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Identifying the interactions of the drug-target is central to the cognate areas including drug discovery and drug reposition.
Although the high-throughput biotechnologies have made tremendous progress, the indispensable clinical trials remain to be
expensive, laborious, and intricate. Therefore, a convenient and reliable computer-aided method has become the focus on
inferring drug-target interactions (DTIs). In this research, we propose a novel computational model integrating a pyramid
histogram of oriented gradients (PHOG), Position-Specific Scoring Matrix (PSSM), and rotation forest (RF) classifier for
identifying DTIs. Specifically, protein primary sequences are first converted into PSSMs to describe the potential biological
evolution information. After that, PHOG is employed to mine the highly representative features of PSSM from multiple
pyramid levels, and the complete describers of drug-target pairs are generated by combining the molecular substructure
fingerprints and PHOG features. Finally, we feed the complete describers into the RF classifier for effective prediction. The
experiments of 5-fold Cross-Validations (CV) yield mean accuracies of 88.96%, 86.37%, 82.88%, and 76.92% on four golden
standard data sets (enzyme, ion channel, G protein-coupled receptors (GPCRs), and nuclear receptor, respectively). Moreover, the
paper also conducts the state-of-art light gradient boosting machine (LGBM) and support vector machine (SVM) to further
verify the performance of the proposed model. The experimental outcomes substantiate that the established model is feasible
and reliable to predict DTIs. There is an excellent prospect that our model is capable of predicting DTIs as an efficient tool on a
large scale.

1. Introduction

The identification of interacting drug-target pairs is of cardi-
nal significance in pharmaceutical science. Previous develop-
ment of genomics, protein engineering, and molecular
biology dynamically helps researchers in finding the poten-
tial therapeutic drugs and explaining the by-effect of a trial.
In past decades, the Food and Drug Administration (FDA)
declared that the demand for new drugs is hard to meet
due to the adverse clinical outcomes of some candidate
drugs [1]. Classifying DTIs remains to be a critical step for
better developing and applying novel molecule-targeted
drugs. Previously, researchers utilized clinical experiments
as the main approach to discover DTIs. Nevertheless, the

traditional experiments are still cumbersome, costly, and
time-consuming. Meanwhile, it also has to confront the con-
tingency and inefficiency of the results. Therefore, novel
computer-aided drug development (CADD) methods need
to be advanced for effectively avoiding these drawbacks [2].

With the progress of protein primary sequence detection
technologies and spectral techniques in determination of the
chemical composition structure of drugs, the public database
has had an explosive growth in size. These databases which
provide multiple download formats comprehensively con-
struct a reliable data platform for researchers. Different kinds
of databases, such as the Therapeutic Target Database (TTD)
[3], DrugBank [4], ChEMBL [5], and KEGG [6], collect the
information of the protein primary structure, drug molecular
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structure, and drug-target pairs with known interactions to
assist establishing the prediction model of DTIs. In the past
years, researchers have made many achievements in predict-
ing DTIs by combining traditional computing methods and
bioinformatics. The most widespread applications are based
on molecular docking, genome, and pharmacophore [7].
Molecular docking simulation is utilized to detect the opti-
mal binding position between drug molecules and targets
based on energy matching. This method also requires com-
plete three-dimensional (3D) substructures of proteins, but
they are hard to explore by Nuclear Magnetic Resonance
(NMR), electron microscopy, and X-ray crystallography [8].
Pharmacophores are a characteristic element of drug-active
molecules that play a pivotal role in the prediction of DTIs
[9]. Researches suggested that the pharmacophore method
can effectively inspect the multitarget drug design and
reduce the blindness of screening. The difficulty of match-
ing molecular pharmacophores is determined by the num-
ber of pharmacophore characteristics. In addition, whether
the molecule can match the pharmacophore is also related
to the conformations of the molecules [10]. When the con-
formation changes, the molecule will not match the existing
pharmacophore model. Therefore, the establishment of the
pharmacophore model is still not comprehensive for further
bioassay. At the same time, this method does not take 3D
structures of targets into account, which declines the accu-
racy of the pharmacophore model [11]. In general, it is
exceedingly urgent to develop more robust and universal
methods for the prediction of DTIs without a ligand and
3D target structure.

