
 
 

 

  

Abstract—We have recently introduced an incremental 
learning algorithm, Learn++.NSE, designed to learn in nonsta-
tionary environments, and has been shown to provide an at-
tractive solution to a number of concept drift problems under 
different drift scenarios. However, Learn++.NSE relies on error 
to weigh the classifiers in the ensemble on the most recent data. 
For balanced class distributions, this approach works very well, 
but when faced with imbalanced data, error is no longer an 
acceptable measure of performance. On the other hand, the 
well-established SMOTE algorithm can address the class im-
balance issue, however, it cannot learn in nonstationary envi-
ronments. While there is some literature available for learning 
in nonstationary environments and imbalanced data separately, 
the combined problem of learning from imbalanced data com-
ing from nonstationary environments is underexplored. There-
fore, in this work we propose two modified frameworks for an 
algorithm that can be used to incrementally learn from imba-
lanced data coming from a nonstationary environment. 
 Index Terms—concept drift, imbalanced data, ensemble of 
classifiers, incremental learning in nonstationary environments 

I. INTRODUCTION 
ONCEPT drift, associated with learning in nonstationary 
environments, receives substantially less attention in 

most classical machine learning literature, particularly if 
such an environment generates imbalanced class distribu-
tions. Concept drift can be defined as a change in the under-
lying distribution that generates the data used to train a clas-
sifier. The problem is that classifiers trained on previously 
available data may become obsolete. While learning in non-
stationary environments and class imbalance has been re-
searched independently and several novel algorithms have 
been proposed to handle nonstationary concepts or imba-
lanced data, there has been relatively little work done with 
the combination of these problems [1-3]. Learning in a non-
stationary environment requires that the learner is able to 
learn from a concept that is changing in time. This change 
can be real or virtual. Real drift is a change in the likelihoods 
while a virtual drift is a result of an incomplete representa-
tion of the true distribution in the current data. Real and vir-
tual drift may occur at the same time, and it can be difficult 
to determine which one is occurring and even more difficult 
to tell if both are occurring at the same time [4].  

The main contribution of this work is a supervised ensem-
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ble of classifiers based incremental learning algorithm that is 
designed to work in nonstationary environments, experienc-
ing class imbalance in the data. This framework is based on 
the Learn++.NSE algorithm; however, the error of each clas-
sifier is no longer the contributing factor to the weighting 
scheme. Following a review of approaches for imbalanced 
data, nonstationary learning and a combination of the two in 
described in Section II, we describe the algorithm in Section 
III, followed by the results on several databases subject to 
concept drift and class imbalance presented in Section IV. 
Finally, Section V contains conclusions and final remarks.  

II. BACKGROUND 

A. Nonstationary Environments 
One of the earliest approaches for classifying data in a 

nonstationary environment uses a sliding window, whose 
size is determined by the rate of drift. Therefore, an algo-
rithm that uses an adjustable window typically follows an 
active approach to drift detection, constantly seeking to 
detect change as presented in [5-9]. Typically, in such algo-
rithms, there is a drift detection mechanism that updates the 
current model only when the drift is detected, assuming that 
the old model (and hence the old data) is no longer relevant. 
The faster the drift rate, the shorter the window length, with 
the understanding that older data are becoming increasingly 
less relevant as the environment is changing. Conversely, the 
window size grows if the drift is slow or nonexistent with 
the understanding that the data from several time steps ago 
may still be relevant and useful for classification purposes.  
The FLORA family of algorithms was one of the first me-
thods that employed the dynamic window length approach 
[8]. While this approach is very simple, it does not allow for 
incremental learning, since incremental learning requires 
learning the knowledge from the current data and existing 
model(s), without requiring access to previous data. A pas-
sive approach to learning concept drift, on the other hand, 
simply accepts that a concept drift may or may not have oc-
curred, and updates the model with each incoming batch of 
the data stream. The algorithms proposed in [1;3;10-12] are 
all passive algorithms. 

Multiple-classifier systems (MCS), or ensembles, have 
been suggested as an attractive method of learning concept 
drift in [13], based on their natural ability to obtain a good 
balance between stability (ability to retain relevant informa-
tion) and plasticity (ability to acquire new knowledge) [14]. 

