 0. In addition, P0(An×Bm) = 0

combined with the facts that Π(∂An×Bm) = 0 and Π(S0) = 1, imply that Π(An×Bn) =
0. Therefore, |P(An × Bm) − Π(An × Bm)| = 0 a.s.. If P0(An × Bm) > 0, then
δX∗

i
,Y ∗

j|i
(An × Bm) = 1 with positive probability. Thus, the square breaking construc-

tion implies that Q(U∗) > 0.

Proof of Lemma 1

E[P(A × B)2] = E[
∞

∑

i=1

π
2
i PY |X(B|X∗

i )2δX∗
i
(A)] (J1)

+ E[

∞
∑

i=1

∑

j 6=i

πiπjPY |X(B|X∗
i )2δX∗

i
(A)δX∗

j
({X∗

i })] (J2)

+ E[

∞
∑

i=1

∑

j 6=i

πiπjPY |X(B|X∗
i )PY |X(B|X∗

j )δX∗
i
(A)δX∗

j
(A \ {X∗

i })]. (J3)

Using the fact that Eπ[
∑∞

i=1 π2
i ] = 1

α(X )+1 and properties of the Dirichlet distribution,

(J1) = Eπ[
∞

∑

i=1

π
2
i EX∗ [EQY |X [PY |X(B|X∗

i )2|X∗
i ]δX∗

i
(A)]]

=
1

α(X ) + 1

∫

A

P0Y |X(B|x)(1 + µ(Y, x)P0Y |X(B|x))

µ(Y, x) + 1
dP0X(x).

Now, using the fact that Eπ[
∑∞

i=1

∑

i 6=j πiπj ] = α(X )
α(X )+1 and, again, properties of the

Dirichlet distribution,

(J2) = Eπ[
∞

∑

i=1

∑

i6=j

πiπjEX∗ [EQY |X [PY |X(B|X∗
i )2|X∗

i ]δX∗
i
(A)δX∗

j
({X∗

i })]]

=
α(X )

α(X ) + 1

∫

A

∫

{x}

P0Y |X(B|x)(1 + µ(Y, x)P0Y |X(B|x))

µ(Y, x) + 1
dP0X(x′)dP0X(x),

(J3) = Eπ[

∞
∑

i=1

∑

i6=j

πiπjEX∗ [EQY |X [PY |X(B|X∗
i )PY |X(B|X∗

j )|X∗
i , X

∗
j ]δX∗

i
(A)δX∗

j
(A \ {X∗

i })]]

=
α(X )

α(X ) + 1

∫

A

∫

A\{x}

P0Y |X(B|x′)P0Y |X(B|x)dP0X(x′)dP0X(x).

The result is obtained following some algebra.

Proof of Theorem 6 First, we show that E[P(A×B)|X1 = x1, Y1 = y1, ..., Xn = xn, Yn =



S. Wade, S. Mongelluzzo, and S. Petrone 383

yn] → Π(A × B) a.s. Π∞.

E[P(A × B)|X1 = x1, Y1 = y1, ..., Xn = xn, Yn = yn]

=
α(X )

α(X ) + n
P0(A \ {x1, ..., xn} × B) +

∑

x∈A∩{x1,...,xn}

µ(Y, x) +
∑nx

j=1 δyx,j (B)

α(X ) + n

α(x) + nx

µ(Y, x) + nx

∼
1

n

∑

x∈A∩{x1,...,xn}

nx
∑

j=1

δyx,j (B) =
1

n

n
∑

i=1

δxi,yi(A, B)

→ Π(A × B) a.s Π∞
.

Using lemma (1), we show the posterior variance of P(A×B) goes to 0, by showing each

of the four terms in (1) goes to 0. Since αn(A)
αn(X ) ∼ 1

n

∑n
i=1 δxi

(A) and for, x ∈ {x1, ..., xn},
µn(B,x)
µn(Y,x) ∼ 1

nx

∑nx

i=1 δyx,j
(B),

(I1) ∼
1

n

∫

A

(
1

nx

nx
∑

i=1

δyx,j (B))(
1

nx

+
1

nx

nx
∑

i=1

δyx,j (B))d(
1

n

n
∑

i=1

δxi(x))

→ 0,

(I2) ∼

∫

A

∫

{x}

1

nx

(
1

nx

nx
∑

i=1

δyx,j (B))(
1

nx

nx
∑

i=1

δyx,j (B
c))d(

1

n

n
∑

i=1

δxi(x
′))d(

1

n

n
∑

i=1

δxi(x))

→ 0,

(I3) ∼ −
1

n

∫

A

∫

{x}

(
1

nx

nx
∑

i=1

δyx,j (B))2d(
1

n

n
∑

i=1

δxi(x
′))d(

1

n

n
∑

i=1

δxi(x))

→ 0,

(I4) ∼ −
1

n

∫

A

∫

A\{x}

(
1

nx

nx
∑

i=1

δyx,j (B))(
1

nx′

nx′
∑

i=1

δyx′,j
(B))d(

1

n

n
∑

i=1

δxi(x
′))d(

1

n

n
∑

i=1

δxi(x))

→ 0.

This holds for any finite collection of sets. By a straightforward extension of Theorem
2.5.2 of Ghosh and Ramamoorthi (2003), this implies weak convergence of Qn to δΠ a.s.
Π∞.
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