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ABSTRACT

A theory for estimating the probability distribution of the state of a model given a set of observations exists.
This nonlinear filtering theory unifies the data assimilation and ensemble generation problem that have been
key foci of prediction and predictability research for numerical weather and ocean prediction applications. A
new algorithm, referred to as an ensemble adjustment Kalman filter, and the more traditional implementation
of the ensemble Kalman filter in which ‘‘perturbed observations’’ are used, are derived as Monte Carlo ap-
proximations to the nonlinear filter. Both ensemble Kalman filter methods produce assimilations with small
ensemble mean errors while providing reasonable measures of uncertainty in the assimilated variables. The
ensemble methods can assimilate observations with a nonlinear relation to model state variables and can also
use observations to estimate the value of imprecisely known model parameters. These ensemble filter methods
are shown to have significant advantages over four-dimensional variational assimilation in low-order models
and scale easily to much larger applications. Heuristic modifications to the filtering algorithms allow them to
be applied efficiently to very large models by sequentially processing observations and computing the impact
of each observation on each state variable in an independent calculation. The ensemble adjustment Kalman filter
is applied to a nondivergent barotropic model on the sphere to demonstrate the capabilities of the filters in
models with state spaces that are much larger than the ensemble size.

When observations are assimilated in the traditional ensemble Kalman filter, the resulting updated ensemble
has a mean that is consistent with the value given by filtering theory, but only the expected value of the covariance
of the updated ensemble is consistent with the theory. The ensemble adjustment Kalman filter computes a linear
operator that is applied to the prior ensemble estimate of the state, resulting in an updated ensemble whose
mean and also covariance are consistent with the theory. In the cases compared here, the ensemble adjustment
Kalman filter performs significantly better than the traditional ensemble Kalman filter, apparently because noise
introduced into the assimilated ensemble through perturbed observations in the traditional filter limits its relative
performance. This superior performance may not occur for all problems and is expected to be most notable for
small ensembles. Still, the results suggest that careful study of the capabilities of different varieties of ensemble
Kalman filters is appropriate when exploring new applications.

1. Introduction

Methods used to produce operational forecasts of the
atmosphere have been undergoing a gradual evolution
over the past decades. Prior to the 1990s, operational
prediction centers attempted to produce a single ‘‘de-
terministic’’ prediction of the atmosphere; initial con-
ditions for the prediction were derived using an assim-
ilation and initialization process that used, at best, in-
formation from a single earlier prediction. Since that
time, the operational use of multiple forecasts, ensem-
bles, has been developed in an attempt to produce in-
formation about the probability distribution (van Leeu-
wen and Evensen 1996) of the atmospheric forecast
(Molteni et al. 1996; Tracton and Kalnay 1993; Toth
and Kalnay 1993, 1997; Houtekamer et al. 1995).

Anderson and Anderson (1999, hereafter AA) devel-
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oped a Monte Carlo implementation of the nonlinear
filtering problem (Jazwinski 1970, chapter 6) for use in
atmospheric data assimilation. The framework devel-
oped in AA allowed a synthesis of the data assimilation
and ensemble generation problem. The method worked
well in low-order systems, but it was not immediately
clear how it could be applied to the vastly larger models
that are commonplace for atmospheric and oceanic pre-
diction and simulation.

The fundamental problem facing the AA method and
a variety of other ensemble assimilation techniques, in
particular the traditional ensemble Kalman filter (Ev-
ensen 1994; Houtekamer and Mitchell 1998; Keppenne
2000), that have been proposed for atmospheric and
ocean models is that the sample sizes of practical en-
sembles are far too small to give meaningful statistics
about the complete distribution of the model state con-
ditional on the available observations (Burgers et al.
1998; van Leeuwen 1999). This has led to a variety of
clever heuristic methods that try to overcome this prob-
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lem, for instance using ensembles to generate statistics
for small subsets of the model variables (Evensen and
van Leeuwen 1996; Houtekamer and Mitchell 1998).

The AA method has a number of undesirable features
when applied sequentially to small subsets of model
state variables that are assumed to be independent from
all other subsets for computational efficiency. The most
pathological is that prior covariances between model
state variables in different subsets are destroyed when-
ever observations are assimilated. A new method of
updating the ensemble in a Kalman filter context, called
ensemble adjustment, is described here. This method
retains many desirable features of the AA filter while
allowing application to subsets of state variables. In
addition, modifications to the filter design allow assim-
ilation of observations that are related to the state var-
iables by arbitrary nonlinear operators as can be done
with traditional ensemble Kalman filters. The result is
an ensemble assimilation method that can be applied
efficiently to arbitrarily large models given certain ca-
veats. Low-order model results to be presented here
suggest that the quality of these assimilations is signif-
icantly better than those obtained by current state-of-
the-art methods like four-dimensional variational assim-
ilation (Le Dimet and Talagrand 1986; Lorenc 1997;
Rabier et al. 1998) or traditional ensemble Kalman fil-
ters. Although the discussion that follows is presented
specifically in the context of atmospheric models, it is
also applicable to other geophysical models like ocean
or complete coupled climate system models.

2. An ensemble adjustment Kalman filter

a. Joint state–observation space nonlinear filter

The state of the atmosphere, xt, at a time, t, has the
conditional probability density function

p(x | Y ),t t (1)

where Yt is the set of all observations of the atmosphere
that are taken at or before time t. Following Jazwinski
(1970) and AA, let xt be a discrete approximation of
the atmospheric state that can be advanced in time using
the atmospheric model equations:

dx /dt 5 M(x , t) 1 G(x , t)w .t t t t (2)

Here, xt is an n-dimensional vector that represents the
state of the model system at time t, M is a deterministic
forecast model, and w t is a white Gaussian process of
dimension r with mean 0 and covariance matrix S(t)
while G is an n 3 r matrix. The second term on the
right represents a stochastic component of the complete
forecast model (2). In fact, all of the results that follow
apply as long as the time update (2) is a Markov process.
As in AA, the stochastic term is neglected initially. For
most of this paper, the filter is applied in a perfect model
context where

dx /dt 5 M(x , t)t t (3)

exactly represents the evolution of the system of interest.
Assume that a set of mt scalar observations, , isoyt

taken at time t (the superscript o stands for observa-
tions). The observations are functions of the model state
variables and include some observational error (noise)
that is assumed to be Gaussian (although the method
can be extended to non-Gaussian observational error
distributions):

oy 5 h (x , t) 1 « (x , t).t t t t t (4)

Here, ht is an mt-vector function of the model state and
time that gives the expected value of the observations
given the model state and «t is an mt-vector observa-
tional error selected from an observational error distri-
bution with mean 0 and covariance Rt; mt is the size of
the observations vector that can itself vary with time.
It is assumed that the « t for different times are uncor-
related. This may be a reasonable assumption for many
traditional ground-based observations although other
observations, for instance satellite radiances, may have
significant temporal correlations in observational error.

The set of observations, , available at time t can beoyt

partitioned into the largest number of subsets, , foroyt,k

which the observational error covariance between sub-
sets is negligible; this is the equivalent of the obser-
vation batches used in Houtekamer and Mitchell (2001).
Then,

oy 5 h (x , t) 1 « (x , t), k 5 1, . . . , r,t,k t,k t t,k t (5)

where is the kth subset at time t, ht,k is an m-vectoroyt,k

function (m can vary with both time and subset), « t,k is
an m-vector observational error selected from an ob-
servational error distribution with mean 0 and m 3 m
covariance matrix Rt,k, and r is the number of subsets
at time t. Many types of atmospheric observations have
observational error distributions with no significant cor-
relation to the error distributions of other contempora-
neous observations leading to subsets of size one ( oyt,k

is scalar). Note that no restrictions have been placed on
ht,k (and ht); in particular the observed variables are not
required to be linear functions of the state variables.

A cumulative observation set, Yt, can be defined as the
superset of all observations, , for times t # t. The con-oyt

ditional probability density of the model state at time t,

p(x | Y ),t t (6)

is the complete solution to the filtering problem when
adopting a Bayesian point of view (Jazwinski 1970).
Following AA, the posterior probability distribution (6)
is referred to as the analysis probability distribution or
initial condition probability distribution. The forecast
model (3) allows the computation of the conditional
probability density at any time after the most recent
observation time:

p(x | Y ) t . t.t t (7)
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This predicted conditional probability density is a fore-
cast of the state of the model, and also provides the
prior distribution at the time of the next available ob-
servations for the assimilation problem. The temporal
evolution of this probability distribution is described by
the Liouville equation as discussed in Ehrendorfer
(1994). The probability distribution (7) will be referred
to as the first guess probability distribution or prior
probability distribution when used to assimilate addi-
tional data, or the forecast probability distribution when
a forecast is being made.

