
An ensemble meta-estimator to predict source code testability

Morteza Zakeri-Nasrabadia, Saeed Parsaa,∗

aSchool of Computer Engineering, Iran University of Science and Technology, Tehran, Iran.

Abstract

Unlike most other software quality attributes, testability cannot be evaluated solely based

on the characteristics of the source code. The effectiveness of the test suite and the budget

assigned to the test highly impact the testability of the code under test. The size of a

test suite determines the test effort and cost, while the coverage measure indicates the test

effectiveness. Therefore, testability can be measured based on the coverage and number of

test cases provided by a test suite, considering the test budget. This paper offers a new

equation to estimate testability regarding the size and coverage of a given test suite. The

equation has been used to label 23,000 classes belonging to 110 Java projects with their

testability measure. The labeled classes were vectorized using 262 metrics. The labeled

vectors were fed into a family of supervised machine learning algorithms, regression, to predict

testability in terms of the source code metrics. Regression models predicted testability with

an R2 of 0.68 and a mean squared error of 0.03, suitable in practice. Fifteen software metrics

highly affecting testability prediction were identified using a feature importance analysis

technique on the learned model. The proposed models have improved mean absolute error

by 38% due to utilizing new criteria, metrics, and data compared with the relevant study on

predicting branch coverage as a test criterion. As an application of testability prediction, it is

demonstrated that automated refactoring of 42 smelly Java classes targeted at improving the

15 influential software metrics could elevate their testability by an average of 86.87%.

Keywords: Software testability, software metrics, automated refactoring, static and dynamic

analysis, machine learning.

∗Corresponding author
Email addresses: morteza_zakeri@comp.iust.ac.ir (Morteza Zakeri-Nasrabadi), parsa@iust.ac.ir

(Saeed Parsa)

Preprint submitted to Applied Soft Computing August 25, 2022

ar
X

iv
:2

20
8.

09
61

4v
2

 [
cs

.S
E

]
 2

4
A

ug
 2

02
2

Code metadata

Permanent link to reproducible Capsule: https://doi.org/10.24433/CO.9048896.v1.

1. Introduction

Software testing is an undecidable problem [1, 2], while testability is a decidable property

of software. If testing were decidable, there would be no reason for testability. So far, software

testability has been primarily measured in terms of source code metrics [3–5]. Cyclomatic

complexity (CC) for a method [6], weighted methods per class (WMC) [7], lack of cohesion of

a method (LCOM) [6], tight class cohesion (TCC) [8], and loose class cohesion (LCC) [8] are

examples of source code metrics mostly applied to measure testability. Controllability and

observability are the other known metrics used to measure testability [9, 10]. All of These

metrics are computed statically without considering test effectiveness and effort. However,

according to the standards [11, 12], the two significant factors affecting the testability are the

test effectiveness and efficiency, which cannot be computed without considering the runtime

behavior.

ISO/IEC 25010:2011 standard [12] defines testability as the” degree of effectiveness and

efficiency with which test criteria can be established for a system, product or component and

tests can be performed to determine whether those criteria have been met.” Based on this

definition, test efficiency and effectiveness are assumed to be contingent upon testability and

vice versa. Recently, there have been some considerations for test effectiveness and efficiency

as the two main ingredients to measure testability. For instance, a recent attempt by Terragni

et al. assumes a direct relation between testability and test effort when formulating testability

[13].

Several complexity metrics have been used to estimate testability solely from a test effort

point of view [6, 8, 14–17]. These metrics can take any value that does not precisely indicate

the testability measure. Moreover, recent studies show a moderate correlation between

software metrics and testability [16, 17]. The moderate correlation implies that metrics do not

entirely measure testability [18], and there are factors involved in developing test cases that

software metrics cannot capture. Indeed, the correlation is measured between the metrics and

2

https://doi.org/10.24433/CO.9048896.v1

testability regarding the test effort. This paper shows that the correlation could be strong

enough, provided that besides the test effort, the test effectiveness was considered.