Up to now, many learning-based models are developed to
detect potential DTIs. For instance, Ding et al. [12] developed
a fuzzy bipartite local model (FBLM) based on fuzzy least
square support vector machine and multiple kernel learning
(MKL) for predicting DTIs. Specifically, MKL is employed
to fuse multiple kernels of drugs and targets, and FBLM is
adopted to infer the unknown DTIs. Krisztian et al. [13] uti-
lized the Modified Linear Regression (MOLIERE) to predict
the potential DTIs based on asymmetric loss models
(ALM). Ye et al. [14] proposed a new prediction framework
based on Adversarial Bayesian Personalized Ranking (AdvB).
More specially, the latent factor matrices of drugs and targets
are trained by partial order relationships. Then, the scores of
inner products of factors are trained to predict DTIs. Mar-
yam et al. [15] developed an effective model named the
Coupled Tensor-Matrix Completion (CTMC) to repurpose
drug molecules by constructing drug-drug and target-target
tensors. Pliakos and Vens [16] proposed to address DTI
prediction as a multioutput prediction task by learning
ensembles of multioutput biclustering trees (eBICT) on
reconstructed networks. An et al. [17] combined Weighted
Extreme Learning Machine (WELM) and Speed Up Robot
Features (SURF) to predict DTIs. Laarhoven et al. [18] pro-
posed the Kronecker Regularized Least Square- (Kron-RLS-
) based predictive models, which employed the Kronecker
product to fuse drug and target feature spaces. Gönen [19]
proposed a joint Bayesian formulation of projecting drug
compounds and target proteins into a unified subspace, and
this formulation combines dimensionality reduction, matrix

factorization, and binary classification for predicting drug-
target interaction networks. Zheng et al. [20] proposed a fac-
tor model, named Multiple Similarity Collaborative Matrix
Factorization (MSCMF) which is an extension of weighted
low-rank approximation for one-class collaborative filtering.
In this model, drugs and proteins are projected onto low
dimensional feature space, and the weights of low-rank
matrix and similarity matrix are estimated by alternating
least square method to predict DTIs.

In this study, we present a novel computational method
which exploits protein primary sequence and molecular fin-
gerprints of drug compounds. More specially, this model
numerically characterizes different amino acids as PSSMs to
carry biological evolution information. Then, the proposed
model employs the PHOG approach to extract the 680-
dimensional local features of PSSM from different pyramid
levels. Finally, the RF classifier is employed to effectively pre-
dict DTIs based on the fusion which contains PHOG descrip-
tors of PSSMs and drug fingerprints. This experiment also
evaluates the prediction performance by conducting 5-fold
Cross-Validation (CV) on enzyme, ion channel, G protein-
coupled receptors (GPCRs), and nuclear receptor data sets.
For the sake of verifying the reliability of the model, we also
carried out the state-of-the-art LGBM and SVM on bench-
mark data sets. The overall results of the experiments illus-
trate that the established model is practicable in providing
accurate candidates for clinical experiments by predicting
DTIs. Figure 1 depicts the workflow of the proposed model.

2. Materials and Methods

2.1. Data Sets. In this paper, entire experiments were per-
formed on benchmark data sets, viz., enzyme, ion channel,
GPCRs, and nuclear receptor. All data sets originate from
the databases of DrugBank [4], SuperTarget [21], BRENDA
[22], and KEGG BRITE [6]. The statistical quantities of exist-
ing drugs are 445, 233, 210, and 54, respectively. The num-
bers of known proteins are 664, 95, 204, and 26,
respectively. The counts of the DTIs which have been proven
are 2926, 635, 1476, and 90, respectively. The number of
known DTIs which were regarded as positive sample data
set is 5127. Table 1 fully lists the statistical amounts of drugs,
target proteins, and DTIs.