Here, Yt,k is defined as the superset of all observation
subsets with t # t and k # k (note that Y t,0 5 ,oy Yt,k tp

where tp is the previous time at which observations were
available). Assume that the conditional probability dis-
tribution p(xt | Yt,k21) is given. The conditional distri-
bution after making use of the next subset of obser-
vations is

op(x | Y ) 5 p(x | y , Y ).t t,k t t,k t,k21 (8)

For k 5 1, the forecast model (3) must be used to com-
pute p(xt | ) from p( | ).Y x Yt t tp p p

In preparation for applying the numerical methods
outlined later in this section, define the joint state–ob-
servation vector (referred to as joint state vector) for a
given t and k as z t,k 5 [xt, ht,k (xt, t)], a vector of length
n 1 m where m is the size of the observational subset

. The idea of working in a joint state–observationoyt,k

space can be used in a very general description of the
filtering problem (Tarantola 1987, chapters 1 and 2).
Working in the joint space allows arbitrary observa-
tional operators, h, to be used in conjunction with the
ensemble methods developed below. Following the
same steps that led to (8) gives

op(z | Y ) 5 p(z | y , Y ).t,k t,k t,k t,k t,k21 (9)

Returning to the approach of Jazwinski, Bayes’s rule
gives

p(z | Y )t,k t,k

o o5 p(y | z , Y )p(z | Y )/p(y | Y ). (10)t,k t,k t,k21 t,k t,k21 t,k t,k21

Since the observational noise «t,k is assumed uncorre-
lated for different observation times and subsets,

o op(y | z , Y ) 5 p(y | z ).t,k t,k t,k21 t,k t,k (11)

Incorporating (11) into (10) gives

p(z | Y )t,k t,k

o o5 p(y | z )p(z | Y )/p(y | Y ), (12)t,k t,k t,k t,k21 t,k t,k21

which expresses how new sets of observations modify
the prior joint state conditional probability distribution
available from predictions based on previous observa-
tion sets. The denominator is a normalization that guar-
antees that the total probability of all possible states is
1. The numerator is a product of two terms, the first
representing new information from observation subset

k at time t and the second representing the prior con-
straints. The prior term gives the probability that a given
model joint state, z t,k, occurs at time t given information
from all observations at previous times and the first
k 2 1 observation subsets at time t. The first term in
the numerator of (12) evaluates how likely it is that the
observation subset would be taken given that theoyt,k

state was z t,k. This algorithm can be repeated recursively
until the last subset from the time of the latest obser-
vation, at which point (3) can be used to produce the
forecast probability distribution at any time in the future.

b. Computing the filter product

Applying (12) to large atmospheric models leads to
a number of practical constraints. The only known com-
putationally feasible way to advance the prior state dis-
tribution, xt, in time is to use Monte Carlo techniques
(ensembles). Each element of a set of states sampled
from (6) is advanced in time independently using the
model (3). The observational error distributions of most
climate system observations are poorly known and are
generally given as Gaussians with zero mean (i.e., a
standard deviation or covariance).

Assuming that (12) must be computed given an en-
semble sample of p(xt | Y t,k21), an ensemble of the joint
state prior distribution, p(z t,k | Yt,k21), can be computed
by applying ht,k to each ensemble sample of xt. The
result of (12) must be an ensemble sample of
p(z t,k | Yt,k). As noted in AA, there is generally no need
to compute the denominator (the normalization term) of
(12) in ensemble applications. Four methods for ap-
proximating the product in the numerator of (12) are
presented, all using the fact that the product of two
Gaussian distributions is itself Gaussian and can be
computed in a straightforward fashion; in this sense, all
can be viewed as members of a general class of ensem-
ble Kalman filters.

1) GAUSSIAN ENSEMBLE FILTER

This is an extension of the first filtering method de-
scribed in AA to the joint state space. Let p and Sp bez
the sample mean and covariance of the prior joint state,
p(zt,k | Yt,k21), ensemble. The observation subset yo 5

has error covariance R 5 Rt,k (R and yo are functionsoyt,k

of the observational system). The expected value of the
observation subset given the state variables is ht,k(xt, t),
as in (5), but in the joint state space this is equivalent to
the simple m 3 (n 1 m) linear operator H, where
Hk,k 1 n 5 1.0 for k 5 1, . . . , m and all other elements of
H are 0, so that the estimated observation values calculated
from the joint state vector are yt,k 5 Hzt,k.

Assuming that the prior distribution can be repre-
sented by a Gaussian with the sample mean and variance
results in the numerator of (12) having covariance
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u p 21 21 21TS 5 [(S ) 1 H R H] , (13)

mean
u u p 21 p oT 21z 5 S [(S ) z 1 H R y ], (14)

and a relative weight
p T p 21 p o T o21D 5 exp{2[(z ) (S ) z 1 (y ) R y

u T u 21 u2 (z ) (S ) z ]/2}. (15)

These are an extension of Eqs. (A1)–(A4) in AA to the
joint state space (S. Anderson 1999, personal commu-
nication). In the Gaussian ensemble filter, the updated
ensemble is computed using a random number generator
to produce a random sample from a Gaussian with the
covariance and mean from (13) and (14). The expected
values of the mean and covariance of the resulting en-
semble are u and Su while the expected values of allz
higher-order moments should be 0. The weight, D, is
only relevant in the kernel filter method described in
the next subsection, since only a single Gaussian is used
in computing the product in the three other filtering
methods described here.

2) KERNEL FILTER

The kernel filter mechanism developed in AA can also
be extended to the joint state space. In this case, the prior
distribution is approximated as the sum of N Gaussians
with means and identical covariances Sp, where isp pz zi i

the ith ensemble sample of the prior and N is the ensemble
size. The product of each Gaussian with the observational
distribution is computed by applying (13) once and (14)
and (15) N times, with p replaced by in (14) and (15)pz zi

and u being replaced by in (15) where is the resultu uz z zi i

of the ith evaluation of (14). The result is N new distri-
butions with the same covariance but different means and
associated weights, D [Eq. (15)], whose sum represents
the product. An updated ensemble is generated by ran-
domly sampling from this set of distributions as in AA.
In almost all cases, the values and expected values of the
mean and covariance and higher-order moments of the
resulting ensemble are functions of higher-order moments
of the prior distribution. This makes the kernel filter po-
tentially more general than the other three methods; how-
ever, computational efficiency issues outlined later appear
to make it impractical for application in large models.

3) ENSEMBLE KALMAN FILTER

The traditional ensemble Kalman filter (EnKF here-
after) forms a random sample of the observational dis-
tribution, p( | z t,k) in (12), sometimes referred to asoyt,k

perturbed observations (Houtekamer and Mitchell
1998). The EnKF uses a random number generator to
sample the observational error distribution and adds
these samples to the observation, yo, to form an ensem-
ble sample of the observation distribution, yi, i 5 1,
. . . , N. The mean of the perturbations is adjusted to be

0 so that the perturbed observations, yi, have mean equal
to yo. Equation (13) is computed once to find the value
of Su. Equation (14) is evaluated N times to compute

, with p and yo replaced by the and yi, where theu pz z zi i

subscript refers to the value of the ith ensemble member.
This method is described using more traditional Kalman
filter terminology in Houtekamer and Mitchell (1998),
but their method is identical to that described above.
As shown in Burgers et al. (1998), computing a random
sample of the product as the product of random samples
is a valid Monte Carlo approximation to the nonlinear
filtering equation (12). Essentially, the EnKF can be
regarded as an ensemble of Kalman filters, each using
a different sample estimate of the prior mean and ob-
servations. The updated ensemble has mean u and sam-z
ple covariance with an expected value of Su, while the
expected values of higher-order moments are functions
of higher-order moments of the prior distribution.

Deriving the EnKF directly from the nonlinear fil-
tering equation (12) may be more transparent than some
derivations found in the EnKF literature where the der-
ivation begins from the statistically linearized Kalman
filter equations. This traditional derivation masks the
statistically nonlinear capabilities of the EnKF, for in-
stance, the fact that both prior and updated ensembles
can have an arbitrary (non-Gaussian) structure. Addi-
tional enhancements to the EnKF, for instance the use
of two independent ensemble sets (Houtekamer and
Mitchell 1998), can also be developed in this context.

4) ENSEMBLE ADJUSTMENT KALMAN FILTER

In the new method that is the central focus of this
paper, equations (13) and (14) are used to compute the
mean and covariance of the updated ensemble. A new
ensemble that has exactly these sample characteristics
while maintaining as much as possible the higher mo-
ment structure of the prior distribution is generated di-
rectly. The method, referred to as ensemble adjustment,
for generating the new ensemble applies a linear op-
erator, A, to the prior ensemble in order to get the up-
dated ensemble

pu p uTz 5 A (z 2 z ) 1 z , i 5 1, . . . , N, (16)i i

where and are individual members of the prior andp uz zi i

updated ensemble. The (n 1 m) 3 (n 1 m) matrix A
is selected so that the sample covariance of the updated
ensemble is identical to that computed by (13). Appen-
dix A demonstrates that A exists (many A’s exist since
corresponding indices of prior and updated ensemble
members can be scrambled) and discusses a method for
computing the appropriate A. As noted by M. K. Tippett
(2000, personal communication), this method is actually
a variant of a square root filter methodology. An im-
plementation of a related square root filter is described
in Bishop et al. (2001).
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c. Applying ensemble filters in large systems

The size of atmospheric models and of computation-
ally affordable ensembles necessitate additional simpli-
fications when computing updated means and covari-
ances in ensemble filters. The sample prior covariance
computed from an N-member ensemble is nondegen-
erate in only N 2 1 dimensions of the joint state space.
If the global covariance structure of the assimilated joint
state cannot be represented accurately in a subspace of
size N 2 1, filter methods are unlikely to work without
making use of other information about the covariance
structure (Lermusiaux and Robinson 1999; Miller et al.
1994a). When the perfect model assumption is relaxed,
this can become an even more difficult problem since
model systematic error is not necessarily likely to pro-
ject on the subspace spanned by small ensembles.