This paper offers a mathematical model to precisely compute testability in terms of the

tests’ effectiveness and efficiency. The effectiveness is subject to the test coverage, while the

efficiency depends on the inverse of the effort made to establish the test criteria: the higher

testability, the less effort required to test effectively. The mathematical model computes

testability using the runtime information collected by an automated test data generator,

EvoSuite [19], for Java classes. The test effectiveness and effort used by the mathematical

model may be affected by tester skills and budgets, which are unknown for manual tests.

However, testability is an inherent attribute of software. Therefore, it is preferred to generate

test data automatically. In this way, fair testing conditions are provided for all the classes

under test to avoid any external factor that may affect testability. Otherwise, human factors

such as the tester skills should be added to the suggested testability model.

The two significant downsides of the mathematical model are the possibility of lengthy

execution times and the reliance on the executable code. Therefore, once and for all, the

mathematical model was used to calculate the testability of 23,000 Java classes. The classes

were then vectorized using 264 software metrics. The vectors were then labeled with their

corresponding testability computed by the mathematical model. The labeled vectors were

used as samples to train an ensemble of meta-estimators built upon three base regressors to

predict class testability without running the program under test. The learned model predicts

testability statically in terms of source code metrics.

The authors have already introduced a model to predict test effectiveness in terms of a

new metric called Coverageability [20]. Coverageability indicates the extent to which a given

source code may be covered with test data generated automatically. Coverageability, indeed,

can be considered as a measure of test effectiveness. Test efficiency is another factor affecting

testability. Test efficiency opposes its effectiveness. Therefore, a compromise should be struck

between the effectiveness and efficiency of the test to ensure reasonable testability. The

proposed approach in this paper considers both the test effectiveness and efficiency factors to

compute testability.

Practically, as the number of statistical features increases, the system’s accuracy improves

3

[20]. The accuracy of the proposed model was improved when using statistical (minimum,

maximum, sum, mean, and standard deviation) values of the metrics. This way, the number

of metrics used to train the model increased to 262. A feature importance analysis technique

[21] was applied, computing the impact of each metric on testability prediction to support

the interpretability [22] of the learned model. All the source code metrics were then ranked

and sorted according to the model sensitivity to each metric. Finally, a set of refactoring

operations that highly change influential metrics was selected and applied to improve the

class testability.

The effect of refactoring on source code metrics and, subsequently, the impact of the

source code metrics on the testability of the unit under test has enabled estimation of the

impact of refactorings on the testability. The proposed model has made it possible to develop

testable code by measuring testability before and after refactoring. Frequent refactoring

followed by testability measurement leads to efficient and effective tests, reducing testing costs.

Moreover, as testability improves, some quality attributes, including reusability, functionality,

extensibility, and modularity. In summary, the significant contributions of this research to

the software testability literature are as follows:

1. To establish a mathematical model that relates test efficiency and effectiveness with

software testability.

2. To predict testability value using source code metrics without any need to run the

program.

3. To designate the most influential source code metrics affecting testability prediction.

4. To provide the opportunity to measure and improve testability while developing code.

The experimental results on 110 software projects show that the proposed model could

learn and predict the testability of 23,000 Java classes with an R2 of 0.68 and a mean squared

error of 0.03. Moreover, the experiments with automatically refactoring 42 Java classes

demonstrate relatively significant improvement in source code metrics, as a result of which, on

average, testability was enhanced by 86.87%. In addition, other quality attributes, including

reusability, functionality, extendability, and modularity, were improved.

4

The remaining parts of this paper are organized as follows: Section 2 discusses the

background and related works. Section 3 describes a new testability definition and proposes a

methodology for measuring the source code testability. Experimental evaluation results are

given in Section 4. Section 5 discusses threats to validity. The conclusion and feature work

are discussed in Section 6.