In this section, the bipartite graph is employed to display
the DTI network. The nodes of the graph denote drugs and
proteins, the edges which connect the nodes denote the rela-
tionships between drugs and targets. The interacting drug-
target pairs are considered as positive samples; the others
are regarded as negative samples in the sparse network. Tak-
ing the ion channel data set as an instance, there are 42840
(210 × 204) edges existing in the graph. The verified 1476 real
drug-target interactions construct the positive sample set,
and the residual 41364 (42840-1476) pairs represent the neg-
ative samples. It is obvious that there is a big quantity gap
between positive samples and negative samples. For attaining
sample balance, a downsampling algorithm is adopted in
uncorrelated pairs to form the negative set which contains
the same number of samples as the positive one. In consider-
ation of the scale of the sparse network and the large ratio of
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differences, the possibility that the drug-target pairs with real
interactions are collected in the negative data set can be
ignored. Therefore, the sample quantities of four negative
data sets are 2926, 1476, 635, and 90, respectively.

2.2. Drug Substructure Characterization. In recent years,
many physical and chemical properties are utilized to
describe the drug compound information including geome-
try, topology, and quantum chemistry [23, 24]. At present,
the researchers demonstrate that molecular fingerprints can
effectively characterize the drug substructure. The finger-
prints of structural bonds represent the drugs as Boolean
substructure vectors by separating the drug molecular struc-
ture into a variety of segments. Although the molecule is
sliced into individual segments, it still retains the entire struc-
ture information of the drug [25, 26]. These printers reduce
the information loss and error accumulation in the process
of description and screening. Specifically, the predefined dic-
tionary which contains all substructures matches all frag-
ments of the given drug molecule. If the fragment exists in
the dictionary, the corresponding position in the carrier is
set to 1; otherwise, it is set to 0. The complete fingerprint
database provides an effective way to describe the molecular
structure of drugs as binary fingerprint vectors. We utilized
the chemical structure map from the PubChem system in
the website https://pubchem.ncbi.nlm.nih.gov/, and the
map contains 881 molecular substructures [27]. Hence, the

feature describers of the drug molecular structure take the
form of an 881-dimensional binary vector.

2.3. Position-Specific Scoring Matrix (PSSM). In general,
researchers took many physicochemical approaches to
numerically describe target proteins [28]. The effective
descriptors will differentially convert proteins to enhance
the performance of the classifier. Within the experiment,
the Position-Specific Scoring Matrix (PSSM) is utilized to
represent the biological evolution of proteins [29], and this
matrix contains the probability information of 20 amino
acids at each position in the original protein sequence. In
the practical process, the Position-Specific Iterated Basic
Local Alignment Search Tool (PSI-BLAST) is employed to
generate the corresponding PSSM for different sorts of amino
acids. The matrix is as follows:

PSSM =

ℓ1,1 ℓ1,2 ⋯ ℓ1,20

ℓ2,1 ℓ2,2 ⋯ ℓ2,20
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where the PSSM is expressed as a matrix of L × 20 and L
denotes the length of the amino acid. ℓi,j denotes the evolu-
tionary score that the ith residue mutates into the jth amino
acid in the evolutionary process. The experiments also opti-
mized the parameters of PSI-BLAST to obtain more reliable
homologous sequences. In summary, parameter e which rep-
resents the noise of protein matching is assigned to 0.001,
and the frequency of iterations is set to 3.

2.4. Pyramid Histogram of Oriented Gradients. The pyramid
histogram of oriented gradients (PHOG) is a feature extrac-
tion method which describes the local features by counting
the distribution of the gradient direction histogram from
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Figure 1: Workflow for the proposed model to predict DTIs.

Table 1: The statistical quantities for drugs, target proteins, and
DTIs.