One approach to dealing with this degeneracy is to
project the model state onto some vastly reduced sub-
space before computing products, leading to methods
like a variety of reduced space (ensemble) Kalman filters
(Kaplan et al. 1997; Gordeau et al. 2000; Brasseur et
al. 1999). A second approach, used here, is to update
small sets of ‘‘physically close’’ state variables inde-
pendently.

Let C be a set containing the indices of all state var-
iables in a particular independent subset of state variables,
referred to as a compute domain, along with the indices
of all possibly related observations in the current joint
state vector. Let D be a set containing the indices of all
additional related state variables, referred to as the data
domain. Then and , where i, j ∈ C, are computedu uS zi,j i

using an approximation to in which all terms forpSi,j

which i ¸ C < D or j ¸ C < D are set to zero. In other
words, the state variables in each compute domain are
updated making direct use only of prior covariances be-
tween themselves, related observations, and also vari-
ables in the corresponding data domain. These subsets
can be computed statically (as will be done in all appli-
cations here) or dynamically using information available
in the prior covariance and possibly additional a priori
information. The data domain state variables in D may
themselves be related strongly to other state variables
outside of C < D and so are more appropriately updated
in conjunction with some other compute set.

Additional computational savings can accrue by per-
forming a singular value decomposition on the prior
covariance matrix (already done as part of the numerical
method for updating the ensembles as outlined in ap-
pendix A) and working in a subspace spanned by sin-
gular vectors with nonnegligible singular values. This
singular vector filtering is a prerequisite if the size of
the set C < D exceeds N 2 1, leading to a degenerate
sample prior covariance matrix (Houtekamer and Mitch-
ell 1998; Evensen and van Leeuwen 1996).

All results in the following use particularly simple
and computationally efficient versions of the filtering
algorithms. First, all observation subsets contain a single

observation; in this perfect model case this is consistent
with the observations that have zero error covariance
with other observations (Houtekamer and Mitchell
2001). Second, the compute domain set, C, also contains
only a single element and the data domain D is the null
set in all cases. The result is that each component of
the mean and each prior covariance diagonal element
is updated independently (this does not imply that the
prior or updated covariances are diagonal). The joint
state prior covariance matrix used in each update is 2
3 2 containing the covariance of a single state and the
single observation in the current observational subset.
In computing the products to get the new state estimate,
the ensemble adjustment Kalman filter (EAKF) algo-
rithm used here only makes use of singular value de-
compositions and inverses of 2 3 2 matrices; similarly,
the EnKF only requires 2 3 2 matrix computations.
Allowing larger compute and data domains would gen-
erally be expected to improve slightly the results dis-
cussed in later sections while leading to significantly
increased constant factors multiplying computational
cost.

d. Motivation for EAKF

This section discusses advantages of the EAKF and
EnKF over the Gaussian and kernel filters, both referred
to as resampling Monte Carlo (or just resampling) meth-
ods since a random sample of the updated distribution
must be formed at each update step. Applying resam-
pling filters locally to subsets of the model state vari-
ables as discussed in the previous subsection, one might
expect the structure of the assimilated probability dis-
tributions to be simpler and more readily approximated
by Gaussians. Subsets of state variables of size smaller
than N can be used so that the problem of degenerate
sample covariance matrices is avoided altogether. This
can solve problems of filter divergence that result from
global applications of resampling filters (AA). The state
variables can be partitioned into compute and data sub-
sets as described above, motivated by the concept that
most state variables are closely related only to a subset
of other state variables, usually those that are physically
nearby. Ignoring prior covariances with more remote
variables is expected to have a limited impact on the
computation of the product. Similar approaches have
been used routinely in EnKFs (Houtekamer and Mitchell
1998).

Unfortunately, resampling ensemble filters are not
well suited for local application to subsets of state var-
iables. Whenever an observation is incorporated, the
updated mean(s) and covariance(s) are computed using
Eqs. (13) and (14) and a new ensemble is formed by
randomly sampling the result. Even when observations
with a very low relative information content (very large
error covariance compared to the prior covariance) are
assimilated, this resampling is done. However, resam-
pling destroys all information about prior covariances
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FIG. 1. Schematic showing results of applying different filters to two variables X1 and X2 in different compute
subsets. (a) The prior distribution of an eight-member ensemble in the X1–X2 plane and the solid curve is an idealized
distribution for an observation of X1. The results of applying (b) a kernel resampling filter, (c) a single Gaussian
resampling filter, and (d) an ensemble adjustment Kalman filter are depicted in the same plane. The distribution for
an ensemble Kalman filter would look similar to (d) with some amount of additional noise added to the ensemble
positions.

between state variables in different compute subsets.
The assumption that the prior covariances between dif-
ferent subsets are small is far from rigorous in appli-
cations of interest, so it is inconvenient to lose all of
this information every time observations become avail-
able.

Figure 1a shows an idealized representation of a sys-
tem with state variables X1 and X2 that are in different
compute domains. An idealized observation of X1 with
Gaussian error distribution is indicated schematically by
the density plot along the X1 axis in Fig. 1a. Figure 1d
shows the result of applying an EAKF in this case. The
adjustment pulls the value of X1 for all ensemble mem-
bers toward the observed value. The covariance struc-
ture between X1 and X2 is mostly preserved as the values
of X2 are similarly pulled inward. The result is quali-
tatively the same as applying a filter to X1 and X2 si-
multaneously (no subsets). Figure 1c shows the results
of applying a single Gaussian resampling filter and Fig.
1b the result of a multiple kernel resampling filter as in

AA. The resampling filters destroy all prior information
about the covariance of X1 and X2.

There are other related problems with resampling en-
semble filters. First, it is impossible to meaningfully
trace individual assimilated ensemble trajectories in
time. While the EAKF maintains the relative positions
of the prior samples, the letters in Figs. 1b and 1c are
scrambled throughout the resulting distributions. This
can complicate diagnostic understanding of the assim-
ilation. Trajectory tracing is easier in the EnKF than in
the resampling filters, but, especially with small ensem-
bles, less straightforward than in the EAKF due to the
noise added in the perturbed observations.

Second, if only a single Gaussian kernel is being used
to compute the product, all information about higher-
order moments of the prior distribution is destroyed each
time data are assimilated (Fig. 1c). Anderson and An-
derson (1999) introduced the sum of Gaussian kernels
approximation to avoid this problem. In Fig. 1b, the
projection of higher-order structure on the individual

Unauthenticated | Downloaded 08/24/22 05:31 AM UTC



2890 VOLUME 129M O N T H L Y W E A T H E R R E V I E W

state variable axes is similar to that in Fig. 1d, but the
distribution itself winds up being qualitatively a quad-
rupole because of the loss of covariance information
between X1 and X2.

These deficiencies of the resampling ensemble filters
occur because a random sampling of the updated prob-
ability distribution is used to generate the updated en-
semble. In contrast, the EAKF and EnKF retain some
information about prior covariances between state var-
iables in separate compute subsets as shown schemat-
ically in Fig. 1d for the EAKF (a figure for the EnKF
would be similar with some amount of additional noise
added to the ensemble locations). For instance, obser-
vations that have a relatively small information content
make small changes to the prior distributions. Most of
the covariance information between variables in differ-
ent subsets survives the product step in this case. This
is particularly relevant since the frequency of atmo-
spheric and oceanic observations for problems of in-
terest may lead to individual (subsets of ) observations
making relatively small adjustments to the prior distri-
butions.

The EAKF and EnKF also preserve information about
higher-order moments of prior probability distributions
as shown in Fig. 1d. Again, this information is partic-
ularly valuable when observations make relatively small
adjustments to the prior distributions. For instance, if
the dynamics of a model are generating distributions
with interesting higher moment structure, for instance
a bimodality, this information can survive the update
step using the EAKF or EnKF but is destroyed by re-
sampling with a single Gaussian kernel.

Individual ensemble trajectories can be meaningfully
traced through time with the EAKF and the EnKF al-
though the EnKF is noisier for small ensembles (see
also Figs. 3 and 9). If observations make small adjust-
ments to the prior, individual ensemble members look
similar to free runs of the model with periodic small
jumps where data are incorporated. Note that the EAKF
is deterministic after initialization, requiring no gener-
ation of random numbers once an initial ensemble is
created.

The EAKF and EnKF are able to eliminate many of
the shortcomings of the resampling filters. Unlike the
resampling filters, they can be applied effectively when
subsets of state variables are used for computing up-
dates. The EAKF and EnKF retain information about
higher-order moments of prior distributions and indi-
vidual ensemble trajectories are more physically rele-
vant leading to easier diagnostic evaluation of assimi-
lations. All of these advantages are particularly pro-
nounced in instances where observations at any partic-
ular time have a relatively small impact on the prior
distribution, a situation that seems to be the case for
most climate system model/data problems of interest.

e. Avoiding filter divergence
Since there are a number of approximations perme-

ating the EAKF and EnKF, there are naturally inaccu-

racies in the prior sample covariance and mean. As for
other filter implementations, like the Kalman filter, sam-
pling error or other approximations can cause the com-
puted prior covariances to be too small at some times.
The result is that less weight is given to new obser-
vations when they become available resulting in in-
creased error and further reduced covariance in the next
prior estimate. Eventually, the prior may no longer be
impacted significantly by the observations, and the as-
similation will depart from the observations. A number
of sophisticated methods for dealing with this problem
can be developed. Here, only a simple remedy is used.
The prior covariance matrix is multiplied by a constant
factor, usually slightly larger than one. If there are some
local (in phase space) linear balances between the state
variables on the model’s attractor, then the application
of small covariance inflation might be expected to main-
tain these balances while still increasing uncertainty in
the state estimate. Clearly, even if there are locally linear
balanced aspects to the dynamics on the attractor, the
application of sufficiently large covariance inflations
would lead to significantly unbalanced ensemble mem-
bers.