2. Related work

There are several definitions for software testability, none of which specify how to measure

testability, which has led researchers to develop different approaches [9]. The recent survey

by Garousi et al. [9] has listed more than 30 definitions for software testability. The IEEE,

ISO, and IEC standards propose seven of these definitions. According to their survey, the

most common definitions are as follows:

1. IEEE standard 610.12-1990 [23]: ”the degree to which a system or component facilitates

the establishment of test criteria and the performance of tests to determine whether

those criteria have been met; the degree to which a requirement is stated in terms that

permit the establishment of test criteria and performance of tests to determine whether

those criteria have been met.”

2. ISO standard 9126-1: 2001 [24]: ”attributes of software that bear on the effort needed

to validate the software product.”

3. ISO/IEC standard 25010:2011 [12]: ”degree of effectiveness and efficiency with which

test criteria can be established for a system, product or component and tests can be

performed to determine whether those criteria have been met.”

The most recent definition proposed by ISO/IEC standard 25010:2011 [12] is considered

in this paper to establish a novel testability prediction model. Many approaches provide

mathematical models for calculating testability [3, 15, 25, 26]. Their results can not be

generalized because they investigate at most eight software projects [13]. They also use

manually generated test cases which could be a reason for the low number of projects.

5

Bruntink and van Deursen [14, 15] have investigated the correlation between C&K metrics

and test effort in terms of line of code per class (dLOCC) and the number of test cases

(dNOTC). However, they have not considered the test budget and test effectiveness factors in

computing the correlation. Moreover, they have only used five Java projects to evaluate their

results. Badri et al. [16] concluded a moderate correlation between cohesion metrics and test

effort using only two software systems. The moderate correlation implies that these metrics

do not entirely measure the test effort. Toure et al. [25] introduced a more complex metric

called Quality Assurance Indicator (Qi) based on the concept of control call graph (CCG).

However, they have not considered any runtime information, including test adequacy criteria,

in their measurement. Badri et al. [26] used linear regression analysis, and five machine

learning algorithms have been used to develop explanatory models. However, they did not

consider the metric impacts on test adequacy criteria.

Controllability and observability concepts have been explored broadly for measuring

software testability [9, 10]. There are different definitions for observability and controllability

properties in software systems. In general, observability determines how easy it is to observe

the behavior of a program (part of the program) in terms of its outputs, effects on the

environment, and other hardware and software components [27]. It emphasizes the ease of

observing program outputs. For instance, passing argument by reference reduces the program

observability since the inputs may change by the body of the called method. Controllability

is the degree to which the state of the component under test as required for testing can be

controlled. It focuses on the ease of producing a specified output from the specified input [28].

For instance, the polymorphic method reduces the controllability since different paths in the

program are executed based on the type of input that inference implicitly.

Observability and controllability concepts are mainly used to assess the testability of

hardware components. The adaption of these concepts to software systems has been performed

by many authors [9]. However, there are very limited practical implementations and empirical

studies on measuring software testability based on the observability and controllability metrics.

COTT [29] is a framework to help the software tester observe the internal behavior and

control the difficult-to-achieve states of the software under test (SUT). It needs the SUT to

be instrumented and executed for collecting the controllability and observability information,

6

exhausting for large source codes.

Runtime testability is defined as the maximum code coverage achieved when running tests

[30]. Code coverage [2] achieved by a test suite provides a sound indication of test effectiveness

and quality [13]. Salahirad et al. [31] have shown that branch coverage is the most influential

criterion for using in the fitness functions of search-based test data generation tools. They

have concluded that it is more difficult to automatically generate tests for less visible class

methods, e.g., the private method. Testability, therefore, has severe impacts on the result of

automated testing. The observation was that the relationship between testability and code

coverage had not been studied when applying automated testing. Ma et al. [32] studied

the impact of code visibility metrics on code coverage in manual and automated testing.

Code visibility refers to the accessibility of entities from other entities in the program. In

object-oriented programming, access modifiers such as private, protected, and public provides

code visibility and information hiding facilities. Results demonstrate that developer-written

tests are insensitive to code visibility; however, automatically generated tests yield relatively

lower code coverage on less visible code. Automated testing obstacles and issues could be

explored by establishing a relationship between source code metrics and testability.