Data set Drugs Target proteins Interactions

Enzyme 445 664 2926

Ion channel 210 204 1467

GPCRs 223 95 635

Nuclear receptor 54 26 90
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different pyramid levels [30]. Meanwhile, this method has
strong antinoise performance and antirotation ability [31].
Firstly, the given original image F is segmented into i × i spa-
tial grids in the ith pyramid level. Then, the histogram of ori-
ented gradient (HOG) vectors of each grid should be
calculated. Herein, we adopted Sobel operators to detect the
edges and reduce the noise of the image. The Sobel operators
can be defined as follows:

Sobelx =

1
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where Sobelx and Sobely represent the horizontal operator
and the vertical operator individually [32]. Then, the first-
order differential Sobel operator is utilized to convolute the
given image as follows:

Gx = F ∗ Sobelx, ð4Þ

Gy = F ∗ Sobely, ð5Þ

where Gx denotes the convolution of picture F in the x-axis
direction, where Gy denotes the convolution of image F in
the y-axis direction. After convolution, the image F is con-
verted into I which can be obtained as follow:

I =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2
x +G2

y

q

: ð6Þ

The gradient magnitude g and direction θ of pixels in grids
can be obtained by the following formulas:

g φ, ωð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gx φ, ωð Þ2 + gy φ, ωð Þ2
q

, ð7Þ

θ φ, ωð Þ = arctan
gy φ, ωð Þ

gx φ, ωð Þ
, ð8Þ

where gx and gy can be computed as follows:

gx φ, ωð Þ = I φ + 1, ωð Þ − I φ − 1, ωð Þ, ð9Þ

gy φ, ωð Þ = I φ, ω + 1ð Þ − I φ, ω − 1ð Þ, ð10Þ

where φ and ω represent the coordinate position of a pixel in
the picture. The [0-360] orientation is divided intom regions,
and the pixels are divided into m regions to count HOG by
gradient direction. Then, the HOG eigenvectors which con-
tain m values have to be normalized by the following for-
mula:

V =
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vk k22 + ε2
q , ð11Þ

where V represents the HOG feature vector and ε is a small
constant. Finally, HOG features of each spatial grid from all
pyramid levels are concatenated to be PHOG feature descrip-
tors. In this experiment, we set parameters L = 3 and m = 8.
The number of grids in four levels is 85 (1 + 2 × 2 + 4 × 4 +
8 × 8), and converted the PSSM into a 680 (85 × 8) dimen-
sional vector. Figure 2 gives an example of merging HOG
describers into PHOG describers.
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2.5. Rotation Forest (RF). Rodriguez et al. developed the early
integrated forest into the rotation forest (RF) [33]. Rotation
forest works well on difference promotions and classifica-
tions of small sample data sets [34]. In particular, the RF clas-
sifier has outstanding performance on balancing the diversity
and accuracy of the base classifier by rotating the subsets.
Meanwhile, the model also preserves the efficiency, interpret-
ability, and simplicity of the decision tree. In this paper, we
employ RF to predict DTIs. The detailed process is shown
as follows.

In practical terms, the data is randomly separated into K
subsets containing disjoint features. Afterward, the bootstrap
and Principal Component Analysis (PCA) method are
applied in subsets to obtain rotation matrices with high

diversity. Finally, these matrixes are fed into the correspond-
ing base classifier, and the scores of each decision tree are
counted. The matrix X of n ×m is treated as a training feature

set which contains m features of n samples, and T =

ðt1, t2,⋯,tnÞ
T stores the corresponding labels of n samples.

RF has L base classifiers Di. The detailed training process of
the base classifier is as follows.

(I) After optimizing the model, the data set M is sepa-
rated into K disjoint subsets at random, and each
subset has C =m/k features

(II) LetMi,j represent the jth subset ofM, and Xi,j is the
corresponding feature set of Mi,j. Then, calculate

Table 2: 5-fold CV performance of our approach on the enzyme data set.