The covariance inflation factor is selected empirically
here in order to give a filtering solution that does not
diverge from the observations while keeping the prior
covariances small. For all results shown, a search of
covariance inflation values is made until a minimum
value of ensemble mean rms error is found and results
are only reported for these tuned cases. The impacts of
covariance inflation in the EnKF are explored in Hamill
et al. (2001). More sophisticated approaches to this
problem are appropriate when dealing with models that
have significant systematic errors (i.e., when assimilat-
ing real observations) and are currently being devel-
oped.

f. ‘‘Distant’’ observations and maintaining prior
covariance

As pointed out in section 2d, one of the advantages
of the EAKF and EnKF is that they can maintain much
of the prior covariance structure even when applied in-
dependently to small subsets of state variables. This is
particularly important in the applications reported here
where each state variable is updated independently from
all others. If, however, two state variables that are close-
ly related in the prior distribution are impacted by very
different subsets of observations, they may end up being
too weakly related in the updated distribution.

One possible (expensive) solution, would be to let
every state variable be impacted by all observations.
This can, however, lead to another problem that has been
noted for the EnKF. Given a large number of obser-
vations that are expected to be physically unrelated to
a particular state variable, say because they are obser-
vations of physically remote quantities, some of these
observations will be highly correlated with the state
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FIG. 2. Rms error as a function of forecast lead time (lead time 0
is the error of the assimilation) for ensemble adjustment Kalman filters
with a 10-member ensemble (lowest dashed curve) and a 20-member
ensemble (lowest solid curve) and for four-dimensional variational
assimilations that use the model as a strong constraint to fit obser-
vations over a number of observing times. In generally descending
order, the number of observation times used by the variational method
is two (dotted), 3 (dash–dotted), 4 (dashed), 5 (solid), 6 (dotted), 7
(dash–dotted), 8 (dashed), 10 (solid), 12 (dotted), and 15 (dash–dot-
ted).

variable by chance and will have an erroneous impact
on the updated ensemble. The impact of spuriously cor-
related remote observations can end up overwhelming
more relevant observations (Hamill et al. 2001).

Following Houtekamer and Mitchell (2001), all low-
order model results here multiply the covariances be-
tween prior state variables and observation variables in
the joint state space by a correlation function with local
support. The correlation function used is the same fifth-
order piecewise rational function used by Gaspari and
Cohn [(1999), their equation (4.10)] and used in Hou-
tekamer and Mitchell. This correlation function is char-
acterized by a single parameter, c, that is the half-width
of the correlation function. The Schur product method
used in Houtekamer and Mitchell can be easily com-
puted in the single state variable cases presented here
by simply multiplying the sample covariance between
the single observation and single state variable by the
distance dependent factor from the fifth-order rational
function.

3. Results from a low-order system

The EAKF and EnKF are applied to the 40-variable
model of Lorenz [(1996), referred to hereafter as L96;
see appendix B], which was used for simple tests of
targeted observation methodologies in Lorenz and
Emanuel (1998). The number of state variables is greater
than the smallest ensemble sizes (approximately 10) re-
quired for usable sample statistics and the model has a
number of physical characteristics similar to those of
the real atmosphere. All cases use synthetic observations
generated, as indicated in (4), over the course of a 1200
time step segment of a very long control integration of
the 40-variable model. Unless otherwise noted, results
are presented from the 1000 step assimilation period
from step 200 to 1200 of this segment. Twenty-member
ensembles are used unless otherwise noted.

For all L96 results reported, for both the EAKF and
the EnKF, a search is made through values of the co-
variance inflation parameter and the correlation function
half-width, c. The covariance inflation parameter is in-
dependently tuned for c’s of 0.05, 0.10, 0.15, 0.20, 0.25,
0.30, and 0.35 in order to minimize the rms error over
the assimilation period. For the smallest c, state vari-
ables are only impacted by observations at a distance
of less than 0.10 (total of 20% of the total domain width
of 1.0) while in the 0.35 case, the correlation function
actually wraps around in the cyclic domain allowing
even the most distant observations to have a nonnegli-
gible impact on a state variable.

a. Identity observation operators

In the first case examined, the observational operator,
h, is the identity (each state variable is observed di-
rectly), the observational error covariance is diagonal
with all elements 4.0 (observations have independent

error variance of 4), and observations are available ev-
ery time step. As discussed in detail in AA, the goal of
filtering is to produce an ensemble with small ensemble
mean error and with the true state being statistically
indistinguishable from a randomly selected member of
the ensemble. For the EAKF, the smallest time mean
rms error of the ensemble mean for this assimilation is
0.390 for a c of 0.3 and covariance inflation of 1.01.
Figure 2 shows the rms error of the ensemble mean for
this assimilation and for forecasts started from the as-
similation out to leads of 20 assimilation times for steps
100–200 of the assimilation (101 forecasts; this period
is selected for comparison with four-dimensional vari-
ational methods in section 5). Results for the EAKF
would be virtually indistinguishable if displayed for
steps 200–1200.

Figure 3a shows a time series of the ‘‘truth’’ from
the control run and the corresponding ensemble mem-
bers (the first 10 of the total of 20 are displayed to reduce
clutter) and ensemble mean from the EAKF for variable
X1. There is no evidence in this figure that the assimi-
lation is inconsistent with the truth. The truth lies close
to the ensemble mean (compared to the range of the
variation in time) and generally is inside the 10 ensem-
ble members plotted. The ensemble spread varies sig-
nificantly in time; for instance, the ensemble is more
confident about the state (less spread) when the wave
trough is approaching at assimilation time 885 than just
after the peak passes at time 875. The ability to trace
individual ensemble member trajectories in time is also
clearly demonstrated; as noted in section 2 this could
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FIG. 3. Time series of ‘‘truth’’ from long control run (solid gray),
ensemble mean (thick dashed), and the first 10 of the 20 individual
ensemble members (thin dashed) for variable X1 of the L96 model
from assimilation times 850–900 using (a) an ensemble adjustment
Kalman filter and (b) an ensemble Kalman filter.

FIG. 4. Time series of rms error of ensemble mean from ensemble
adjustment Kalman filter assimilation (dashed) and mean rms differ-
ence between ensemble members and the ensemble mean (spread,
solid) for variable X1 of the L96 model from assimilation times 850–
900 of the same assimilation as in Fig. 3.

FIG. 5. Rank probability histogram (Talagrand diagram) of the true
solution for X1 within the 20-member ensemble of the ensemble ad-
justment Kalman filter assimilation for assimilation times 200–1200.

not be done in resampling methods. As an example,
notice the trajectory that maintains a consistently high
estimate from steps 870 through 880.

Figure 4 displays the rms error of the ensemble mean
and the ensemble spread (the mean rms difference be-
tween ensemble members and the ensemble mean) for
the X1 variable for assimilation times 850–900. There
is evidence of the expected relation between spread and
skill; in particular, there are no instances when spread
is small but error is large. For steps 200–1200, the rms
error of the ensemble mean and the ensemble spread
have a correlation of 0.351. The expected relation be-
tween spread and skill (Murphy 1988; Barker 1991) will
be analyzed in detail in a follow-on study.

Figure 5 shows the result of forming a rank histogram
[a Talagrand diagram; Anderson (1996)] for the X1 var-
iable. At each analysis time, this technique uses the
order statistics of the analysis ensemble of a scalar quan-
tity to partition the real line into n 1 1 intervals (bins);
the truth at the corresponding time falls into one of these
n 1 1 bins. A necessary condition for the analysis en-
semble to be a random sample of (6) is that the distri-

bution of the truth into the n 1 1 bins be uniform (An-
derson 1996). This is evaluated with a standard chi-
square test applied to the distribution of the truth in the
n 1 1 bins. The null hypothesis is that the truth and
analysis ensemble are drawn from the same distribution.
Figure 5 does not show much evidence of the patho-
logical behavior demonstrated by inconsistent ensem-
bles, for instance clumping in a few central bins or on
one or both wings. Obviously, if one uses large enough
samples the truth will always be significantly different
from the ensemble at arbitrary levels of confidence. As-
suming that the bin values at each time are independent,
the chi-square test applied to Fig. 5 gives 38.15, indi-
cating a 99% chance that the ensemble was selected
from a different distribution than the truth for this sam-
ple of 1000 assimilation times. However, the bins oc-
cupied by the truth on successive time steps are not
independent (see for instance Fig. 3a) as is assumed by
the chi-square test. This implies that the chi-square re-
sult assumes too many degrees of freedom indicating
that the distribution is less uniform than it is in reality
(T. Hamill 2001, personal communication).