The early works to estimate code coverage are proposed by Daniel and Boshernitsan [33].

They created a decision tree classifier for Java projects to predict the coverage level of the

method under test before testing with an automatic test data generation tool. However,

their trained classifier could estimate the coverage level in two classes of high and low only.

Therefore, their proposed model is not suitable for discriminating programs based on their

testability values.

Ferrer et al. [34] have introduced a new complexity measure, branch coverage expectation

(BCE), to estimate the number of test cases required to achieve full branch coverage. To this

aim, they have transformed the program control graph (CFG) into the first-order Markov

chain [35]. They hard-coded the probability of transitions between basic blocks represented as

states in the Markov Chain and used the average stationary probability of all basic blocks to

compute BCE. They concluded that traditional metrics do not estimate the coverage obtained

with test-data generation tools compared to BCE for the corresponding code snippet. However,

computing the stationary distribution for all basic blocks in large programs is time-consuming

7

and may result in space state explosion. In addition, having no sound justification for the

probabilities assigned to the transitions in the Markov Chain threatens the accuracy of the

results.

The code coverage level is practically measured in terms of statement or branch coverage

as continuous variables. Regression learning is preferred most when the target variables are

continuous. Grano et al. [36] have created and compared four regression models, including

Huber regression [37], support vector regression [38], multilayer perceptron [39], and random

forest regression [21], to predict the branch coverage level of the class under test based

on 79 source code metrics. Despite using various source code metrics, data samples, and

configuration parameters to tune the models, they have reported a relatively low prediction

performance. The empirical analysis of the interrelationship between branch coverage and

source code metrics indicates that branch coverage is poorly correlated with source code

metrics, which leads to low performance when machine learning is used for prediction. This

observation is supported by the fact that test efforts directly impact the branch coverage in

addition to the source code attributes, measured in terms of the metrics.

In recent work, Terragni et al. [13] normalized test effort metrics (number of test cases,

number of assertions, and lines of test codes) with test adequacy metrics (line coverage, branch

coverage, and mutation score) and showed that this normalization boosts the correlation

between test effort and test adequacy metrics. Their approach can only estimate test effort

based on only one metric at a time. More importantly, like other related works, they use

existing human-written tests as benchmarks. Indeed, as an inherent feature, human factors

should not affect testability.

So far, machine learning approaches have been applied to different aspects of software

testing and debugging [40], including test data generation [41], fault prediction [42–44], and

fault localization [45, 46]. Mesquita et al. [44] have used the extreme learning machine (ELM)

algorithm to classify source code modules as faulty and nonfaulty with a reject option using

17 source code metrics. If the faulty and nonfaulty classes are almost equally probable, the

classifier rejects the sample instead of choosing a label. The source code metrics introduced

in this article are 262, which provide a relatively good feature space for any machine learning

technique applied to source code analysis. For sure, by increasing the 17 metrics to 262, the

8

accuracy of the fault prediction models will also improve.

Shi et al. [43] have proposed a new source code representation method, PathPair2Vec, based

on path pairs in abstract syntax trees. Their approach converts the source code of a method

to a fixed-length-vector which is then used as a feature vector for the code defect prediction

task. PathPair2Vec [43] outperforms code2vec [47] and code2seq [48] approaches which are

similar code embedding methods. However, the automatic code embedding approaches are

computationally intensive and require many code samples to train properly. In contrast, this

paper proposes a lightweight approach to improve feature space by systematically adding new

source code metrics.

Xiao et al. [49] have incorporated test efforts in software fault detection and correction

process. The authors have modeled the software testing process by a tri-process combining

testing effort, fault detection process (FDP), and fault correction process (FCP) in Consecutive

testing periods. Different neural network architectures have been used to predict the next

triplet of the testing effort, FDP, and FCP, based on a sequence of previous ones. The

testing effort in their experiments is expressed as the CPU hours or the total number of weeks

consumed in the manual testing and correction process. However, this type of effort is highly

influenced by tester skills. This paper uses automatic test data generation to keep the tester’s

skill and other factors affecting test results, such as the time budget fixed for all projects.