Test set Acc. (%) Pre. (%) Sen. (%) Spec. (%) MCC (%)

1 88.89 88.31 88.93 88.85 77.77

2 90.34 91.85 89.27 91.49 80.71

3 89.83 91.61 88.07 91.65 79.73

4 87.69 88.19 86.99 88.40 75.39

5 88.03 88.83 86.34 89.65 76.07

Average 88:96 ± 1:13 89:76 ± 1:82 87:92 ± 1:25 90:01 ± 1:50 77:93 ± 2:29

Table 3: 5-fold CV performance of our approach on the ion channel data set.

Test set Acc. (%) Pre. (%) Sen. (%) Spec. (%) MCC (%)

1 86.44 86.13 87.83 84.97 72.85

2 84.74 84.67 85.23 84.25 69.49

3 88.64 87.95 89.46 87.84 77.30

4 84.24 83.88 82.37 85.90 68.35

5 87.80 88.55 87.38 88.24 75.60

Average 86:37 ± 1:90 86:24 ± 2:02 86:45 ± 2:74 86:24 ± 1:75 72:72 ± 3:84

Table 4: 5-fold CV performance of our approach on the GPCR data set.

Test set Acc. (%) Pre. (%) Sen. (%) Spec. (%) MCC (%)

1 85.04 82.96 88.19 81.89 70.22

2 81.89 84.85 81.16 82.76 63.73

3 81.50 77.50 82.30 80.85 62.86

4 83.79 84.35 80.83 86.47 67.49

5 82.21 85.83 80.15 84.62 64.58

Average 82:88 ± 1:49 83:10 ± 3:30 82:53 ± 3:26 83:32 ± 2:24 65:78 ± 3:03

Table 5: 5-fold CV performance of our approach on the nuclear receptor data set.

Test set Acc. (%) Pre. (%) Sen. (%) Spec. (%) MCC (%)

1 75.00 75.12 70.59 78.95 49.77

2 77.78 77.78 77.89 77.65 55.56

3 86.11 85.71 90.00 81.25 71.81

4 77.14 72.73 88.89 64.71 55.44

5 68.57 60.90 87.50 52.63 42.12

Average 76:92 ± 6:30 74:45 ± 9:01 82:97 ± 8:43 71:04 ± 12:14 54:94 ± 10:91
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the new training feature set Xi,j
′ by bootstrap sam-

pling on 75% of Xi,j

(III) Perform PCA on Xi,j
′ to get the principal component

coefficients which can be represented as að1Þi,j , a
ð2Þ
i,j ,

⋯a
ðC jÞ

i,j

(IV) These coefficients construct the sparse rotation
matrix Zi as follows:

Zi =

a
1ð Þ
i,1 , a

2ð Þ
i,1 ,⋯a

C1ð Þ
i,1 0 ⋯ 0

0 a
1ð Þ
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⋮ ⋮ ⋱ ⋮
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ð12Þ

In the process of classification, the possibility that sample
x belongs to category yi is di,jðxZ

a
i Þ generated by base classi-

fier Di. Subsequently, count the confidence degrees that x
belongs to each class by mean combination as follows:

μj xð Þ =
1

L
〠
L

i=1

di,j xZ
a
ið Þ: ð13Þ

The sample x will be distributed into the most possible
class in accordance with the degree.

3. Results and Discussion

3.1. Evaluation Criteria. Throughout the experiments, accu-
racy (Acc.), sensitivity (Sen.), precision (Pre.), specificity
(Spec.), and Matthews correlation coefficient (MCC) com-
prehensively appraise the prediction performance. These cri-
teria can be defined as follows:

Acc: =
TP + TN

TP + FP + TN + FN
, ð14Þ

Sen: =
TP

TP + TN
, ð15Þ

Pre: =
TP

FP + TP
, ð16Þ

Spec: =
TN

TP + FP
, ð17Þ

MCC =
TN × TP − FN × FP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TN + FNð Þ × TP × FPð Þ × TN + FPð Þ × TP × FNð Þ
p ,

ð18Þ

where true positive (TP) represents the sum of interacting
drug-target pairs with correct predictions, true negative (TN)
reflects the aggregate of noninteracting drug-target pairs with
correct predictions, false positive (FP) denotes the count of
noninteracting drug-target pairs with incorrect classifications,
and false negative (FN) represents the count of interacting
drug-target pairs with incorrect classifications. Furthermore,
receiver operating characteristic (ROC) curves are employed
to depict results [35], and the area under the curve (AUC) is
calculated to justify the prediction feasibility [36].