Another simple method for evaluating whether the
truth is similar to a randomly selected ensemble member
is to compute the ratio of the time-averaged rms error
of the ensemble mean to the time-averaged mean rms
error of the ensemble members (this can be done for
the complete state vector or individual state compo-
nents). As shown by Murphy (1988, 1990), the expected
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FIG. 6. Time mean of rms error of ensemble mean for steps 200–
1200 for identity observation assimilations with observational error
variances of 4.0 and 0.4 for 20-member EAKF and EnKF as a function
of correlation function half-width, c, for c ranging from 0.10 to 0.30.

value of this ratio (referred to as the rms ratio hereafter)
should be

E(Ra) 5 Ï(N 1 1)/2N

if the truth is statistically indistinguishable from a mem-
ber of the analysis ensemble for an N-member ensemble.
In the following, the ratio of Ra for a given experiment
to the expected value,

r 5 (Ra)/E(Ra),

referred to as the normalized rms ratio, is used to eval-
uate ensemble performance. For this assimilation, r for
the complete state vector is 1.003, close to unity but
indicating that the ensemble has slightly too little un-
certainty (too little spread).

The same experiment has been run using only a 10-
member ensemble. Results are generally slightly worse,
as shown by the rms error curves as a function of lead
time in Fig. 2. Using ensembles much smaller than 10
leads to sample covariance estimates that are too poor
for the filter to converge. Using ensembles larger than
20 leads to small improvements in the rms errors.

It is important to examine the rate at which ensemble
mean error and spread grow if the assimilation is turned
off to verify that the EAKF is performing in a useful
fashion. In this case, the forecast error growth plot in
Fig. 2 shows that error doubles in about 12 assimilation
times.

For comparison, the EnKF is applied to the same
observations from the L96 model and produces its best
assimilation with a time mean rms error of 0.476 for c
of 0.25 and covariance inflation of 1.12 (see Fig. 6).
Time series of the individual assimilation members for
the EnKF (Fig. 3b) are somewhat noisier than those for
the EAKF and in some places (like the one shown in

Fig. 3b) it can become challenging to trace individual
ensemble members meaningfully in time.

The EAKF and EnKF were also applied in an ex-
periment with the observational error covariance de-
creased by a factor of 10 to 0.4. In this case, the best
EAKF result produced a time mean rms error of 0.144
for correlation function half-width c of 0.30 and co-
variance inflation of 1.015 while the best EnKF had rms
error of 0.171 for c of 0.20 and covariance inflation of
1.06 (Fig. 6). The ratio of the best EAKF to EnKF rms
is 0.842 for the reduced variance case, a slight increase
from the 0.819 ratio in the larger variance case. The
ratio of this reduced observational error variance to the
‘‘climatological’’ variance of the L96 state variables
could be argued to be more consistent with the ratio for
the atmospheric prediction problem.

An EnKF with two independent ensemble sets (Hou-
tekamer and Mitchell 1998) was also applied to this
example. Results for a pair of 10-member EnKF en-
sembles were worse than for the single 20-member en-
semble. This paired EnKF method was evaluated for all
other EnKF experiments discussed here and always pro-
duced larger rms than a single EnKF. Given this de-
graded performance, there is no further discussion of
results from paired ensemble EnKFs.

b. Nonlinear observations

A second test in the L96 model appraises the EAKF’s
ability to deal with nonlinear forward observation op-
erators. Forty observations placed randomly in the mod-
el domain are taken at each assimilation time. The ob-
servational operator, h, involves a linear interpolation
from the model grid to the location of the observation,
followed by a squaring of the interpolated value. The
observational errors are independent with variance 64.0.
In this case, the EAKF with covariance inflation of 1.02
and correlation function half-width c of 0.30 produces
a time mean rms error of 0.338 (Fig. 7) while the nor-
malized rms ratio r is 1.002. The results of the EAKF
in this case are qualitatively similar to those discussed
in a related assimilation experiment, which is discussed
in more detail in section 4. The EnKF was also applied
in this nonlinear observations case giving a best time
mean rms of 0.421 for c of 0.25 and covariance inflation
of 1.12 (Fig. 7). A number of additional experiments in
this nonlinear observation case are examined in the next
subsection.

c. Comparison of EAKF and EnKF

The results presented to date suggest that the inclusion
of noise in the EnKF through the use of perturbed ob-
servations may lead to degraded performance relative
to the EAKF. One potential problem with ensemble Kal-
man filters in general is the impact of spurious corre-
lations with physically unrelated variables (Hamill et al.
2001). This is the motivation for limiting the impact of
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FIG. 7. Time mean of rms error of ensemble mean for steps 200–
1200 in nonlinear observation assimilations for 20-member EAKF,
EnKF, and a hybrid filter described in the text HKF as a function of
correlation function half-width, c, for c ranging from 0.10 to 0.30.

FIG. 8. Time mean of rms error of ensemble mean for steps 200–
1200 in nonlinear observation assimilations for 10- and 20-member
ensemble adjustment filters (EAKF10 and EAKF20) and for 10-, 20-,
and 40-member ensemble Kalman filters (EnKF10, EnKF20, and
EnKF40) as a function of correlation function half-width, c, for c
ranging from 0.10 to 0.30.

spatially remote observations through a correlation
function like the one used in the results above. Figure
7 shows the impact of varying c, the half-width of the
correlation function, on EAKF and EnKF performance
for the nonlinear observations case described in section
3b. For the EAKF, the rms reduces monotonically over
this range as c is increased (Fig. 7). For all values of
c, the EnKF produces greater rms than the EAKF; how-
ever, it does not show a monotonic decrease in rms with
c. Instead, the EnKF rms has a minimum for c 5 0.25
as shown in Fig. 7. If a correlation function is not used
at all (same as limit of c becomes large), the rms error
of the EAKF is 0.49, considerably greater than for c of
0.3, but the EnKF diverges from the truth for all values
of covariance inflation. It is not surprising that rms de-
creases as c is increased, allowing more observations
to impact each state variable. The increase in rms for
very large c is consistent with Hamill et al. (2001); as
more observations with weak physical relation are al-
lowed to impact each state variable, the assimilation will
eventually begin to degrade due to spurious correlations
between observations and state variables. This behavior
is exacerbated in the EnKF since the noise introduced
can itself lead to spurious correlations.

Figure 6 shows this same behavior as a function of
c in the identity observation cases discussed in section
3a. The relative differences between the EAKF and
EnKF rms are slightly smaller for the case with reduced
observational error variance of 0.4. Again, this is ex-
pected as the noise introduced through perturbed ob-
servations is smaller in this case and would be expected
to produce fewer large spurious correlations.

In the EAKF, the limited number of physically remote
variables in the 40-variables model is barely sufficient
to see a slight decrease in rms when all variables are
allowed to impact each state variable. In models like

three-dimensional numerical weather prediction models
with many more physically remote state variables, the
EAKF should be subject to more serious problems with
spurious remote correlations.

Figure 8 shows the impact of ensemble size on the
EAKF and EnKF for the nonlinear observations case
from section 3b. As ensemble size decreases, the prob-
lem of spurious correlations should increase (Hamill et
al. 2001). For the EAKF, a 10-member ensemble pro-
duces rms results that are larger than those for 20 mem-
bers for all values of c, and the relative degradation in
performance becomes larger as c increases. For the 10-
member ensemble, the EAKF has a minimum rms for
c of 0.25 indicating that the impact of spurious corre-
lations is increased. Results for a 40-member EAKF
ensemble are very similar to those for the 20-member
ensemble and are not plotted in Fig. 8. Apparently, sam-
pling error is no longer the leading source of error in
the EAKF for ensembles larger than 20 in this problem.

The EnKF also shows more spurious correlation prob-
lems for 10-member ensembles; for values of c greater
than 0.15 the EnKF diverged for all values of covariance
inflation. For c equal to 0.15 and 0.10, the EnKF did
not diverge but did produce rms errors substantially
larger than the 10-member EAKF or the 20-member
EnKF. These results further confirm the EnKF’s en-
hanced sensitivity to spurious correlations.

For all the cases examined in low-order models, the
EnKF requires a much larger covariance inflation value
than does the EAKF. Optimal values of covariance in-
flation for the EnKF range from 1.08 to 1.16 for 20-
member ensembles. For the EAKF, the optimal values
range from 1.005 to 1.02. For 40-member ensembles,
optimal values of covariance inflation were somewhat
smaller, especially for the EnKF, but the EnKF values
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were still much larger than those for the EAKF. The
larger values of covariance inflation are required be-
cause the EnKF has an extra source of potential filter
divergence since only the expected value of the updated
sample covariance is equal to that given by (13). By
chance, there will be cases when the updated covariance
is smaller than the expected value. In general, this is
expected to lead to a prior estimate with reduced co-
variance and increased error at the next assimilation
time, which in turn is expected to lead to an even more
reduced estimate after the next assimilation. Turning up
covariance inflation to avoid filter divergence at such
times leads to the observational data being given too
much weight at other times when the updated covariance
estimates are too large by chance. The net result is an
expected degradation of EnKF performance.