Kolter & Maloof present the dynamic weighted majority 
(DWM) algorithm in [1] which uses an online learner such 
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as naïve Bayes, or incremental tree inducer to train an en-
semble with the final voting decision obtained by dynamic 
weighted majority voting. The voting weight of each clas-
sifier is set to 1 when created, and is reduced when that clas-
sifier misclassifies an instance. Once the classifier’s weight 
falls below a threshold, it is removed from the ensemble. 

The Learn++.NSE algorithm, on the other hand, uses a 
weighted sum of the current and past normalized pseudo 
errors of each classifier to compute the voting weight [15]. 
This algorithm applies a sigmoid weighting function to the 
previous errors of the classifiers.  Such an approach increas-
es the weight of a classifier when that classifier obtained low 
error in recent time steps. Therefore, a classifier that was 
created many time steps ago may still receive a high voting 
weight if it performs well on the current environment, and is 
particularly useful in recurring concepts. Conversely, a clas-
sifier can have its voting power virtually removed from the 
ensemble decision if it is performing poorly in recent time, 
but this is only until the classifier begins to perform well 
again (if it ever does). In [16], Learn++.NSE had several dif-
ferent pruning methods applied to the ensemble to limit the 
ensemble size and monitor the effect of the pruning on the 
overall performance in a nonstationary environment. While 
Learn++.NSE works well in a variety of concept drift envi-
ronments with balanced data, it is not well suited for imba-
lanced data because the classifier errors is no longer a suita-
ble metric the weighting of classifier. 

B. Imbalanced Data 
Class imbalance occurs when a dataset does not have an 

(approximately) equal number of examples from each class, 
which may be quite severe in some applications [17]. Most 
approaches for learning from such data are based on under 
sampling the majority class or oversampling the minority 
class [18]. While relatively straightforward, each has signifi-
cant shortcomings: under sampling throws away data from 
the majority class, whether they are useful or not. Oversam-
pling creates exact replicates of minority class instances, 
which may cause the classifier to over fit those instances. A 
more novel approach is followed by SMOTE [2], which 
modifies the feature space rather than the data space by 
creating synthetic examples that are located on the line seg-
ment connecting two minority neighbors. SMOTE has been 
shown to improve the classification accuracy of the minority 
class over other standard approaches. SMOTEBoost was 
later presented in [19] as an improved alternative combining 
SMOTE and AdaBoost.M2 so that the f-measure and recall 
of the ensemble can be increased. More recently, the bag-
ging ensemble variation (BEV) was proposed in [20], which 
uses a form of bagging that trains classifiers with all the mi-
nority class data and subsets of the majority class data. 

C. Imbalanced Data with Concept Drift 
Recently, a framework for an algorithm that is capable of 

learning in a nonstationary environment with imbalanced 
data has been proposed in [11]. The algorithm is based on a 
bagging framework that trains classifiers (C4.5 or naïve 

Bayes) on a portion of the majority class that is controlled 
with a user defined parameter between [0,1] and the total 
number of minority class instances up until the most recent 
time step (current + previous positive examples). With each 
iteration, the minority class instances are saved to be used to 
train classifiers at the next iteration when a new database is 
introduced. However, this approach implicitly assumes that 
the minority class is stationary, which may not be true. Fur-
thermore, the approach cannot be formally considered in-
cremental since it requires access to old data.   

In [12], a bagging based approach that uses a similarity 
measure (such as the Mahalanobis distance) to select pre-
vious minority examples that are most similar to the newest 
dataset was used for learning in a nonstationary environment 
with class imbalance. In this approach, examples that are 
irrelevant are effectively discarded from a current training 
set by employing the Mahalanobis distance. There is also an 
underlying assumption that the minority data come from a 
Gaussian distribution. The final ensemble decision is made 
using majority voting. However, this framework for han-
dling both class imbalance and nonstationary environments 
is not suited for incremental learning as it also requires 
access to the previous data. Using such data forces an impli-
cit assumption that the minority class (concept) is stationary, 
a potentially incorrect assumption, with access to previous 
data also violating the definition of incremental learning. 
Our goal in this effort is to propose a framework that can: 
(1) learn incrementally without access to the previous data, 
(2) build a set of classifiers that are robust to class imbal-
ance, and (3) learn in a nonstationary environment without 
relying on error as the weighting metric. Starting with the 
Learn++.NSE as a stepping stone, we propose an algorithm 
that meets these criteria.  