3.2. Parameter Discussion. In this experiment, parameters K
and L are relevant to the results of the model. The K value
and L value represent the numbers of the feature subsets
and decision trees of RF, respectively. We applied the grid
search algorithm to get the optimum parameters [37]. The
method indicates that the accuracy ascends with the growth
of the L value. When K = 28 and L = 26, the model has the
best performance. Hence, we set the K value and the L value
as 28 and 26, respectively. Figure 3 shows the accuracy sur-
face of the RF classifier influenced by parameters K and L.

3.3. Fivefold CV Results on Four Data Sets. This section
applied 5-fold CV on enzyme, ion channel, GPCR, and
nuclear receptor data sets to obtain evaluation results for fur-
ther verifying the reliability of our model. During the valida-
tion, the data set was broken into five subsets on average.
Specifically, each subset took turns to be regarded as the test-
ing part; the other four subsets merged into the training part
in five repetitive experiments. Tables 2–5 list the results of
validations on benchmark data sets.

It is obvious that the model worked well on four golden
standard data sets from Tables 2–5. In terms of the results
yielded by the enzyme data set, the average accuracy, preci-
sion, sensitivity, specificity, and MCC are 88.96%, 89.76%,
87.92%, 90.01%, and 77.93% with standard deviations of
1.13%, 1.82%, 1.25%, 1.50%, and 2.29%, respectively. As for
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the results yielded on the ion channel data set, the accuracy,
precision, sensitivity, specificity, and MCC come to be
86.37%, 86.24%, 86.45%, 86.24%, and 72.72% with standard
deviations of 1.90%, 2.02%, 2.74%, 1.75%, and 3.84%, respec-
tively. When performing the model on the GPCR data set, we
obtained the average accuracy, precision, sensitivity, specific-
ity, and MCC of 82.88%, 83.10%, 82.53%, 83.32%, and
65.78% with standard deviations of 1.49%, 3.30%, 3.26%,
2.24%, and 3.03%, respectively. When verifying the proposed

model on the nuclear receptor data set, the model generates
average accuracy, precision, sensitivity, specificity, and
MCC of 76.92%, 74.45%, 82.97%, 71.04%, and 54.94% with
standard deviations of 6.30%, 9.01%, 8.43%, 12.14%, and
10.91%, respectively. The difference between the sample
quantities caused the gap of the evaluating criteria and stan-
dard deviations between four benchmark data sets. The aver-
age AUC of the proposed model were 0.9509, 0.9284, 0.9040,
and 0.8486, respectively. Figures 4–7 give the ROC curves for
the four benchmark data sets.

3.4. Comparison between the Models with PHOG Descriptor
and LPQ Descriptor. For fairly evaluating the performance
of the PHOG descriptor, we also conducted the experiments
with local phase quantization (LPQ) which has a wide appli-
cation prospect in spatial fuzzy image texture description
processing for blurred-invariant property [38, 39]. Table 6
displays the comparison between PHOG and LPQ with rota-
tion forest. The summarized table clearly indicates that the
model with PHOG descriptors has a performance promotion
than the LPQ descriptors on four golden standard data sets.
In particular, the precision, sensitivity, specificity, and MCC
all improved in the ion channel and GPCR data sets.
Figure 8 plots the ROC curves of the PHOG and LPQmodels
on four data sets with mean AUC values. As can be noted, the
AUC values of the PHOG model are higher than the LPQ
model. Especially in the GPCR and nuclear receptor data sets,
AUC gaps attend to 1.81% and 2.75%, respectively. Hence,
our model can effectively describe PSSM to identify potential
interacting drug-target pairs.