Dutta et al. [46] have presented a hybrid approach, Combi-FL, for effective fault localiza-

tion by combining neural network, spectrum-based, and mutation-based fault localization

techniques. Four out of eight techniques used in Combi-FL are based on neural networks,

which emphasize the effectiveness of learning-based methods.

The methodology proposed in the next section leverages supervised learning techniques

to build a testability prediction model based on the standard definition of testability [12].

It applies a well-known test data generation tool, EvoSuite [50], to 110 Java open-source

projects [51] to generate test suites and collect the code coverage levels by the generated tests.

EvoSuite is selected because it is a state-of-the-art tool [19], attempting to maximize many

test adequacy criteria by employing evolutionary algorithms compared to the pure random

test data generators [52].

9

3. Methodology

The proposed testability measurement methodology follows the system and software quality

models standard, ISO/IEC25010: 2011 [12], emphasizing two aspects of test efficiency and

test effectiveness required to establish and satisfy given test criteria. Section 3.1 offers a

mathematical model considering these two aspects to compute testability. The mathematical

model is used to label samples used for building the machine learning model, described in

Section 3.2.

3.1. Testability formal definition

For a given class, X, testability, T (X), is defined as the product of its test effectiveness,

TQ (X), and test efficiency, TP (X):

T (X) = TQ (X)× TP (X) (1)

The test effectiveness, TQ (X), of the class, X, is computed as the average of different

coverage criteria, Criteria, considered for a given test suite:

TQ (X) =
1

|Criteria|
∑

c∈Criteria

clevel(X) (2)

where clevel(X) denotes the covered level of the given criterion, c. The test efficiency, TP (X),

is considered as the reciprocal of test effort, TE (X):

TP (X) =
1

TE (X)
(3)

The main factor used to measure test effort in software testing literature is the test suite

size [13]. The empirical observations in this article show that as the number of tests increases,

the growth rate of the code coverage decreases. Suppose there are ten paths in a given source

code. The objective of a test data generator is to generate influential test data not overlapping

with the existing one. Therefore, when generating the first test data, the probability of

generating test data that covers a path that is already covered by the existing test data is

zero. When generating the second test data, the probability will be 0.1, and when generating

10

the ninth test data, the probability will be 0.9. Therefore, as the number of influential test

data affecting the coverage increases, the probability of generating redundant test data not

affecting the coverage increases.

On the other hand, generating more influential tests with the same time budget results

in higher testability. An influential test is a test that strictly increases the code coverage.

Therefore, for the class, X, test effort, TE (X), can be measured as follows:

TE (X) = (1 + ω)d
|τ(X,c)|
NOM(X)e−1 (4)

where τ (X, c) is the minimized test suite containing influential tests normalized by the number

of methods, NOM(X), in the class, X and ω is the average time it takes to generate an

influential test:

ω =
t− 1

|τ (X, c)|
(5)

Finally, Equation 1 can be rewritten as follows:

T (X) =
1

|Criteria|
∑

c∈Criteria

clevel(X)

× 1

(1 + ω)d
|τ(X,c)|
NOM(X)e−1

(6)

The testability, T̄ (M), of a component, M , including n classes, can be computed as the

average testability of its classes:

T̄ (M) =
1

n

n∑
i=1

Ti(X) (7)

The mathematical model has been used to label the samples, representing class components,

with their testability measures at run time. The following section describes how to use the

labeled samples to learn a testability prediction model.

11

3.2. Testability prediction

The proposed testability prediction model aims to estimate the value computed by Equation

6 based on the source code metrics. This way, there will be no need to generate test data and

run the class under test. The learning algorithm finds the parameters of a real-valued function

f that maps the vector of the source code metrics, ~v, of a given class, X, to its testability

value, T (X), i.e., f : ~v ∈ Rn → T ∈ R, with minimum possible error. Figure 1 illustrates the

testability prediction process, which consists of two learning and inference phases. A detailed

description of each phase is as follows:

1. Data collection. Java classes from various software systems are collected to be used

as benchmarks for testability prediction.