III. ALGORITHMIC FRAMEWORK 

A. An Overview of the Proposed Approach 
Our primary goal is to develop an ensemble of classifiers 

model that can recognize instances of both the minority and 
the majority class, whose distributions may be experiencing 
concept drift. Since Learn++.NSE has been shown to work 
well under various drift conditions [21], it was chosen as the 
foundation for its successor, Learn++.NIE (Nonstationary 
and Imbalanced Environments).  An alternative is to use 
SMOTE as a precursor to Learn++.NSE to balance the data 
distribution prior to nonstationary learning. We describe the 
former in detail, and refer to individual references of 
[2;3;16] for the latter, since Learn++.SMOTE is a 
straightforward concatenation of the two algorithms. 

Learn++.NSE creates a new member of the ensemble with 
each new batch of data, evaluates the ensemble on the cur-
rent data, creates a weighted average of classifier errors on 
current and recent environments, and assigns voting weights 
to each classifier based on age-adjusted weighted errors. The 
final decision is then obtained as the weighed majority vot-
ing of all classifiers.  

Learn++.NIE is also presented with batches of data in an 



 
 

 

incremental fashion where the current distribution, ݌ሺ௧ሻሺ࢞, ߱௖ሻ may be different than, ݌ሺ௧ିଵሻሺ࢞, ߱௖ሻ, the distribu-
tion from which prior batch of data was drawn. However, 
two major distinctions separate Learn++.NSE from 
Learn++.NIE: (1) the new algorithm creates a sub-ensemble 
of classifiers for each batch of data (as opposed to a single 
new classifier); and (2) a different metric (not classifier er-
ror) is used as an evaluation measure. As mentioned earlier, 
Learn++.NSE relies primarily on classification error to de-
termine voting weights of the classifiers, which works well 
in nonstationary environments that have balanced data class 
distributions. However, error is not a reliable metric in imba-
lanced datasets; for example, in a dataset in which the mi-
nority class constitutes only 1% of the instances, blindly 
choosing majority class gets 99% overall classification accu-
racy, but 0% on the minority class, which is usually the more 
important class. Therefore, we explore using a class-specific 
weighted error, and chose the metric shown in Eq. 1, for 
updating classifiers weights. 

 
 ߳௞ሺ௧ሻ ൌ ൫1ߟ െ ሻݐሺ൅ሻሺ,݇ݎ ൯ ൅ ሺ1 െ ሻ൫1ߟ െ ሻݐሺെሻሺ,݇ݎ ൯ (1) 

 
where ݎ௞,ሺାሻሺ௧ሻ  and ݎ௞,ሺିሻሺ௧ሻ  are the recall of the kth sub-ensemble 
on the positive (minority) and negative (majority) class at 
time step t, respectively. This metric rewards a classifier 
with a higher voting weight, if it has a high recall on both 
minority and majority classes.  

The age-adjusted weighted average of the errors is ob-
tained through a logistic sigmoid, which provides a higher 
weight to errors on recent environments. The sub-ensembles 
that are performing well on both classes in recent times are 
therefore awarded with higher weights.  The slope and cutoff 
of the logistic sigmoid can be controlled based on the pre-
dicted rate of drift. 

B. Algorithm Description 
The Learn++.NIE algorithm, whose pseudo code is shown 

in Figure 1, is presented with database, ࣞሺ୲ሻ, at time step ݐ. 
The algorithm is designed to work in a nonstationary envi-
ronment so if the distribution of ࣞሺ௧ሻ is ݌ሺ௧ሻሺ࢞, ߱௖ሻ, then ݌ሺ௧ሻሺ࢞, ߱௖ሻ need not be the same as ݌ሺ௧ିଵሻሺ࢞, ߱௖ሻ, the distri-
bution of ࣞሺ୲ିଵሻ. Since this is an incremental learning algo-
rithm, access to the previous databases is not required. 
Therefore, each sub-ensemble must serve as a model for all 
the data at time step ݐ. A bagging variation method is called 
to create a small ensemble of (K=3) classifiers (step 1). 