3.5. Comparison with Other Classifiers. At present, the classi-
fiers which were used in predicting DTIs are mainly based on
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traditional machine learning methods. In this section, we
adopted advanced SVM and LGBM to combine PHOG
descriptors. In the rotation forest, we set parameters K = 28
and L = 26 by utilizing the grid search method. After param-
eter optimization, SVM embedded Gaussian kernel function
with parameters C = 0:2 and Gamma = 40. Parameter C pre-
vents SVM from over fitting, and Gamma determines the
number of support vectors. LGBM is based on a gradient
boosting framework, and it is widely used in classification
in industrial practice for it is time-saving and memory-
conserving. After conducting grid method searching, the best
results can be obtained by setting the number of leaves to 60,
the learning rate to 0.05, and the number of training rounds
to 40.

Figure 9 gives the results of RF, SVM, and LGBM on the
enzyme, ion channel, GPCR, and nuclear receptor data sets,

and it clearly reports that RF has a better performance with
the PHOG descriptor than the other classifiers on verifying
interacting drug-target pairs. The mean accuracy of RF is
8.30%, 8.07%, 11.43%, and 9.56% higher than SVM on the
four golden standard data sets. Compared with the LGBM
algorithm, the accuracy of RF improved 3.90%, 4.34%,
1.65%, and 8.33%, respectively. Figures 10 and 11 depict the
ROC curves of the benchmark data sets generated by the
rates of true positive (TP) and false positive (FP). In addition,
mean AUC values are also attached to each graph for more
intuitively describing the effect of different classifiers. The
reliability of predicting DTIs of the model is proportional
to the value of AUC. It can be observed that RF has perfor-
mance promotions of 9.27%, 9.63%, 12.52%, and 11.49%
against SVM on the four benchmark data sets. The value gaps
of AUC between RF and LGBM are 8.97%, 7.59%, 9.38%, and
11.48%, respectively, on the four data sets. Accordingly, RF is
more competitive than the other models in predicting DTIs.

3.6. Comparison with Other Methods. To date, many
researchers have innovatively provided effective solutions
for the prediction of DTIs. In order to further validate the
efficiency of our model, we selected such previous models
as MLCLE [40], NetCBP [41], SIMCOMP [42], WNN-GIP
[43], AM-PSSM [44], NetLapRLS [45], MSCMF [20], and
Bigram-PSSM [46] to analyze the performance of the pro-
posed model. Meanwhile, all of these models are under the
5-fold CV framework on benchmark data sets. The average
AUC values of these methods obviously indicate that the
effect of our model has a significant enhancement in predic-
tion in Table 7. In terms of the enzyme, ion channel, and
GPCR data sets, the growths of the AUC reached 0.0029,
0.0119, and 0.0320, respectively. With regard to the nuclear
receptor data set, Bigram-PSSM has the best performance
with an AUC improvement of 0.0204 than our model. The
results illustrate that the model which embeds PHOG
descriptors and rotation forest is competent to effectively
identify DTIs.

4. Conclusion

In this paper, we fused the pyramid histogram of oriented
gradients (PHOG), Position-Specific Scoring Matrix (PSSM),

Table 6: The comparison between LPQ and PHOG with rotation forest in terms of accuracy (Acc.), precision (Pre.), sensitivity (Sen.),
specificity (Spec.), and Matthews correlation coefficient (MCC) on four types of benchmark data sets.