2. Target value computation. Each class in the benchmark is tested to obtain dynamic

metrics used by testability mathematical model. The target value for the regression

models is then computed using the testability mathematical model (Equation 6).

3. Feature vector construction. Each class in the prepared dataset is converted to a

feature vector, ~v, in which each feature indicates a source code metric.

4. Model training. An ensemble of multilayer perceptron [39], random-forest [21], and

histogram-based gradient boosting regressors [53, 54] is trained on the dataset. The

training samples consist of a vector of source code metrics labeled by the testability

of a class within the dataset. Each of the base regressors is trained using a five-fold

cross-validation method.

5. Model inference. The learned model is used to predict the testability of a given class

based on the static metrics.

A detailed description of the abovementioned steps is given in the following sections. The

learning process begins with computing source code and runtime metrics used as independent

and dependent variables.

12

Learning

Evaluation and inference

 Metrics computation
(Static analysis)

Testing

(Dynamic analysis)
Machine
learning
model

Learned
model

Input source code

 Metrics computation
(Static analysis)

Prediction

LOC NL Tx...

529 5 0.3...

...

283 3 0.5...

...

Dataset
LOC NL Tx...

529 5 0.3...

...

283 3 0.5...

...

Dataset

Benchmark
(Java projects)

2

3

1 4

5

Figure 1: Testability prediction process.

3.3. Metrics computation

Two sets of dynamic and static metrics, respectively evaluated at runtime and compile-time,

are used to construct the testability prediction model. The dynamic metrics are computed

while running the program under test to generate test data. Section 3.3.1 describes the

dynamic metrics as coverage metrics and the approach used to compute them. In contrast

to dynamic metrics, static metrics are computed without any need to execute the program

under test. The static metrics are the subject of Section 3.3.2.

3.3.1. Dynamic metrics

The runtime metrics include branch coverage, statement coverage, and the size of the minimized

test suite provided by EvoSuite [50]. These runtime metrics were used as the parameters in

Equation 6 to evaluate each class’s testability in the prepared dataset.

EvoSuite is an evolutionary test data generator tool that uses the whole test suite generation

technique [55]. A candidate solution (chromosome) in the whole test suite generation technique

is a test suite consisting of a variable number of test cases. A population of candidate solutions

is evolved during the evolutionary search using operators imitating natural evolution such

as crossover and mutation. Individuals are selected for reproduction based on their fitness,

i.e., an estimation of how close they are to the optimal solution. The evolutionary process

terminates once the test budget is exhausted or a hundred percent coverage is achieved. The

resulting test suite is finally minimized to include only influential test cases affecting the test

suite’s coverage.

13

EvoSuite generates JUnit test classes for each class in a given Java project. It saves the

test suite size and its coverage information for all the classes of the Java project in a CSV

file. The authors have shown that their whole test suite generation approach outperforms the

other test data generation approaches [19, 51, 55].

EvoSuite [50] uses a stochastic approach. Each time it generates tests for a class, those

tests may differ in number, length, construction, and attained coverage. Therefore, EvoSuite

was run multiple times on each project to generate test suites with different random seeds,

and then the results were averaged.

3.3.2. Static metrics

The compile-time metrics include 262 metrics computed using the compiler front-end anal-

ysis. These metrics are used to convert a Java class into a feature vector. The vectorized

representation of the source code is improved as the number of metrics increases. Initially, 40

well-known source code metrics listed in Table 1 were selected. The ’CS’ abbreviation refers

to class-level metrics, and the ’PK’ abbreviation refers to package-level metrics. Afterward,

these features were extended by applying a systematic metric generation technique to seven

metrics evaluated for the methods of a class (CS) and classes within each package (PK).

Techniques applied to enhance the feature space are described in Section 3.3.3.