Traditional bagging generates classifiers trained on ݉ᇱ ൑ ݉ randomly sampled examples from the database. The 
form of bagging used in the proposed framework trains a 
classifier on all of the minority data and a randomly sampled 
subset of the majority data in ࣞሺ୲ሻ. The algorithm can work 
with a variety of supervised algorithms as its base classifier. 
In this effort, we use the multi-layer perceptron (MLP). Note 
however, unlike Learn++.NSE, Learn++.NIE creates a sub-  

 
Fig.1. Learn++.NIE algorithm 

ensemble of classifiers for each new batch of data with two 
primary reasons: i) ensembles can reduce error through the 
averaging obtained through the weighted voting, and more 
importantly, ii) choosing a random subset of majority class 
for training each classifier provides a less imbalanced data-
set for training the classifier, while using an ensemble of 
such classifiers allows us to minimize the loss of information 
that may be caused by using a subset of the data for training. 

All existing sub-ensembles are then evaluated on the most 
recent data, ࣞሺ௧ሻ. Note that each ݄௞ୀଵ,…,௧ contains K classifi-
ers that are combined using majority voting. The predicted 
class labels are ܧ௞ሺ௧ሻ, on the data at the most recent time step 
(ࣞሺ௧ሻ) on which the kth sub-ensemble (݄௞) is being eva-
luated. ܧ௞ሺ௧ሻ is a vector containing all predicted class labels 
for the training data in ࣞሺ௧ሻ by the kth sub-ensemble. The 
recall of each class (majority & minority) is computed in 
step (2) from ܧ௞ሺ௧ሻ, where  ݊ݐ ,݌ݐ are true positive and true 
negative ratios, and ݂݌, ݂݊ are the false positive and false 
negative ratios. The two recall measures are then combined 
using the weighted average controlled by ߟ in Eq. 1 (step 2). 
If the weighted error, ߳௞ሺ௧ሻ, exceeds ½, it is set to ½ which 
yields a normalized error of 1, and an associated voting 
weight of 0 (step 4).  

௞,ሺାሻሺ௧ሻݎ ൌ ݌ݐ݌ݐ ൅ ௞,ሺିሻሺ௧ሻݎ        ݂݊ ൌ ݊ݐ݊ݐ ൅ ௞ሺ௧ሻ߳     ݌݂ ൌ ߟ ቀ1 െ ௞,ሺାሻሺ௧ሻݎ ቁ ൅ ሺ1 െ ሻߟ ቀ1 െ ௞,ሺିሻሺ௧ሻݎ ቁ 

௞ሺ௧ሻߚ ൌ ߳௞ሺ௧ሻ ቀ1 െ ߳௞ሺ௧ሻቁൗ  

መ௞ሺ௧ሻߚ ൌ ෍ ߱௞ሺ௧ି௝ሻߚ௞ሺ௧ି௝ሻ௧ି௞௝ୀ଴  

௞ܹሺ௧ሻ ൌ log ቀ1 ⁄መ௞ሺ௧ሻߚ ቁ 

Algorithm: Learn++.NIE 
 

Input: Training data ࣞሺ௧ሻ ൌ ቄ࢞௜ሺ௧ሻ א ,܆ ௜ሺ௧ሻݕ א Ωቅ, Ω ൌ ሼ൅1, െ1ሽ ݅ ൌ 1, … , ݉ሺ௧ሻ;  Supervised learning algorithm, BaseClassifier; 
Number of classifiers in sub-ensemble, (3) ܭ; 
Error weight ߟ ሺ0.5ሻ, 0 ൑ ߟ ൑ 1;  
Sigmoid parameters, ܽ ሺ0.5ሻ and ܾ ሺ15ሻ, ܽ, א ܾ Թ; 
for ݐ ൌ 1,2, … (as long as new datasets arrive) 

