

Abstract—We have recently introduced an incremental
learning algorithm, Learn++.NSE, designed to learn in nonsta-
tionary environments, and has been shown to provide an at-
tractive solution to a number of concept drift problems under
different drift scenarios. However, Learn++.NSE relies on error
to weigh the classifiers in the ensemble on the most recent data.
For balanced class distributions, this approach works very well,
but when faced with imbalanced data, error is no longer an
acceptable measure of performance. On the other hand, the
well-established SMOTE algorithm can address the class im-
balance issue, however, it cannot learn in nonstationary envi-
ronments. While there is some literature available for learning
in nonstationary environments and imbalanced data separately,
the combined problem of learning from imbalanced data com-
ing from nonstationary environments is underexplored. There-
fore, in this work we propose two modified frameworks for an
algorithm that can be used to incrementally learn from imba-
lanced data coming from a nonstationary environment.
 Index Terms—concept drift, imbalanced data, ensemble of
classifiers, incremental learning in nonstationary environments

I. INTRODUCTION
ONCEPT drift, associated with learning in nonstationary
environments, receives substantially less attention in

most classical machine learning literature, particularly if
such an environment generates imbalanced class distribu-
tions. Concept drift can be defined as a change in the under-
lying distribution that generates the data used to train a clas-
sifier. The problem is that classifiers trained on previously
available data may become obsolete. While learning in non-
stationary environments and class imbalance has been re-
searched independently and several novel algorithms have
been proposed to handle nonstationary concepts or imba-
lanced data, there has been relatively little work done with
the combination of these problems [1-3]. Learning in a non-
stationary environment requires that the learner is able to
learn from a concept that is changing in time. This change
can be real or virtual. Real drift is a change in the likelihoods
while a virtual drift is a result of an incomplete representa-
tion of the true distribution in the current data. Real and vir-
tual drift may occur at the same time, and it can be difficult
to determine which one is occurring and even more difficult
to tell if both are occurring at the same time [4].

The main contribution of this work is a supervised ensem-

Manuscript received January 31, 2010. The manuscript was revised and

resubmitted on May 2, 2010. This work was supported by the National
Science Foundation under Grant No: ECCS-0926159.

Authors are with the ECE Department at Rowan University and are part
of the Signal Processing & Pattern Recognition Lab, Glassboro, NJ, 08028,
USA (e-mail: gditzler@ieee.org, polikar@rowan.edu).

ble of classifiers based incremental learning algorithm that is
designed to work in nonstationary environments, experienc-
ing class imbalance in the data. This framework is based on
the Learn++.NSE algorithm; however, the error of each clas-
sifier is no longer the contributing factor to the weighting
scheme. Following a review of approaches for imbalanced
data, nonstationary learning and a combination of the two in
described in Section II, we describe the algorithm in Section
III, followed by the results on several databases subject to
concept drift and class imbalance presented in Section IV.
Finally, Section V contains conclusions and final remarks.

II. BACKGROUND

A. Nonstationary Environments
One of the earliest approaches for classifying data in a

nonstationary environment uses a sliding window, whose
size is determined by the rate of drift. Therefore, an algo-
rithm that uses an adjustable window typically follows an
active approach to drift detection, constantly seeking to
detect change as presented in [5-9]. Typically, in such algo-
rithms, there is a drift detection mechanism that updates the
current model only when the drift is detected, assuming that
the old model (and hence the old data) is no longer relevant.
The faster the drift rate, the shorter the window length, with
the understanding that older data are becoming increasingly
less relevant as the environment is changing. Conversely, the
window size grows if the drift is slow or nonexistent with
the understanding that the data from several time steps ago
may still be relevant and useful for classification purposes.
The FLORA family of algorithms was one of the first me-
thods that employed the dynamic window length approach
[8]. While this approach is very simple, it does not allow for
incremental learning, since incremental learning requires
learning the knowledge from the current data and existing
model(s), without requiring access to previous data. A pas-
sive approach to learning concept drift, on the other hand,
simply accepts that a concept drift may or may not have oc-
curred, and updates the model with each incoming batch of
the data stream. The algorithms proposed in [1;3;10-12] are
all passive algorithms.

Multiple-classifier systems (MCS), or ensembles, have
been suggested as an attractive method of learning concept
drift in [13], based on their natural ability to obtain a good
balance between stability (ability to retain relevant informa-
tion) and plasticity (ability to acquire new knowledge) [14].

Kolter & Maloof present the dynamic weighted majority
(DWM) algorithm in [1] which uses an online learner such

An Ensemble Based Incremental Learning Framework for
Concept Drift and Class Imbalance

Gregory Ditzler, Member, IEEE and Robi Polikar, Senior Member, IEEE

C

978-1-4244-8126-2/10/$26.00 ©2010 IEEE

as naïve Bayes, or incremental tree inducer to train an en-
semble with the final voting decision obtained by dynamic
weighted majority voting. The voting weight of each clas-
sifier is set to 1 when created, and is reduced when that clas-
sifier misclassifies an instance. Once the classifier’s weight
falls below a threshold, it is removed from the ensemble.