To further elucidate the differences between the
EAKF and EnKF, a hybrid filter (referred to as HKF
hereafter) was applied to the nonlinear observation case.
The hybrid filter begins by applying the EnKF to a state
variable–observation pair. The resulting updated ensem-
ble of the state variable has variance whose expected
value is given by (13), but whose actual sample variance
differs from this value due to the use of perturbed ob-
servations. As a second step, the hybrid filter scales the
ensemble around its mean so that the resulting ensemble
has both the same mean and sample variance as the
EAKF. However, the noise introduced by the perturbed
observations can still impact higher-order moments of
the state variable distribution and its covariance with
other state variables. Figure 7 shows results for the
EAKF, HKF, and EnKF for a range of correlation func-
tion c’s. In all cases, the rms of the HKF is between the
EAKF and EnKF values, but the HKF rms is much
closer to the EAKF for small values of c. As anticipated,
the values of covariance inflation required for the best
rms for the HKF are smaller than for the EnKF, with
values ranging from 1.01 for c of 0.10 to 1.04 for c of
0.20, 0.25, and 0.30. The HKF experiment can be
viewed as isolating the impacts of enhanced spurious
correlations from the impacts of the larger covariance
inflation required to avoid filter divergence in the EnKF.
For small c, almost all the difference between the EnKF
and EAKF is due to the enhanced covariance inflation
while for larger c, most of the degraded performance is
due to enhanced impact of spurious correlations.

The EnKF’s addition of random noise through ‘‘per-
turbed observations’’ at each assimilation step appears
to be sufficient to degrade the quality of the assimilation
through these two mechanisms. The L96 system is quite
tolerant of added noise with off-attractor perturbations
decaying relatively quickly and nearly uniformly toward
the attractor; the noise added in the EnKF could be of
additional concern in less tolerant systems.

4. Estimation of model parameters
Most atmospheric models have many parameters (in

dynamics and subgrid-scale physical parameterizations)

for which appropriate values are not known precisely.
One can recast these parameters as independent model
variables (Derber 1989), and use assimilation to estimate
values for the unknown parameters. Ensemble filters can
produce a sample of the probability distribution of such
parameters given available observations.

To demonstrate this capability, the forcing parameter,
F, in the L96 model is treated as a model variable (the
result is a 41-variable model) and the EAKF is applied
to the extended model using the same set of observations
as in the nonlinear observation case described in section
3b. For assimilation steps 200–1200, the EAKF with
covariance inflation of 1.02 and correlation half-width
c of 0.30 produces a time mean rms error of 0.338 while
the normalized rms ratio r is 0.996 indicating that the
ensemble has slightly too much spread. There is no good
benchmark available to which these values can be com-
pared, but they suggest that the EAKF is working ap-
propriately in this application. It is interesting to note
that the rms error is nearly identical to that obtained in
the experiment in section 3b in which F was fixed at
the correct value.

The time mean rms error for F is 0.0232 over steps
200–1200. Figure 9a shows a time series of F from this
assimilation. The ‘‘true’’ value is always 8, but the filter
has no a priori information about the value or that the
value is constant in time. Also, there are no observations
of F, so information is available only indirectly through
the nonlinear observations of the state variables; all ob-
servations are allowed to impact F. The assimilation is
more confident about the value of F at certain times like
time 925 than at others like time 980. The chi-square
for F over the assimilation from steps 200 to 1200 is
very large indicating that the truth was selected from a
different distribution. However, as shown in Fig. 9a
there is a very large temporal correlation in which bin
is occupied by the truth, suggesting that the number of
degrees of freedom in the chi-square test would need
to be modified to produce valid confidence estimates.

Estimating state variables in this way may offer a
mechanism for tuning parameters in large models (Hou-
tekamer and Lefaivre 1997; Mitchell and Houtekamer
2000), or even allow them to be time varying with a
distribution. It remains an open question whether there
is sufficient information in available observations to al-
low this approach in current-generation operational
models. Given the extreme difficulty of tuning sets of
model parameters, an investigation of the possibility that
this mechanism could be used seems to be of great im-
portance.

One could further extend this approach by allowing
a weighted combination of different subgrid-scale pa-
rameterizations in each ensemble member and assimi-
lating the weights in an attempt to determine the most
appropriate parameterizations. This would be similar in
spirit to the approaches described by Houtekamer et al.
(1996) and might be competitive with methods of gen-
erating ‘‘superensembles’’ from independent models
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FIG. 9. Time series of truth from long control run (solid gray),
ensemble mean (thick dashed) and the first 10 of the 20 individual
ensemble members (thin dashed) for the model forcing variable, F,
of the L96 model from assimilation times 900–1000 for an assimi-
lation with nonlinear observations operator described in text; results
from (a) an ensemble adjustment Kalman filter and (b) an ensemble
Kalman filter.

(Goerss 2000; Harrison et al. 1999; Evans et al. 2000;
Krishnamurthi et al. 1999; Ziehmann 2000; Richardson
2000).

The best EnKF result for this problem had an rms
error of 0.417 for c of 0.20 and covariance inflation
1.08. However, the rms error in F is 0.108, about four
times as large as for the EAKF. Figure 9b shows a time
series of the EnKF estimate of the forcing variable, F,
for comparison with Fig. 9a. The spread and rms error
are much larger and the individual EnKF trajectories
display a much greater high-frequency time variation
than did those for the EAKF.

The introduction of noise in the EnKF is particularly
problematic for the assimilation of F because, in gen-
eral, all available observations are expected to be weak-
ly, but equally, correlated with F. There is no natural
way to use a correlation function to allow only some
subset of observations to impact F as there was for state
variables. The result is that the EnKF’s tendency to be
adversely impacted by spurious correlations with weak-
ly related observations has a much greater impact than

for regular state variables. This result suggests that the
EnKF will have particular difficulty in other cases where
a large number of weakly correlated observations are
available for a given state variable, for instance certain
kinds of wide field of view satellite observations.

5. Comparison to four-dimensional variational
assimilation

Four-dimensional variational assimilation methods
(4DVAR) are generally regarded as the present state of
the art for the atmosphere and ocean (Tziperman and
Sirkes 1997). A 4DVAR has been applied to the L96
model and results compared to those for the EAKF. The
4DVAR uses the L96 model as a strong constraint (Zu-
panski 1997), perhaps not much of an issue in a perfect
model assimilation. The 4DVAR optimization is per-
formed with an explicit finite-difference computation of
the derivative, with 128-bit floating point arithmetic,
and uses as many iterations of a preconditioned, limited-
memory quasi-Newton conjugate gradient algorithm
(NAG subroutine E04DGF) as are required to converge
to machine precision (in practice the number of itera-
tions is generally less than 200). The observations avail-
able to the 4DVAR are identical to those used by the
EAKF, and the number of observation times being fit
by the 4DVAR is varied from 2 to 15 (cases above 15
began to present problems for the optimization even
with 128 bits).

Figure 2 compares the rms error of the 4DVAR as-
similations and forecasts to those for the EAKF assim-
ilations out to leads of 20 assimilation times for the first
case presented in section 3. All results are the mean for
101 separate assimilations and subsequent forecasts, be-
tween assimilation steps 100–200. As the number of
observation times used in the 4DVAR is increased, error
is reduced but always remains much greater than the
EAKF error. The 4DVAR cases also show accelerated
error growth as a function of forecast lead compared to
the EAKF when the number of observation times for
the 4DVAR gets large, a symptom of increasing over-
fitting of the observations (Swanson et al. 1998). An
EAKF with only 10 ensemble members is still able to
outperform all of the 4DVAR assimilations (Fig. 2).

The EAKF outperforms 4DVAR by using more com-
plete information about the distribution of the prior. In
addition to providing better estimates of the state, the
EAKF also provides information about the uncertainty
in this estimate through the ensemble as discussed in
section 3. Note that recent work by Hansen and Smith
(2001) suggests that combining the capabilities of
4DVAR and ensemble filters may lead to a hybrid that
is superior to either. Other enhancements to the 4DVAR
algorithm could also greatly enhance its performance.
Still, these results suggest that the EAKF should be
seriously considered as an alternative to 4DVAR al-
gorithms in a variety of applications.
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FIG. 10. Time series of ‘‘truth’’ from long control run (solid gray),
ensemble mean from ensemble adjustment Kalman filter assimilation
in global barotropic model (thick dashed), and the first 10 of the 20
individual ensemble members (thin dashed) for streamfunction at
458N, 08. Observations are available every 12 h and consist of 250
points placed randomly on the surface of the sphere excluding the
longitude belt from 608 to 1608E where there were no observations;
the observational error standard deviation was 1 3 106 m2 s21.

6. Ease of implementation and performance

Implementing the EAKF (or the EnKF) requires little
in addition to a forecast model and a description of the
observing system. The implementation of the filtering
code described here makes use of only a few hundred
lines of Fortran-90 in addition to library subroutines to
compute standard matrix and statistical operations.
There is no need to produce a linear tangent or adjoint
model [a complicated task for large models; Courtier et
al. (1993)] nor are any of the problems involved with
the definition of linear tangents in the presence of dis-
continuous physics an issue (Vukicevic and Errico 1993;
Miller et al. 1994b) as they are for 4DVAR methods.

The computational cost of the filters has two parts:
production of an ensemble of model integrations, and
computation of the filter products. Integrating the en-
semble multiplies the cost of the single model integra-
tion used in some simple data assimilation schemes by
a factor of N. In many operational atmospheric modeling
settings, ensembles are already being integrated with
more conventional assimilation methods so there may
be no incremental cost for model integrations.