1. Call ݄௧ ൌ ,ݎ݂݁݅݅ݏݏ݈ܽܿ ݁ݏሺܾܽ݊݋݅ݐܽ݅ݎܸܽ݃݊݅݃݃ܽܤ ࣞሺ௧ሻ,  ሻܭ
2. Evaluate all exiting sub-ensembles on new dataset, ࣞሺ௧ሻ, 

where ݇ ൌ 1,2, … ,  (t is the most recent / current time step) ݐ
      Call ܧ௞ሺ௧ሻ ൌ ,൫݄௧݁ݐ݋ܸݕݐ݅ݎ݋݆ܽܯ ࣞሺ௧ሻ൯ and compute class  
          recalls from ܧ௞ሺ௧ሻ where ݇ ൌ 1,2,3, … ,  ݐ

if  ߳௞ሺ௧ሻ ൐ 1 2⁄  then ߳௞ሺ௧ሻ ൌ 1 2⁄  end if 

3. Compute a weighted sum of all weighted error for each 
sub-ensemble where ݇ ൌ 1,2, … , ௞ሺ௧ሻ߱ ݐ ൌ 1/ሺ1 ൅ ݁ି௔ሺ௧ି௞ି௕ሻሻ         ߱௞ሺ௧ሻ ൌ ߱௞ሺ௧ሻ ∑ ߱௞ሺ௧ି௝ሻ,௧ି௞௝ୀ଴ൗ   

4. Calculate classifier voting weights 

5. Obtain the composite hypothesis 
௜ሻ࢞ሺ௧ሻሺܪ           ൌ arg maxୡ ∑ ௞ܹሺ௧ሻ ቘܧ௞ሺ௧ሻሺ࢞௜ሻ ൌ ܿ቙௞  

endfor 



 
 

 

The original Learn++.NSE algorithms computes a pseudo 
error by providing a higher penalty to those classifiers that 
misclassify the instances that are misclassified by the current 
ensemble. This means that the misclassification of certain 
instances, namely, those that have been misclassified by the 
old ensemble, are costlier than others. Learn++.NIE, howev-
er, does not reduce a classifier’s weight for misclassifying a 
particular instance; rather it uses the overall error of each 
class on the most recent data. Prior to computing the weights 
for each sub-ensemble decision, the normalized error is 
weighted using a logistic sigmoid function giving more 
weight to the most recent recall measures (step 3). The vot-
ing weight for each sub-ensemble is then the logarithm of 
the age-adjusted weighted error average (step 4). The en-
semble decision is obtained using a weighted majority vote 
in step 5 to obtain the final hypothesis, ܪሺ௧ሻሺ࢞௜ሻ. 

IV. EXPERIMENTAL RESULTS 
We provide a comparison of Learn++.NIE, Learn++.NSE, 

and Learn++.SMOTE (a combination of SMOTE and 
Learn++.NSE) to determine the advantages and disadvantag-
es of each algorithm on a variety of nonstationary environ-
ments. In our implementation of SMOTE, the number of 
nearest neighbors was set to 9 and the amount of SMOTE 
was set to 300 for the SEA data and 1500 for the Gaussian 
data. All algorithms are compared to each other overall per-
formance, f-measure and recall of the minority class. 

A. Gaussian Data 
In order to precisely control the nonstationary environ-

ment, as well as to be able to compare results to that of a 
Bayes classifier, we created a drifting Gaussian dataset with 
approximately 3% minority data. The majority class was 
designed as a multimodal (linear combination of 3 modes) 
distribution, whereas the minority class came from a un-
imodal distribution, as shown in Figure 2 (the z-axis 
represents the likelihoods of the data). The drift was intro-
duced by varying the mean and variance of each class distri-
bution with time, according to the parametric equations giv-
en in Table I, where ܥ௖,௠ denotes class (ܿ) and mode (݉), 
with ܿ ൌ 2 representing the minority class. 