The Learn++.NSE algorithm, on the other hand, uses a
weighted sum of the current and past normalized pseudo
errors of each classifier to compute the voting weight [15].
This algorithm applies a sigmoid weighting function to the
previous errors of the classifiers. Such an approach increas-
es the weight of a classifier when that classifier obtained low
error in recent time steps. Therefore, a classifier that was
created many time steps ago may still receive a high voting
weight if it performs well on the current environment, and is
particularly useful in recurring concepts. Conversely, a clas-
sifier can have its voting power virtually removed from the
ensemble decision if it is performing poorly in recent time,
but this is only until the classifier begins to perform well
again (if it ever does). In [16], Learn++.NSE had several dif-
ferent pruning methods applied to the ensemble to limit the
ensemble size and monitor the effect of the pruning on the
overall performance in a nonstationary environment. While
Learn++.NSE works well in a variety of concept drift envi-
ronments with balanced data, it is not well suited for imba-
lanced data because the classifier errors is no longer a suita-
ble metric the weighting of classifier.

B. Imbalanced Data
Class imbalance occurs when a dataset does not have an

(approximately) equal number of examples from each class,
which may be quite severe in some applications [17]. Most
approaches for learning from such data are based on under
sampling the majority class or oversampling the minority
class [18]. While relatively straightforward, each has signifi-
cant shortcomings: under sampling throws away data from
the majority class, whether they are useful or not. Oversam-
pling creates exact replicates of minority class instances,
which may cause the classifier to over fit those instances. A
more novel approach is followed by SMOTE [2], which
modifies the feature space rather than the data space by
creating synthetic examples that are located on the line seg-
ment connecting two minority neighbors. SMOTE has been
shown to improve the classification accuracy of the minority
class over other standard approaches. SMOTEBoost was
later presented in [19] as an improved alternative combining
SMOTE and AdaBoost.M2 so that the f-measure and recall
of the ensemble can be increased. More recently, the bag-
ging ensemble variation (BEV) was proposed in [20], which
uses a form of bagging that trains classifiers with all the mi-
nority class data and subsets of the majority class data.

C. Imbalanced Data with Concept Drift
Recently, a framework for an algorithm that is capable of

learning in a nonstationary environment with imbalanced
data has been proposed in [11]. The algorithm is based on a
bagging framework that trains classifiers (C4.5 or naïve

Bayes) on a portion of the majority class that is controlled
with a user defined parameter between [0,1] and the total
number of minority class instances up until the most recent
time step (current + previous positive examples). With each
iteration, the minority class instances are saved to be used to
train classifiers at the next iteration when a new database is
introduced. However, this approach implicitly assumes that
the minority class is stationary, which may not be true. Fur-
thermore, the approach cannot be formally considered in-
cremental since it requires access to old data.

In [12], a bagging based approach that uses a similarity
measure (such as the Mahalanobis distance) to select pre-
vious minority examples that are most similar to the newest
dataset was used for learning in a nonstationary environment
with class imbalance. In this approach, examples that are
irrelevant are effectively discarded from a current training
set by employing the Mahalanobis distance. There is also an
underlying assumption that the minority data come from a
Gaussian distribution. The final ensemble decision is made
using majority voting. However, this framework for han-
dling both class imbalance and nonstationary environments
is not suited for incremental learning as it also requires
access to the previous data. Using such data forces an impli-
cit assumption that the minority class (concept) is stationary,
a potentially incorrect assumption, with access to previous
data also violating the definition of incremental learning.
Our goal in this effort is to propose a framework that can:
(1) learn incrementally without access to the previous data,
(2) build a set of classifiers that are robust to class imbal-
ance, and (3) learn in a nonstationary environment without
relying on error as the weighting metric. Starting with the
Learn++.NSE as a stepping stone, we propose an algorithm
that meets these criteria.

III. ALGORITHMIC FRAMEWORK

A. An Overview of the Proposed Approach
Our primary goal is to develop an ensemble of classifiers

model that can recognize instances of both the minority and
the majority class, whose distributions may be experiencing
concept drift. Since Learn++.NSE has been shown to work
well under various drift conditions [21], it was chosen as the
foundation for its successor, Learn++.NIE (Nonstationary
and Imbalanced Environments). An alternative is to use
SMOTE as a precursor to Learn++.NSE to balance the data
distribution prior to nonstationary learning. We describe the
former in detail, and refer to individual references of
[2;3;16] for the latter, since Learn++.SMOTE is a
straightforward concatenation of the two algorithms.

Learn++.NSE creates a new member of the ensemble with
each new batch of data, evaluates the ensemble on the cur-
rent data, creates a weighted average of classifier errors on
current and recent environments, and assigns voting weights
to each classifier based on age-adjusted weighted errors. The
final decision is then obtained as the weighed majority vot-
ing of all classifiers.