Data set Method Acc. (%) Prec. (%) Sen. (%) Spec. (%) MCC (%)

Enzyme
LPQ+RF 88:48 ± 0:87 90:30 ± 1:92 87:10 ± 1:52 90:65 ± 1:87 77:79 ± 1:76

PHOG+RF 88:96 ± 1:13 89:76 ± 1:82 87:92 ± 1:25 90:01 ± 1:50 77:93 ± 2:29

Ion Channel
LPQ+RF 85:36 ± 1:00 85:22 ± 1:84 85:53 ± 1:37 85:13 ± 2:15 70:70 ± 2:00

PHOG+RF 86:37 ± 1:90 86:24 ± 2:02 86:45 ± 2:74 86:24 ± 1:75 72:72 ± 3:84

GPCRs
LPQ+RF 82:02 ± 2:82 81:59 ± 5:65 82:34 ± 3:43 81:62 ± 4:39 63:92 ± 5:56

PHOG+RF 82:88 ± 1:49 83:10 ± 3:30 82:53 ± 3:26 83:32 ± 2:24 65:78 ± 3:03

Nuclear receptor
LPQ+RF 75:78 ± 6:78 75:66 ± 6:80 77:62 ± 6:17 72:93 ± 14:28 50:89 ± 15:46

PHOG+RF 76:92 ± 6:30 74:45 ± 9:01 82:97 ± 8:43 71:04 ± 12:14 54:94 ± 10:91
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Figure 8: Performance comparison between LPQ and PHOG on
four golden standard data sets.
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and rotation forest (RF) into a novel computational model to
predict the interactions between drugs and targets. To prove
the reliability of the proposed model, a series of experiments
have been conducted. Specifically, we first altered the feature
extraction method of the proposed model with LPQ to assess

the feature description ability of PHOG. This paper also
experimented on state-of-the-art LGBM and SVM with the
same features to validate the performance of RF. Among
them, the proposed model achieves mean accuracies of
88.96%, 86.37%, 82.88%, and 76.92% on the enzyme, ion
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Figure 9: Comparison of experimental outcomes of RF, SVM, and LGBM on four benchmark data sets with six evaluating indicators: (a)
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channel, G protein-coupled receptor (GPCR), and nuclear
receptor data sets. The results obviously illustrate that the
PHOG features can trace the local characteristics and
assist the model to improve the accuracy even compared
with LPQ. Meanwhile, the model is considered to be an

extraordinarily suitable tool for providing candidates of drug
discovery. In the subsequent work, we will experiment with
more methods to further raise the feasibility of the prediction
model.

5. Limitation and Future Work

Although the model shows an improved prediction ability
than other models, we still noticed the singleness of the local
feature, and the noise existing in features also has an adverse
effect on forming describers. The main limitations of the
model can be explained from two aspects. On the one side,
the utilized feature extraction method is sensitive to local fea-
ture information. However, it is hard to excavate the global
feature information of samples. On another side, the same
number of unlabelled samples is randomly selected to be neg-
ative samples as the known interacting drug-target pairs;
hence, the model wastes a large number of unselected nega-
tive samples. The feature studies will mainly focus on the
processes of feature extraction and classification. The exter-
nal edge features which have an excellent application pros-
pect in the field of image tamper prevention will integrate
the internal features to comprehensively describe bioinfor-
mation with less noise. Meanwhile, unsupervised learning
models will be adopted to confront the waste of data sets,
and it will make full use of high-throughput unbalanced data.
These improvements will bring new challenges and opportu-
nities to develop robust prediction tools for enhancing the
model prediction accuracy.
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Table 7: The comparison of AUC values obtained by the proposed
model and other advanced model on four benchmark data sets.

Model Enzyme Ion channel GPCRs Nuclear receptor

MLCLE 0.842 0.795 0.850 0.790

NetCBP 0.8251 0.8034 0.8235 0.8394

SIMCOMP 0.863 0.776 0.867 0.856

WNN-GIP 0.861 0.775 0.872 0.839

AM-PSSM 0.843 0.722 0.839 0.767

NetLapRLS 0.9013 0.9165 0.7711 0.6772

MSCMF 0.9142 0.776 0.867 0.856

Bigram-PSSM 0.948 0.889 0.872 0.869

Our method 0.9509 0.9284 0.9040 0.8486
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