The Bayes decision region can be seen in Figure 3 where 
the z-axis represents the posterior probability. The light gray 
(cyan) colored areas of the feature space represent the post-
erior probability of the minority class, which moves through 
the middle of the 3-modes of the majority class (dark gray / 
purple shaded regions)  throughout the experiment. 

 
Fig. 2. Likelihoods, ࡼሺ࢏࣓|࢞ሻ, used to compute the Bayes classifier of the 
Gaussian data presented in TABLE I. (a) Initial distribution at ࢚ ൌ  ૙, (b)࢚
some later time step ࢚૚ ൐ ૛࢚  ૙, (c) time step࢚ ൐ ࢚ ૚ and (d) end point at࢚ ൌ  .૜࢚

 
Fig.3. Posterior probability, ࡼሺ࣓࢞|࢏ሻ, computed by the Bayes classifier 
where the pink (dark) region is the majority class and the cyan (light) region 
is the minority class for the Gaussian data in TABLE I. (a) Posterior at ࢚ ൌ ࢚ ૙, (b) some later time step࢚ ൌ ૚࢚ ൐ ૛࢚  ૙, (c) time step࢚ ൐  ૚ and (d)࢚
end point at ࢚ ൌ  .૜࢚

Each sub-ensemble generated three multi-layer percep-
trons (20 hidden layer nodes with sigmoid activation func-
tions); with error weighting sigmoid parameters of a=0.5 and 
b =15. Each batch of training/testing data contained 1500 
majority and 50 minority examples. The performance, f-
measure, and recall of the three different algorithms – along 
with that of Bayes classifier – are shown in Figure 4, 5, and 
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TABLE I. MEAN AND STANDARD DEVIATION GAUSSIAN DRIFT OVER TIME 



 
 

 

6 respectively. The shading around each curve indicate the 
95% confidence interval (0.05=ߙ) based on 25 independent 
trials. The ߟ term was set to 0.5 making the penalty for both 
minority and majority class recall error the same. We later 
show a more detailed empirical analysis of the variation of ߟ. Overall, the performances of all algorithms were compa-
rable to that of each other (as expected, Bayes classifier per-
forming best, followed by the original Learn++.NSE) with 
little or no statistically significant differences – except at ݐ ൌ 55~65. This drop in performance occurs when the mi-
nority class is surrounded by the modes of the majority class, 
thus making the minority class prediction the most difficult. 

  
Fig. 4. Classification performance comparison on Gaussian data. 

 

Fig. 5. f-measure comparison on Gaussian data. 

The real benefit of Learn++.NIE, or of adding SMOTE to 
the Learn++.NSE framework, can be seen in f-measure and 
recall characteristics. Learn++.SMOTE has the best minority 
class recall as well as best f-measure, perhaps because 
SMOTE can directly modify the feature space by creating 
more synthetic minority examples to learn from, which is 
particularly effective when the minority class is located in 
the center of the majority class (Figure 2.c).  

  
Fig. 6. Minority class recall comparison on Gaussian data. 

Learn++.NIE does exhibit significantly better recall and f-
measure of the minority class than Learn++.NSE, though it 
cannot match Learn++.SMOTE on this dataset for the default 
value of ߟ ൌ 0.5. However, the ߟ term in Learn++.NIE does 
provide a meaningful control on the algorithm behavior. The 
effect of varying the ߟ term in the Learn++.NIE algorithm can 
be viewed in the recall and f-measure characteristics in Fig-
ure 7 and 8, respectively.  

 
Fig. 7. The effect of varying ࣁ on recall of Learn++.NIE on the Gaussian 
dataset. 

Note that 0=ߟ assigns no penalty to misclassifying a mi-
nority class instance and the only contribution to weighted 
error come from a mistake made on the majority class. 
Therefore, the recall of the minority class is worst when 0=ߟ. The extremely low recall also results in a low f-
measure. Increasing ߟ yields a larger recall of the minority 
class, as well as f-measure. In fact, for ߟ ൒ 0.6, Learn++.NIE 
catches up with Learn++.SMOTE. Of course, one should 
always be aware of the trade-off between recall and overall 
classification performance, as better minority recall is typi-
cally associated with poorer classification performance on 
the majority class. 
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Fig. 8. The effect of varying ࣁ on the f-measure of Learn++.NIE on the 
Gaussian dataset. 