Learn++.NIE is also presented with batches of data in an

incremental fashion where the current distribution, ݌ሺ௧ሻሺ࢞, ߱௖ሻ may be different than, ݌ሺ௧ିଵሻሺ࢞, ߱௖ሻ, the distribu-
tion from which prior batch of data was drawn. However,
two major distinctions separate Learn++.NSE from
Learn++.NIE: (1) the new algorithm creates a sub-ensemble
of classifiers for each batch of data (as opposed to a single
new classifier); and (2) a different metric (not classifier er-
ror) is used as an evaluation measure. As mentioned earlier,
Learn++.NSE relies primarily on classification error to de-
termine voting weights of the classifiers, which works well
in nonstationary environments that have balanced data class
distributions. However, error is not a reliable metric in imba-
lanced datasets; for example, in a dataset in which the mi-
nority class constitutes only 1% of the instances, blindly
choosing majority class gets 99% overall classification accu-
racy, but 0% on the minority class, which is usually the more
important class. Therefore, we explore using a class-specific
weighted error, and chose the metric shown in Eq. 1, for
updating classifiers weights.

 ߳௞ሺ௧ሻ ൌ ൫1ߟ െ ሻݐሺ൅ሻሺ,݇ݎ ൯ ൅ ሺ1 െ ሻ൫1ߟ െ ሻݐሺെሻሺ,݇ݎ ൯ (1)

where ݎ௞,ሺାሻሺ௧ሻ and ݎ௞,ሺିሻሺ௧ሻ are the recall of the kth sub-ensemble
on the positive (minority) and negative (majority) class at
time step t, respectively. This metric rewards a classifier
with a higher voting weight, if it has a high recall on both
minority and majority classes.

The age-adjusted weighted average of the errors is ob-
tained through a logistic sigmoid, which provides a higher
weight to errors on recent environments. The sub-ensembles
that are performing well on both classes in recent times are
therefore awarded with higher weights. The slope and cutoff
of the logistic sigmoid can be controlled based on the pre-
dicted rate of drift.

B. Algorithm Description
The Learn++.NIE algorithm, whose pseudo code is shown

in Figure 1, is presented with database, ࣞሺ୲ሻ, at time step ݐ.
The algorithm is designed to work in a nonstationary envi-
ronment so if the distribution of ࣞሺ௧ሻ is ݌ሺ௧ሻሺ࢞, ߱௖ሻ, then ݌ሺ௧ሻሺ࢞, ߱௖ሻ need not be the same as ݌ሺ௧ିଵሻሺ࢞, ߱௖ሻ, the distri-
bution of ࣞሺ୲ିଵሻ. Since this is an incremental learning algo-
rithm, access to the previous databases is not required.
Therefore, each sub-ensemble must serve as a model for all
the data at time step ݐ. A bagging variation method is called
to create a small ensemble of (K=3) classifiers (step 1).

Traditional bagging generates classifiers trained on ݉ᇱ ൑ ݉ randomly sampled examples from the database. The
form of bagging used in the proposed framework trains a
classifier on all of the minority data and a randomly sampled
subset of the majority data in ࣞሺ୲ሻ. The algorithm can work
with a variety of supervised algorithms as its base classifier.
In this effort, we use the multi-layer perceptron (MLP). Note
however, unlike Learn++.NSE, Learn++.NIE creates a sub-

Fig.1. Learn++.NIE algorithm

ensemble of classifiers for each new batch of data with two
primary reasons: i) ensembles can reduce error through the
averaging obtained through the weighted voting, and more
importantly, ii) choosing a random subset of majority class
for training each classifier provides a less imbalanced data-
set for training the classifier, while using an ensemble of
such classifiers allows us to minimize the loss of information
that may be caused by using a subset of the data for training.

All existing sub-ensembles are then evaluated on the most
recent data, ࣞሺ௧ሻ. Note that each ݄௞ୀଵ,…,௧ contains K classifi-
ers that are combined using majority voting. The predicted
class labels are ܧ௞ሺ௧ሻ, on the data at the most recent time step
(ࣞሺ௧ሻ) on which the kth sub-ensemble (݄௞) is being eva-
luated. ܧ௞ሺ௧ሻ is a vector containing all predicted class labels
for the training data in ࣞሺ௧ሻ by the kth sub-ensemble. The
recall of each class (majority & minority) is computed in
step (2) from ܧ௞ሺ௧ሻ, where ݊ݐ ,݌ݐ are true positive and true
negative ratios, and ݂݌, ݂݊ are the false positive and false
negative ratios. The two recall measures are then combined
using the weighted average controlled by ߟ in Eq. 1 (step 2).
If the weighted error, ߳௞ሺ௧ሻ, exceeds ½, it is set to ½ which
yields a normalized error of 1, and an associated voting
weight of 0 (step 4).