As implemented here, the cost of computing the filter
products at one observation time is O(mnN), where m
is the number of observations, n is the size of the model,
and N is the ensemble size. The impact of each obser-
vation on each model variable is evaluated separately
here. The computation for a given observation and state
variable requires computing the 2 3 2 sample covari-
ance matrix of the state variable and the prior ensemble
observation, an O(N) operation repeated O(mn) times.
In addition, several matrix inverses and singular value
decompositions for 2 3 2 matrices are required (cost is
not a function of m, n, or N). The computation of the
prior ensembles of observed variables for the joint state–
observation vector is also required, at a cost of O(m).
It is difficult to envision an ensemble scheme that has
a more favorable computational scaling than the
O(mnN) for the methods applied here. The cost of the
ensemble Kalman filter scales in an identical fashion as
noted by Houtekamer and Mitchell (2001).

7. Filter assimilation in barotropic model

The limitations of the resampling filter in AA made
it impossible to apply to large systems with reasonable
ensemble sizes. In this section, an initial application of
the EAKF to a larger model is described. The model is
a barotropic vorticity equation on the sphere, repre-
sented as spherical harmonics with a T42 truncation
(appendix C). The assimilation uses the streamfunction
in physical space on a 64-point latitude by 128-point
longitude grid (total of 8192 state variables).

The first case examined is a perfect model assimi-
lation in which a long control run of the T42 model is
used as the truth. To maintain variability, the model is
forced as noted in the appendix. Observations of stream-

function are available every 12 h at 250 randomly cho-
sen locations on the surface of the sphere excluding the
longitude belt between 608E and 1608E where there are
no observations. An observational error with standard
deviation 1 3 106 m2 s21 is added independently to
each observation. A covariance inflation factor of 1.01
is used with a 20-member ensemble. In addition, only
observations within 108 of latitude and cos21(lat) 3 108
of longitude are allowed to impact any particular state
variable. This limitation is qualitatively identical to the
cutoff radius employed by Houtekamer and Mitchell
(1998). In later work, Houtekamer and Mitchell (2001)
report that their use of a cutoff radius when using an
EnKF leads to discontinuities in the analysis. Here, this
behavior was not observed, presumably because the
EAKF does not introduce the noise that can impact cor-
relations in the EnKF and because state variables that
are adjacent on the grid are impacted by sets of obser-
vations that have a relatively large overlap. One could
implement smoother algorithms for limiting the spatial
range of impacts of an observation as was done with
the correlation function in the L96 results in earlier sec-
tions.

Figure 10 shows time series of the truth, the ensemble
mean, and the first 10 ensemble members for a grid
point near 458N, 08. Figure 11 shows the corresponding
rms error of the ensemble mean and the ensemble spread
for the same variable. The rms streamfunction error is
consistently much less than the observational error stan-
dard deviation, even though only 250 observations are
available. The truth generally stays inside the first 10
ensemble members in Fig. 10. The chi-square statistic
for the bins over the 100 observation time interval from
times 100 to 200 is 30.19, corresponding to a 93%
chance that the truth was not picked from the same
distribution as the ensemble. In general, for this assim-
ilation, a sample of 100 observation times is enough to
distinguish the truth from the ensemble at about the 90%
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FIG. 11. Time series of rms error of ensemble mean from ensemble
adjustment Kalman filter assimilation (dashed) and mean rms differ-
ence between ensemble members and the ensemble mean (spread,
solid) for streamfunction at 458N, 08 for the same assimilation as in
Fig. 10.

FIG. 12. Error of ensemble mean of assimilation at assimilation step 200 for the same assim-
ilation as in Fig. 10. In addition to shading, contours are plotted with an interval of 1 3 106 for
absolute values greater than 1 3 106.

confidence level. The normalized rms ratio r is 1.026
indicating that in general this ensemble assimilation is
somewhat too confident (too little spread).

Figure 12 plots the error of the ensemble mean
streamfunction field at assimilation time 200. All shaded
areas have error magnitude less than the observational
standard deviation. The largest errors are in the region
between 608E and 1608E where there are no observa-
tions. The areas of smallest error are concentrated in
areas distant from and generally in regions upstream
from the data void.

As noted in section 3, it is important to know some-
thing about the error growth of the model when the data
assimilation is turned off in order to be able to judge
the value of the assimilation method. For this barotropic
model, the ensemble mean rms error doubles in about
10 days.

The second case examined in this section uses the same
T42 model (with the weak climatological forcing re-
moved) to assimilate data from the National Centers for
Environmental Prediction (NCEP) operational analyses

for the winter of 1991/92. The ‘‘observations’’ are avail-
able once a day as T21 truncated spherical harmonics
and are interpolated to the Gaussian grid points of the
T42 model being used. This interpolation is regarded as
the truth and observations are taken at each grid point
by adding observational noise with a standard deviation
of 1 3 106 m2 s21. This is a particularly challenging
problem for the EAKF because the T42 model has enor-
mous systematic errors at a lead time of 24 h. The result
is that the impact of the observations is large while the
EAKF is expected to work best when the impact of ob-
servations is relatively small (see section 2c).

In addition, the EAKF as described to date assumes
that the model being used has no systematic errors. That
is obviously not the case here and a direct application of
the filter method as described above does not work well.
A simple modification of the filter to deal with model
systematic error is to include an additional parameter that
multiplies the prior covariance, Sp, only when it is used
in (14) to compute the updated mean. Setting this factor
to a value greater than 1 indicates that the prior estimate
of the position of the mean should not be regarded as
being as confident as the prior ensemble spread would
indicate. In the assimilation shown here, this factor is set
to 1.02. A covariance inflation factor must also continue
to be used. Because error growth in the T42 barotropic
model is much slower than that in the atmosphere, this
factor is much larger here than in the perfect model cases
and serves to correct the systematic slowness of uncer-
tainty growth in the assimilating model. Covariance in-
flation is set to 1.45 here.

Figure 13 shows a time series of the truth, ensemble
mean, and the first 10 ensemble members from the T42
assimilation of NCEP data for streamfunction near
458N, 08E, the same point shown in the perfect model
results earlier in this section. The ensemble assimilation
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FIG. 13. Time series of ‘‘truth’’ from NCEP analyses (solid gray),
ensemble mean from ensemble adjustment Kalman filter assimilation
(thick dashed), and the first 10 of the 20 individual ensemble members
(thin dashed) for streamfunction at 458N, 08 from a T42 barotropic
model. Observations are available at each model grid point once per
day with observational error standard deviation 1 3 106 m2 s21.

FIG. 14. Error of ensemble mean of assimilation at day 200 for the same assimilation as in
Fig. 13. In addition to shading, contours are plotted with an interval of 1 3 106 for absolute
values greater than 1 3 106.

clearly tracks the observed data, which have much high-
er amplitude and frequency temporal variability than is
seen in the perfect model in Fig. 10. Although the truth
frequently falls within the 10 ensemble members, this
variable has a chi-square statistic of 46.00, which gives
99% confidence that the truth is not drawn from the
same distribution as the ensemble given 100 days of
assimilation starting on 11 November 1991. Given the
low quality of the model, these results still seem to be
reasonably good. Figure 14 plots the error of the en-
semble mean on 19 February 1992, a typical day. All
shaded areas have ensemble mean error less than the
observational error standard deviation with dark shaded
regions having less than 25% of this error. These results
give some encouragement that practical assimilation
schemes for operational applications could be obtained
if the EAKF were applied with a more realistic forecast
model and more frequent observations.

8. Conclusions and future development

The EAKF can do viable data assimilation and pre-
diction in models where the state space dimension is
large compared to the ensemble size. It has an ability
to assimilate observations with complex nonlinear re-
lations to the state variables and has extremely favorable
computational scaling for large models. At least in low-
order models, the EAKF compares quite favorably to
the four-dimensional variational method, producing as-
similations with smaller error and also providing infor-
mation about the distribution of the assimilation. Unlike
variational methods, the EAKF does not require the use
of linear tangent and adjoint model codes and so is
straightforward to implement, at least mechanistically,
in any prediction model. The EAKF is similar in many
ways to the EnKF, but uses a different algorithm for
updating the ensemble when observations become avail-
able. The EnKF introduces noise by forming a random
sample of the observational error distribution and this
noise has an adverse impact on the quality of assimi-
lations produced by the EnKF.

It is possible that additional heuristic modifications
to the EnKF could make it more competitive with the
EAKF. Comparing the EAKF to other methods in large
models is impossible at present. Both of these points
underscore the need to develop some sort of data as-
similation testbed facility that allows experts to do fair
comparisons of the many assimilation techniques that
are under development.

The EAKF can be extended to a number of other
interesting problems. The version of the filter used here
is currently being used in a study of adaptive observing
systems (Berliner et al. 1999; Palmer et al. 1998). Just
as the ensemble can provide estimates of the joint dis-
tribution of model state variables and observed vari-
ables, it can also provide estimates of joint distributions
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of the model state at earlier times with the state at the
present time. Likewise, joint distributions of the state
variables at different forecast times can be produced.
These joint distributions can be used to examine the
impact of observations at previous times, or during a
forecast, on the state distribution at later times, allowing
one to address questions about the potential value of
additional observations (Bishop and Toth 1999). In a
similar spirit, the ensemble filter provides a potentially
powerful context for doing observing system simulation
experiments (for instance Kuo et al. 1998).