In summary, we conclude that we can choose a value of ߟ 
that provides a good balance between performance, preci-
sion, recall, and f-measure. Learn++.NIE does outperform 
Learn++.NSE in recall and f-measure, but Learn++.SMOTE 
provides the best recall. We believe this is due to SMOTE’s 
ability to appropriately modify the feature space through its 
pseudo oversampling. Figure 3c shows the interval when the 
minority decision space is the smallest, which is also the 
interval when we observe the drop in recall/f-measure for 
Learn++.NSE/NIE, and a boost in recall with SMOTE.  

B. SEA Data 
We also evaluate the algorithms on the commonly used 

benchmark SEA dataset introduced by Street and Kim [10]. 
SEA dataset uses 3-dimenisional data, only two of which 
carry information, and a shifting hyperplane with 5% class 
noise added to the training and testing datasets (in addition 
to the third feature being noise). We modify this dataset to 
make it imbalanced, and to introduce a cyclical drift, where 
the hyperplane shifts back and forth between two different 
thresholds for two cycles. This shifting hyperplane also 
causes the class imbalance to vary between 7% and 25% as 
the hyperplane shifts. The performance, f-measure and recall 
plots for each algorithm are shown in Figure 9, 10, and 11 
respectively. The base classifier used in this experiment was 
a decision tree. Three classifiers were generated in each sub-
ensemble. The original results of SEA algorithm on this da-
taset, as well as those of original Learn++.NSE using other 
base classifiers can be found in [10;16;22]. 

We make several observations. First, Learn++.NSE and 
Learn++.SMOTE only have a small change in performance 
when the hyperplane shifts for the second time. Learn++.NIE, 
on the other hand, experiences a much larger drop in per-
formance. Second, Learn++.NIE takes longer to recover after 
the concept change, though, the recovery in performance and 
the classification accuracy is significantly higher than 
Learn++.NSE. Third, Learn++.SMOTE has promising per-
formance results with the proper selection of the SMOTE 
parameters, but the boost in recall was not as significant as 

Learn++.NIE. The Learn++.SMOTE recall can of course be 
increased by increasing the percentage of SMOTE, however, 
the algorithm will then generally begin to experience a de-
gradation in performance. After all, as the amount of 
SMOTE increases, the imbalance reduces, and at the ex-
treme case, the minority class becomes majority by over-
sampling too many minority class examples.  

 
Fig. 9. Algorithm performance on the SEA dataset with a 95% confidence 
interval. 

The Learn++.SMOTE combination still maintains a better 
recall performance compared to the original Learn++.NSE, 
similar to the Gaussian data experiment (figure 10). Howev-
er, Learn++.NIE generally outperforms both other algorithms 
in f-measure, and in certain time steps of recall, although 
there is a significant drop caused by the concept change (al-
beit with a slower recovery rate). Our conclusion from the 
SEA dataset is that the Learn++.NIE generally outperforms in 
recall and f-measure (and is competitive for performance 
with) both its predecessor Learn++.NSE (expected, since 
Learn++.NSE is not designed to handle imbalanced data), and 
the Learn++.SMOTE combination (somewhat pleasantly sur-
prising, since SMOTE and Learn++.NSE each can handle 
their respective imbalance data and concept drift tracking 
extremely well). On the other hand, Learn++.NIE appears to 
have a weak point when there is sudden concept change, 
especially compared to Learn++.NSE, which was shown to 
recover quickly from the concept change with different base 
classifiers [22]. Not only is this observed in the performance 
of the algorithm but also in the recall.  

The effect of varying ߟ in Learn++.NIE can be seen in re-
call and f-measure in Figure 12 and 13, respectively. When ߟ ൌ 0 only the majority class error contributes to determin-
ing the weight of the sub-ensemble and when ߟ ൌ 1, the 
minority class error is the only contributor to the sub-
ensemble weight. Varying this term, we observe that ߟ can 
be used to control the recall of the minority class and the 
overall classification performance of the algorithm. If there 
is prior knowledge available, an appropriate ߟ value can be 
determined to find a balance between the recall and overall 
performance of the algorithm. 
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Fig. 10. f-measure comparison on the SEA dataset.  