௞,ሺାሻሺ௧ሻݎ ൌ ݌ݐ݌ݐ ൅ ௞,ሺିሻሺ௧ሻݎ ݂݊ ൌ ݊ݐ݊ݐ ൅ ௞ሺ௧ሻ߳ ݌݂ ൌ ߟ ቀ1 െ ௞,ሺାሻሺ௧ሻݎ ቁ ൅ ሺ1 െ ሻߟ ቀ1 െ ௞,ሺିሻሺ௧ሻݎ ቁ

௞ሺ௧ሻߚ ൌ ߳௞ሺ௧ሻ ቀ1 െ ߳௞ሺ௧ሻቁൗ

መ௞ሺ௧ሻߚ ൌ ෍ ߱௞ሺ௧ି௝ሻߚ௞ሺ௧ି௝ሻ௧ି௞௝ୀ଴

௞ܹሺ௧ሻ ൌ log ቀ1 ⁄መ௞ሺ௧ሻߚ ቁ

Algorithm: Learn++.NIE

Input: Training data ࣞሺ௧ሻ ൌ ቄ࢞௜ሺ௧ሻ א ,܆ ௜ሺ௧ሻݕ א Ωቅ, Ω ൌ ሼ൅1, െ1ሽ ݅ ൌ 1, … , ݉ሺ௧ሻ; Supervised learning algorithm, BaseClassifier;
Number of classifiers in sub-ensemble, (3) ܭ;
Error weight ߟ ሺ0.5ሻ, 0 ൑ ߟ ൑ 1;
Sigmoid parameters, ܽ ሺ0.5ሻ and ܾ ሺ15ሻ, ܽ, א ܾ Թ;
for ݐ ൌ 1,2, … (as long as new datasets arrive)

1. Call ݄௧ ൌ ,ݎ݂݁݅݅ݏݏ݈ܽܿ ݁ݏሺܾܽ݊݋݅ݐܽ݅ݎܸܽ݃݊݅݃݃ܽܤ ࣞሺ௧ሻ, ሻܭ
2. Evaluate all exiting sub-ensembles on new dataset, ࣞሺ௧ሻ,

where ݇ ൌ 1,2, … , (t is the most recent / current time step) ݐ
 Call ܧ௞ሺ௧ሻ ൌ ,൫݄௧݁ݐ݋ܸݕݐ݅ݎ݋݆ܽܯ ࣞሺ௧ሻ൯ and compute class
 recalls from ܧ௞ሺ௧ሻ where ݇ ൌ 1,2,3, … , ݐ

if ߳௞ሺ௧ሻ ൐ 1 2⁄ then ߳௞ሺ௧ሻ ൌ 1 2⁄ end if

3. Compute a weighted sum of all weighted error for each
sub-ensemble where ݇ ൌ 1,2, … , ௞ሺ௧ሻ߱ ݐ ൌ 1/ሺ1 ൅ ݁ି௔ሺ௧ି௞ି௕ሻሻ ߱௞ሺ௧ሻ ൌ ߱௞ሺ௧ሻ ∑ ߱௞ሺ௧ି௝ሻ,௧ି௞௝ୀ଴ൗ

4. Calculate classifier voting weights

5. Obtain the composite hypothesis
௜ሻ࢞ሺ௧ሻሺܪ ൌ arg maxୡ ∑ ௞ܹሺ௧ሻ ቘܧ௞ሺ௧ሻሺ࢞௜ሻ ൌ ܿ቙௞

endfor

The original Learn++.NSE algorithms computes a pseudo
error by providing a higher penalty to those classifiers that
misclassify the instances that are misclassified by the current
ensemble. This means that the misclassification of certain
instances, namely, those that have been misclassified by the
old ensemble, are costlier than others. Learn++.NIE, howev-
er, does not reduce a classifier’s weight for misclassifying a
particular instance; rather it uses the overall error of each
class on the most recent data. Prior to computing the weights
for each sub-ensemble decision, the normalized error is
weighted using a logistic sigmoid function giving more
weight to the most recent recall measures (step 3). The vot-
ing weight for each sub-ensemble is then the logarithm of
the age-adjusted weighted error average (step 4). The en-
semble decision is obtained using a weighted majority vote
in step 5 to obtain the final hypothesis, ܪሺ௧ሻሺ࢞௜ሻ.

IV. EXPERIMENTAL RESULTS
We provide a comparison of Learn++.NIE, Learn++.NSE,

and Learn++.SMOTE (a combination of SMOTE and
Learn++.NSE) to determine the advantages and disadvantag-
es of each algorithm on a variety of nonstationary environ-
ments. In our implementation of SMOTE, the number of
nearest neighbors was set to 9 and the amount of SMOTE
was set to 300 for the SEA data and 1500 for the Gaussian
data. All algorithms are compared to each other overall per-
formance, f-measure and recall of the minority class.

A. Gaussian Data
In order to precisely control the nonstationary environ-

ment, as well as to be able to compare results to that of a
Bayes classifier, we created a drifting Gaussian dataset with
approximately 3% minority data. The majority class was
designed as a multimodal (linear combination of 3 modes)
distribution, whereas the minority class came from a un-
imodal distribution, as shown in Figure 2 (the z-axis
represents the likelihoods of the data). The drift was intro-
duced by varying the mean and variance of each class distri-
bution with time, according to the parametric equations giv-
en in Table I, where ܥ௖,௠ denotes class (ܿ) and mode (݉),
with ܿ ൌ 2 representing the minority class.