Another product of the filter assimilation is estimates
of the covariances between state variables or state var-
iables and observations (Ehrendorfer and Tribbia 1997).
These estimates are similar to those that are required
for simpler data assimilation schemes like optimal in-
terpolation but also may be useful for theoretical un-
derstanding of the dynamics of the atmosphere (Bouttier
1993). Time and spatial mean estimates of prior joint
state–observation covariances could be generated
through an application of the EAKF over a limited time
and then used as input to a less computationally taxing
three-dimensional variational technique. Initial tests of
this method in a barotropic model have been promising.

Despite the encouraging results presented here, there
are a number of issues that must still be addressed before
the EAKF could be extended to application in opera-
tional atmospheric or oceanic assimilation. The most
serious problem appears to be dealing with model un-
certainty in a systematic way. In the work presented
here, the covariance inflation factor has been used to
prevent model prior estimates from becoming unreal-
istically confident. The current implementation works
well in perfect model assimilations with homogeneous
observations (observations of the same type distributed
roughly uniformly in space), but begins to display some
undesirable behavior with heterogeneous observations.
In the barotropic model with a data void this was re-
flected as an inability to produce good rms ratios in both
the observed and data-void areas. Reducing the co-
variance inflation factor when the spread for a state
variable becomes large compared to the climatological
standard deviation (not done in the results displayed
here) solves this problem. Another example of this prob-
lem occurs when observations of both temperature and
wind speed are available in primitive equation model
assimilations. Clearly, a more theoretically grounded
method for dealing with model uncertainty is needed.
Nevertheless, the covariance inflation approach does
have a number of desirable features that need to be
incorporated in a more sophisticated approach. Opera-
tional atmospheric models tend to have a number of
balances that constrain the relation between different
state variables. If the problem of model uncertainty is
dealt with in a naive fashion by just introducing some
unstructured noise to the model, these balance require-
ments are ignored. As an example, in primitive equation
applications, this results in excessive gravity wave noise

in the assimilation (Anderson 1997). The covariance
inflation approach maintains existing linear relations be-
tween state variables and, so, produces far less gravity
wave noise in primitive equation tests to date. The EnKF
introduces noise when computing the impact of obser-
vations on the prior state and this noise may also lead
to increased gravity wave noise in assimilations.

Dealing with the more serious model errors that occur
in assimilation of observed atmospheric data requires
even more careful thought. Introducing an additional
parameter that controls the confidence placed in prior
estimates of the mean is able to deal with a number of
model biases, but a more theoretically grounded ap-
proach would be desirable.

Ongoing work with the EAKF is addressing these
issues and gradually expanding the size and complexity
of the assimilating models. Initial results with coarse-
resolution dry primitive equation models are to be ex-
tended to higher resolutions with moist physics. The
filter is also scheduled to be implemented in the Geo-
physical Fluid Dynamics Laboratory Modular Ocean
Model for possible use in producing initial conditions
for seasonal forecast integrations of coupled models.
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APPENDIX A

Ensemble Adjustment

This appendix describes a general implementation of
the EAKF; refer to the last paragraph of section 2 for
details on how this method is applied in a computa-
tionally affordable fashion. Let { }, (i 5 1, . . . , N)pzi

be a sample of the prior distribution at a time when new
observations become available with the subscript refer-
ring to each member of the sample (an N-member en-
semble of state vectors). The prior sample mean and
covariance are defined as p and S 5 Sp. Assume thatz
HTR21yo and HTR21H are available at this time with yo

the observations vector, R the observational error co-
variance, and H the linear operator that produces the
observations given a joint state vector.

Since S is symmetric, a singular value decomposition
gives Dp 5 FTSF, where Dp is a diagonal matrix with
the singular values, mp of S on the diagonal and F is a
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unitary matrix (FTF 5 I, F21 5 FT, (FT)21 5 F). Ap-
plying FT and F in this fashion is a rotation of S to a
reference frame in which the prior sample covariance
is diagonal.

Next, one can apply a scaling in this rotated frame
in order to make the prior sample covariance the iden-
tity. The matrix (GT)21FTSFG21, where G is a diagonal
matrix with the square root of the singular values, mp,
on the diagonal, is the identity matrix, I.

Next, a singular value decomposition can be per-
formed on the matrix GTFTHTR21HFG; this is a rotation
to a reference frame in which the scaled inverse obser-

vational ‘‘covariance’’ matrix, HTR21H, is a diagonal
matrix, D 5 UTGTFTHTR21HFGU, with the diagonal el-
ements the singular values, m. The prior covariance can
also be moved to this reference frame, and it is still the
identity since U is unitary, I 5 UT(GT)21FTSFG21U.

The updated covariance can be computed easily in
this reference frame since the prior covariance inverse
is just I and the observed covariance inverse is diagonal.
The updated covariance can then be moved back to the
original reference frame by unrotating, unscaling, and
unrotating. (Note that G is symmetric.)

More formally, the updated covariance can be eval-
uated as

u 21 21 21 21 21 21 21T 21 T T T T T T T 21 21 21 21S 5 (S 1 H R H) 5 (F ) G (U ) [U (G ) F (S 1 H R H) FG U]U GF
21 21 21 21 21 21T T T 21 21 T 21 T T T 21 215 (F ) G (U ) {[U GF (S 1 H R H)(F ) G (U ) ] }U GF
21 21 21 21 21 21 21 21T T T 21 21 T T T 21 21 T 21 T T T 21 215 (F ) G (U ) {[U GF S (F ) G (U ) 1 U GF H R H(F ) G (U ) ] }U GF
21 21 21 21 21T T T T T T 21 T T T T 21 21 215 (F ) G (U ) {[(U (G ) F SFG U) 1 U G F H R HFGU] }U GF .

The first term inside the square brackets is just I, and
the second is diag[m1, m2, . . .], so the term inside the
curly brackets is diag[1/(1 1 m1), 1/(1 1 m2), . . .]. This
can be rewritten as BT(GT)21FTSFG21B, where

21/2 21/2B 5 diag[(1 1 m ) , (1 1 m ) , . . . ].1 2

Then, Su 5 ASAT, where A 5 (FT)21GT(UT)21BT

(GT)21FT.
The mean of the updated distribution needs to be

calculated to compute the . Once the updated sampleuzi

covariance has been computed as outlined above, the
mean is calculated easily as u 5 Su(S21 p 1 HTR21yo).z z
For computational efficiency, S21 can be computed by
transforming back from the rotated sample singular val-
ue decomposition (SVD) space in which it is diagonal.

As noted above, being able to write Su 5 ASAT en-
ables an update of the prior sample, { }, to get anpzi

updated sample, { } asuzi

u p p uTz 5 A (z 2 z ) 1 z .i i

An understanding of this update process follows from
the discussion above. After applying the rotation, scal-
ing, and rotation operators UT, (GT)21, and FT to the
prior sample, it is in a space where the prior sample
covariance is I and the observational covariance is di-
agonal. One can then just ‘‘shrink’’ the prior ensemble
by the factor 1/(1 1 m i) independently in each direction
to get a new sample with the updated covariance in this
frame. The rotations and scaling can then be inverted
to get the final updated ensemble.

If the sample prior covariance matrix is degenerate
(for instance if the ensemble size, N, is smaller than the
size of the state vectors), then there are directions in
the state space in which the ensemble has no variance.

Applying the SVD to such sample covariance matrices
actually results in a set of m , N nonzero singular values
and N 2 m zeros on the diagonal of Dp. All the com-
putations can then be performed in the m-dimensional
subspace spanned by the singular vectors corresponding
to the m nonzero singular values. In addition, there may
be some set of singular values that are very small but
nonzero. If care is used, these directions can also be
neglected in the computation for further savings.

APPENDIX B

The Lorenz 1996 Model

The L96 model is a variable size low-order dynamical
system used by Lorenz (1996) and more recently by
others including Lorenz and Emanuel (1998). The mod-
el has N state variables, X1, X2, . . . , XN, and is governed
by the equation

dX /dt 5 (X 2 X )X 2 X 1 F,i i11 i22 i21 i

where i 5 1, . . . , N with cyclic indices. The results
shown are for parameters with a sensitive dependence
on initial conditions: N 5 40, F 5 8.0, and a fourth-
order Runge–Kutta time step with dt 5 0.05 is applied
as in Lorenz and Emanuel.

APPENDIX C

Nondivergent Barotropic Model

A spherical harmonic model of the nondivergent bar-
otropic vorticity equation on the sphere is used with a
transform method for nonlinear terms performed on a
nonaliasing physical space grid with 128 longitude
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points and 64 Gaussian latitude points for a total of
8192 grid points. A time step of 1800 s is used with a
third-order Adams–Bashforth time step, which is ini-
tialized with a single forward step followed by a single
leapfrog step. A ¹8 diffusion on the streamfunction is
applied with a constant factor so that the smallest re-
solved wave is damped with an e-folding time of 2 days.
When run in a perfect model setting, a forcing must be
added to the model to induce interesting long-term var-
iability. In this case, the zonal flow spherical harmonic
components are relaxed toward the observed time mean
zonal flow for the period November through March
1991–92, with an e-folding time of approximately 20
days.
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