 
Fig. 11. Recall comparison on the SEA dataset.  

We also conclude on this dataset that the Learn++.NIE 
generally recalls minority class data better than the 
Learn++.NSE. Adding SMOTE to Learn++.NSE, however, 
yields a statistically significant boost in recall; but the result 
is not nearly as significant as Learn++.NIE. On the other 
hand, we should also add that unlike SMOTE (or other im-
balanced data approaches), Learn++.NIE does not generate 
any extra minority points – synthetic or otherwise – and uti-
lizes only the instances available in the dataset. 

V. CONCLUSION 
We have introduced two new members of the Learn++ 

family of incremental learning algorithms, Learn++.NIE, and 
Learn++.SMOTE designed to work with data experiencing 
concept drift and class imbalance at the same time. As in-
cremental learning algorithms, neither Learn++.NIE, nor 
Learn++.SMOTE requires access to any of the previous data, 
unlike other algorithms developed for similar goals [11;12].  

Learn++.NIE is more favorable at boosting minority class 
performance than Learn++.NSE and is comparable to (or 
sometimes better, based on the ߟ value than) Learn++.

 
Fig. 12. The effect of ࣁ on recall of Learn++.NIE on SEA dataset. 

 
Fig. 13. The effect of ࣁ on f-measure of Learn++.NIE on SEA dataset. 

SMOTE. This was demonstrated on two controlled experi-
ments. It is worth noting that using an algorithm of this na-
ture, where overall error is no longer the primary metric in 
determining the weight of a classifier, the performance of 
the algorithm is not expected to be superior compared to 
algorithms like Learn++.NSE, and this was observed in both 
experiments. Such superiority may or may not be meaning-
ful depending on the dataset. However, the advantage of this 
new approach is that the performance on the minority class – 
usually the class of particular importance – increases signifi-
cantly when the data is severely imbalanced. The weak point 
of Learn++.NIE is its relatively slow recovery – compared to 
the original Learn++.NSE, from sudden concept change, as 
seen on the SEA dataset. Learn++.NSE handles this change 
well because a lower voting weight is assigned to classifiers 
that misclassify examples that the previous ensemble had 
misclassified. This method of weighting allows for 
Learn++.NSE to quickly remove classifiers that are unable to 
predict on the new concept by assigning a lower weight to 
them and thus leading to a quick recovery in performance. In 
an imbalanced data scenario, however, such an error meas-
ure is not suitable as a reliable figure or merit. 
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The Learn++.NIE algorithm was generally more capable of 
recalling the minority class with statistical significance, 
compared to the original Learn++.NSE algorithm, as ob-
served on both datasets. The proposed framework was able 
to recall significantly more of the SEA minority class. In 
addition, the Learn++.NIE algorithm also had favorable re-
sults over Learn++.NSE integrated with SMOTE on the noisy 
SEA dataset. We have also shown that the simple combina-
tion of Learn++.NSE and SMOTE works well for datasets 
that experience concept drift and class imbalance.  

Perhaps the most important contribution of Learn++.NIE  
is that it allows control over how much penalty is given to 
the error of the majority and minority class recall separately, 
through a weighted average error. The algorithm can reward 
classifiers that are performing well on both minority and 
majority classes rather than just the majority class. The ߟ 
term effectively allows choosing a balance between recall of 
the minority class and overall performance of the algorithm. 
In the absence of prior knowledge, this parameter can easily 
be set to the default value of 0.5 for a good balance between 
the recall and overall performance of the algorithm. 

Future work will include an analysis of the Learn++.NIE 
algorithm with different statistical measures like f-measure 
or g-mean to weight the sub-ensembles. Other base classifi-
ers will need to be evaluated with this algorithm. More data-
sets, both synthetic and real-world, will need to be evaluated 
with this algorithm to determine the strengths and weakness 
of the proposed approach.  
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