The Bayes decision region can be seen in Figure 3 where
the z-axis represents the posterior probability. The light gray
(cyan) colored areas of the feature space represent the post-
erior probability of the minority class, which moves through
the middle of the 3-modes of the majority class (dark gray /
purple shaded regions) throughout the experiment.

Fig. 2. Likelihoods, ࡼሺ࢏࣓|࢞ሻ, used to compute the Bayes classifier of the
Gaussian data presented in TABLE I. (a) Initial distribution at ࢚ ൌ ૙, (b)࢚
some later time step ࢚૚ ൐ ૛࢚ ૙, (c) time step࢚ ൐ ࢚ ૚ and (d) end point at࢚ ൌ .૜࢚

Fig.3. Posterior probability, ࡼሺ࣓࢞|࢏ሻ, computed by the Bayes classifier
where the pink (dark) region is the majority class and the cyan (light) region
is the minority class for the Gaussian data in TABLE I. (a) Posterior at ࢚ ൌ ࢚ ૙, (b) some later time step࢚ ൌ ૚࢚ ൐ ૛࢚ ૙, (c) time step࢚ ൐ ૚ and (d)࢚
end point at ࢚ ൌ .૜࢚

Each sub-ensemble generated three multi-layer percep-
trons (20 hidden layer nodes with sigmoid activation func-
tions); with error weighting sigmoid parameters of a=0.5 and
b =15. Each batch of training/testing data contained 1500
majority and 50 minority examples. The performance, f-
measure, and recall of the three different algorithms – along
with that of Bayes classifier – are shown in Figure 4, 5, and

ݐ ൌ ݐ ݋ݐ 0 ൌ 1 3⁄ ݐ ൌ 1/3 ݋ݐ ݐ ൌ 2 3⁄ ݐ ൌ 2/3 ݐ ݋ݐ ൌ 1
௬ߤ ௫ߤ ௬ߪ ௫ߪ ௬ߤ ௫ߤ ௬ߪ ௫ߪ ௫ߪ ଵ,ଵ 1 1ܥ ௬ߤ ௫ߤ ௬ߪ ൅ 8 1 5 2 3 1 5 2 ݐ6 െ 9ሺݐ െ 1 3⁄ ሻ 8 െ 9ሺݐ െ 1 3⁄ ሻ 8 െ 9ሺݐ െ 1 3⁄ ሻ ܥଵ,ଶ 3 െ 5 1 1 8 5 1 ݐ6 ൅ 9ሺݐ െ 1 3⁄ ሻ 8 1 1 8 8 ܥଵ,ଷ 3 െ 5 1 1 2 5 1 ݐ6 ൅ 9ሺݐ െ 1 3⁄ ሻ 2 1 1 8 2 ܥଶ,ଵ 1 1 8 5 1 1 8 െ 9ሺݐ െ 1 3⁄ ሻ 5 1 1 8 െ 9ሺݐ െ 1 3⁄ ሻ 8 െ 9ሺݐ െ 1 3⁄ ሻ

TABLE I. MEAN AND STANDARD DEVIATION GAUSSIAN DRIFT OVER TIME

6 respectively. The shading around each curve indicate the
95% confidence interval (0.05=ߙ) based on 25 independent
trials. The ߟ term was set to 0.5 making the penalty for both
minority and majority class recall error the same. We later
show a more detailed empirical analysis of the variation of ߟ. Overall, the performances of all algorithms were compa-
rable to that of each other (as expected, Bayes classifier per-
forming best, followed by the original Learn++.NSE) with
little or no statistically significant differences – except at ݐ ൌ 55~65. This drop in performance occurs when the mi-
nority class is surrounded by the modes of the majority class,
thus making the minority class prediction the most difficult.

Fig. 4. Classification performance comparison on Gaussian data.

Fig. 5. f-measure comparison on Gaussian data.

The real benefit of Learn++.NIE, or of adding SMOTE to
the Learn++.NSE framework, can be seen in f-measure and
recall characteristics. Learn++.SMOTE has the best minority
class recall as well as best f-measure, perhaps because
SMOTE can directly modify the feature space by creating
more synthetic minority examples to learn from, which is
particularly effective when the minority class is located in
the center of the majority class (Figure 2.c).

Fig. 6. Minority class recall comparison on Gaussian data.

Learn++.NIE does exhibit significantly better recall and f-
measure of the minority class than Learn++.NSE, though it
cannot match Learn++.SMOTE on this dataset for the default
value of ߟ ൌ 0.5. However, the ߟ term in Learn++.NIE does
provide a meaningful control on the algorithm behavior. The
effect of varying the ߟ term in the Learn++.NIE algorithm can
be viewed in the recall and f-measure characteristics in Fig-
ure 7 and 8, respectively.

Fig. 7. The effect of varying ࣁ on recall of Learn++.NIE on the Gaussian
dataset.

Note that 0=ߟ assigns no penalty to misclassifying a mi-
nority class instance and the only contribution to weighted
error come from a mistake made on the majority class.
Therefore, the recall of the minority class is worst when 0=ߟ. The extremely low recall also results in a low f-
measure. Increasing ߟ yields a larger recall of the minority
class, as well as f-measure. In fact, for ߟ ൒ 0.6, Learn++.NIE
catches up with Learn++.SMOTE. Of course, one should
always be aware of the trade-off between recall and overall
classification performance, as better minority recall is typi-
cally associated with poorer classification performance on
the majority class.

10 20 30 40 50 60 70 80 90 100
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

time step

pe
rfo

rm
an

ce

Algorithm Performance

L++.NSE

L++.NIE

L++.SMOTE

10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time step

f-m
ea

su
re

Algorithm F-measure

L++.NSE

L++.NIE

L++.SMOTE

10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time step

re
ca

ll

Algorithm Recall

L++.NSE

L++.NIE

L++.SMOTE

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Recall w.r.t. varying η

time step

re
ca

ll

η=0
η=0.2
η=0.4
η=0.6
η=0.8
η=1

Fig. 8. The effect of varying ࣁ on the f-measure of Learn++.NIE on the
Gaussian dataset.

In summary, we conclude that we can choose a value of ߟ
that provides a good balance between performance, preci-
sion, recall, and f-measure. Learn++.NIE does outperform
Learn++.NSE in recall and f-measure, but Learn++.SMOTE
provides the best recall. We believe this is due to SMOTE’s
ability to appropriately modify the feature space through its
pseudo oversampling. Figure 3c shows the interval when the
minority decision space is the smallest, which is also the
interval when we observe the drop in recall/f-measure for
Learn++.NSE/NIE, and a boost in recall with SMOTE.

B. SEA Data
We also evaluate the algorithms on the commonly used

benchmark SEA dataset introduced by Street and Kim [10].
SEA dataset uses 3-dimenisional data, only two of which
carry information, and a shifting hyperplane with 5% class
noise added to the training and testing datasets (in addition
to the third feature being noise). We modify this dataset to
make it imbalanced, and to introduce a cyclical drift, where
the hyperplane shifts back and forth between two different
thresholds for two cycles. This shifting hyperplane also
causes the class imbalance to vary between 7% and 25% as
the hyperplane shifts. The performance, f-measure and recall
plots for each algorithm are shown in Figure 9, 10, and 11
respectively. The base classifier used in this experiment was
a decision tree. Three classifiers were generated in each sub-
ensemble. The original results of SEA algorithm on this da-
taset, as well as those of original Learn++.NSE using other
base classifiers can be found in [10;16;22].

We make several observations. First, Learn++.NSE and
Learn++.SMOTE only have a small change in performance
when the hyperplane shifts for the second time. Learn++.NIE,
on the other hand, experiences a much larger drop in per-
formance. Second, Learn++.NIE takes longer to recover after
the concept change, though, the recovery in performance and
the classification accuracy is significantly higher than
Learn++.NSE. Third, Learn++.SMOTE has promising per-
formance results with the proper selection of the SMOTE
parameters, but the boost in recall was not as significant as

Learn++.NIE. The Learn++.SMOTE recall can of course be
increased by increasing the percentage of SMOTE, however,
the algorithm will then generally begin to experience a de-
gradation in performance. After all, as the amount of
SMOTE increases, the imbalance reduces, and at the ex-
treme case, the minority class becomes majority by over-
sampling too many minority class examples.

Fig. 9. Algorithm performance on the SEA dataset with a 95% confidence
interval.

The Learn++.SMOTE combination still maintains a better
recall performance compared to the original Learn++.NSE,
similar to the Gaussian data experiment (figure 10). Howev-
er, Learn++.NIE generally outperforms both other algorithms
in f-measure, and in certain time steps of recall, although
there is a significant drop caused by the concept change (al-
beit with a slower recovery rate). Our conclusion from the
SEA dataset is that the Learn++.NIE generally outperforms in
recall and f-measure (and is competitive for performance
with) both its predecessor Learn++.NSE (expected, since
Learn++.NSE is not designed to handle imbalanced data), and
the Learn++.SMOTE combination (somewhat pleasantly sur-
prising, since SMOTE and Learn++.NSE each can handle
their respective imbalance data and concept drift tracking
extremely well). On the other hand, Learn++.NIE appears to
have a weak point when there is sudden concept change,
especially compared to Learn++.NSE, which was shown to
recover quickly from the concept change with different base
classifiers [22]. Not only is this observed in the performance
of the algorithm but also in the recall.

The effect of varying ߟ in Learn++.NIE can be seen in re-
call and f-measure in Figure 12 and 13, respectively. When ߟ ൌ 0 only the majority class error contributes to determin-
ing the weight of the sub-ensemble and when ߟ ൌ 1, the
minority class error is the only contributor to the sub-
ensemble weight. Varying this term, we observe that ߟ can
be used to control the recall of the minority class and the
overall classification performance of the algorithm. If there
is prior knowledge available, an appropriate ߟ value can be
determined to find a balance between the recall and overall
performance of the algorithm.

10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F-measure w.r.t. varying η

time step

f-m
ea

su
re

η=0
η=0.2
η=0.4
η=0.6
η=0.8
η=1

20 40 60 80 100 120 140 160 180 200
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

time step
p

e
rf

o
rm

a
n

ce

Algorithm Performance

L++.NSE

L++.NIE

L++.SMOTE

Fig. 10. f-measure comparison on the SEA dataset.

Fig. 11. Recall comparison on the SEA dataset.

We also conclude on this dataset that the Learn++.NIE
generally recalls minority class data better than the
Learn++.NSE. Adding SMOTE to Learn++.NSE, however,
yields a statistically significant boost in recall; but the result
is not nearly as significant as Learn++.NIE. On the other
hand, we should also add that unlike SMOTE (or other im-
balanced data approaches), Learn++.NIE does not generate
any extra minority points – synthetic or otherwise – and uti-
lizes only the instances available in the dataset.

V. CONCLUSION
We have introduced two new members of the Learn++

family of incremental learning algorithms, Learn++.NIE, and
Learn++.SMOTE designed to work with data experiencing
concept drift and class imbalance at the same time. As in-
cremental learning algorithms, neither Learn++.NIE, nor
Learn++.SMOTE requires access to any of the previous data,
unlike other algorithms developed for similar goals [11;12].

Learn++.NIE is more favorable at boosting minority class
performance than Learn++.NSE and is comparable to (or
sometimes better, based on the ߟ value than) Learn++.

Fig. 12. The effect of ࣁ on recall of Learn++.NIE on SEA dataset.

Fig. 13. The effect of ࣁ on f-measure of Learn++.NIE on SEA dataset.

SMOTE. This was demonstrated on two controlled experi-
ments. It is worth noting that using an algorithm of this na-
ture, where overall error is no longer the primary metric in
determining the weight of a classifier, the performance of
the algorithm is not expected to be superior compared to
algorithms like Learn++.NSE, and this was observed in both
experiments. Such superiority may or may not be meaning-
ful depending on the dataset. However, the advantage of this
new approach is that the performance on the minority class –
usually the class of particular importance – increases signifi-
cantly when the data is severely imbalanced. The weak point
of Learn++.NIE is its relatively slow recovery – compared to
the original Learn++.NSE, from sudden concept change, as
seen on the SEA dataset. Learn++.NSE handles this change
well because a lower voting weight is assigned to classifiers
that misclassify examples that the previous ensemble had
misclassified. This method of weighting allows for
Learn++.NSE to quickly remove classifiers that are unable to
predict on the new concept by assigning a lower weight to
them and thus leading to a quick recovery in performance. In
an imbalanced data scenario, however, such an error meas-
ure is not suitable as a reliable figure or merit.

20 40 60 80 100 120 140 160 180 200
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

time step

f-m
e

a
su

re
Algorithm F-measure

L++.NSE

L++.NIE

L++.SMOTE

20 40 60 80 100 120 140 160 180 200

0.4

0.5

0.6

0.7

0.8

0.9

1

time step

re
ca

ll

Algorithm Recall

L++.NSE

L++.NIE

L++.SMOTE

20 40 60 80 100 120 140 160 180 200

0.4

0.5

0.6

0.7

0.8

0.9

1
Recall w.r.t. varying η

time step

re
ca

ll

η=0
η=0.2
η=0.4
η=0.6
η=0.8
η=1

20 40 60 80 100 120 140 160 180 200
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
F-measure w.r.t. varying η

time step

f-
m

e
a

su
re

η=0
η=0.2
η=0.4
η=0.6
η=0.8
η=1

The Learn++.NIE algorithm was generally more capable of
recalling the minority class with statistical significance,
compared to the original Learn++.NSE algorithm, as ob-
served on both datasets. The proposed framework was able
to recall significantly more of the SEA minority class. In
addition, the Learn++.NIE algorithm also had favorable re-
sults over Learn++.NSE integrated with SMOTE on the noisy
SEA dataset. We have also shown that the simple combina-
tion of Learn++.NSE and SMOTE works well for datasets
that experience concept drift and class imbalance.

Perhaps the most important contribution of Learn++.NIE
is that it allows control over how much penalty is given to
the error of the majority and minority class recall separately,
through a weighted average error. The algorithm can reward
classifiers that are performing well on both minority and
majority classes rather than just the majority class. The ߟ
term effectively allows choosing a balance between recall of
the minority class and overall performance of the algorithm.
In the absence of prior knowledge, this parameter can easily
be set to the default value of 0.5 for a good balance between
the recall and overall performance of the algorithm.

Future work will include an analysis of the Learn++.NIE
algorithm with different statistical measures like f-measure
or g-mean to weight the sub-ensembles. Other base classifi-
ers will need to be evaluated with this algorithm. More data-
sets, both synthetic and real-world, will need to be evaluated
with this algorithm to determine the strengths and weakness
of the proposed approach.

REFERENCES
[1] J. Z. Kolter and M. A. Maloof, "Dynamic weighted majority: an

ensemble method for drifting concepts," Journal of Machine Learn-
ing Research, vol. 8, pp. 2755-2790, 2007.

[2] N. V. Chawla, K. W. Bowyer, L. O. Hall, and M. A. Khasawneh,
"SMOTE: Synthetic Minority Over-sampling Technique," Journal
of Artificial Intelligence Research, vol. 16, pp. 321-357, June2002.

[3] M. Muhlbaier and R. Polikar, "An Ensemble Approach for Incre-
mental Learning in Nonstationary Environments," 7th. Int. Work-
shop on Multiple Classifier Systems (MCS2007) in Lecture Notes in
Computer Science, vol. 4472, Berlin: Springer, pp. 490-500, 2007.

[4] G. Jing, B. Ding, F. Wei, H. Jiawei, and P. S. Yu, "Classifying Data
Streams with Skewed Class Distributions and Concept Drifts," In-
ternet Computing, IEEE, vol. 12, no. 6, pp. 37-49, 2008.

[5] C.Alippi, B. G, and M.Roveri, "Just in time classifiers: managing
the slow drift case,", pp. 114-120, 2009.

[6] C. Alippi and M. Roveri, "Just-in-Time Adaptive Classifiers;Part I:
Detecting Nonstationary Changes," IEEE Transactions on Neural
Networks, vol. 19, no. 7, pp. 1145-1153, 2008.

[7] L.I.Kuncheva, "Using Control Charts for Detecting Concept
Change in Streaming Data," School of Computer Science, Bangor
University, UK,BCS-TR-001-2009, 2009.

[8] G. Widmer and M. Kubat, "Learning in the presence of concept
drift and hidden contexts," Machine Learning, vol. 23, no. 1, pp.
69-101, 1996.

[9] L. I. Kuncheva, "Classifier ensembles for detecting concept change
in streaming data: Overview and perspectives," European Confe-
rence on Artificial Intelligence (ECAI), pp. 5-10, 2008.

[10] W. N. Street and Y. Kim, "A streaming ensemble algorithm (SEA)
for large-scale classification," Seventh ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD-01),
pp. 377-382, 2001.

[11] J. Gao, W. Fan, J. Han, and P. S. Yu, "A General Framework for
Mining Concept-Drifting Data Streams with Skewed Distribu-

tions," SIAM International Conference on Data Mining, vol. 7,
2007.

[12] S.Chen and H.He, "SERA: Selectively Recursive Approach to-
wards Nonstationary Imbalanced Stream Data Mining," Interna-
tional Joint Conference on Neural Networks, Atlanta, GA: pp.
522-529, 2009.

[13] L. I. Kuncheva, "Classifier Ensembles for Changing Environ-
ments," Multiple Classifier Systems (MCS 2004)in Lecture Notes in
Computer Science, vol. 3077, pp. 1-15, 2004.

[14] S. Grossberg, "Nonlinear neural networks: Principles, mechanisms,
and architectures," Neural Networks, vol. 1, no. 1, pp. 17-61, 1988.

[15] M. D. Muhlbaier and R. Polikar, "Multiple Classifiers Based In-
cremental Learning Algorithm for Learning in Nonstationary Envi-
ronments," IEEE International Conference on Machine Learning
and Cybernetics (ICMLC 2007), vol. 6, pp. 3618-3623, 2007.

[16] R. Elwell and R. Polikar, "Incremental Learning in Nonstationary
Environments with Controlled Forgetting," IEEE International
Joint Conference on Neural Networks (IJCNN 2009), pp. 771-778,
2009.

[17] M.Kuba, R.Holte, and S.Matwin, "Machine Learning for the Detec-
tion of Oil Spills in Satellite Radar Images ," Machine Learning,
vol. 30, pp. 195-215, 1998.

[18] Haibo He and Edwardo Garcia, "Learning from Imbalanced Data,"
IEEE Transactions on Knowledge and Data Engineering, vol. 21,
no. 9, pp. 1263-1284, 2010.

[19] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, "
SMOTEBoost: Improving Prediction of the Minority Class in
Boosting," 7th European Conference on Principles and Practice of
Knowledge Discovery
in Databases (PKDD), pp. 107-119, 2003.

[20] C.Li, "Classifying imbalanced data using a bagging ensemble var-
iation (BEV)," Proceedings of the 45th annual ACM Southeast Re-
gional Conference, 2007.

[21] R. Elwell and R. Polikar, "Incremental Learning of Variable Rate
Concept Drift," 8th International Workshop on Multiple Classifier
Systems (MCS 2009)in Lecture Notes in Computer Science, eds. J.
A. Benediktsson, J. Kittler, and F. Roli, Eds., vol. 5519, pp. 142-
151, 2009.

[22] M. Karnick, M. D. Mulhbaier, and R. Polikar, "Incremental Learn-
ing in Non-Stationary Environments with Concept Drift Using a
Multiple Classifier Based Approach," International Conference on
Pattern Recognition (ICPR 2008), pp. 1-4, 2008.