In addition, this paper defines and computes a new set of metrics, called lexical metrics,

to represent the lexical properties, such as the number of identifiers, operators, and imports

used in a source code file. Lexical metrics are listed in Table 2. A Java source file may contain

several classes as well as a class may be enclosed by another class (nested classes). The

proposed lexical metrics capture the size and complexity of the Java source file containing

the class under test. Since these metrics are computed for each Java file separately, we refer

to these metrics as file-level lexical metrics.

Most of the metrics listed in Table 1 have already been proposed in the literature, including

Chidamber and Kemerer (C&K) metrics [7], HS metrics [56], MOOD metrics [57], QMOOD

metrics [58], MTMOOD metrics [3] and Custom metrics introduced in [59]. However, only

a few of these metrics are utilized to measure the testability of the software [60]. Each

source code metric seemingly affecting the testability is mentioned in Tables 1 and 2. In

14

addition, all the metrics, such as the number of blank lines, number of comment lines, and

comment-to-code ratio that could not affect the testability, were not added to the features

vector.

3.3.3. Systematic metrics

This paper offers a systematic approach to enhancing the feature space by deriving sub-metrics

from method-level metrics. By selecting seven method-level metrics, bolded in Table 1, 200

sub-metrics could be derived. Sub-metric is a new concept introduced in this paper. A

sub-metric is a metric derived from an existing software metric. For instance, cyclomatic

complexity is a known metric defined and computed for the program’s methods. Average,

sum, min, max, and standard deviation are the five operators applied to the cyclomatic

complexities of a class method to compute different cyclomatic complexity sub-metrics for the

class. In addition, as shown in Figure 2, there are four different computations for cyclomatic

complexity [61] to each of which these operators are applied. These operators are applied

once with and another time without considering the accessor and mutator methods [59]. In

total, by applying this set of operators, 40 effective sub-metrics have been generated for cyclic

complexity. According to Figure 2, sub-metrics derived from cyclomatic complexity are as

follows:

• Sub-metric #1: CC Sum All Methods

• Sub-metric #2: CC Sum NAMM

• Sub-metric #3: CC Mean All Methods

• Submetrics #4: CC Mean NAMM

• . . .

• Submetric #39: CCEssential SD All Methods

• Submetric #40: CCEssential SD NAMM

These operators were applied to six other method-level metrics. The same process has

been applied to derive package-level metrics from class-level. A class’s interactions with the

other classes, or in other words, the context of a class, affects its functionality. That is why

statistical operators were applied at the package level to all the classes in the enclosing package.

The metrics computed for a package were attached to the feature vectors of all its including

15

Table 1: Source code metrics.

Subject Metric Full name CS PK Sum

Size

LOC
NOST
NOSM
NOSA
NOIM
NOIA
NOM
NOMNAMM
NOCON
NOP
NOCS
NOFL

Line of code
Number of (NO.) statements
NO. static methods
NO. static attributes
NO. instance methods
NO. instance attributes
NO. methods
NO. not accessor or mutator methods
NO. constructors
NO. parameters
NO. classes
NO. files

36
36
1
1
1
1
1
1
1
10
0
0

15
15
1
1
1
1
1
1
1
0
1
1

128

Complexity

CC
NESTING
PATH
KNOTS

Cyclomatic complexity
Nesting block level
NO. unique paths
NO. overlapping jumps

40
4
10
10

20
4
0
0

88

Cohesion
and

Coupling

NOMCALL
DAC
ATFD
LOCM
CBO
RFC
FANIN
FANOUT
DEPENDS
DEPENDSBY
CFNAMM

NO. method calls
Data abstraction coupling
Access to foreign data
Lack of cohesion in methods
Coupling between objects
Response set for a class
NO. incoming invocations
NO. outgoing invocations
All dependencies of class
Entities depended on class
Called foreign not accessors or mutators

1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0

11

Visibility

NODM
NOPM
NOPRM
NOPLM
NOAMM

NO. default methods
NO. private methods
NO. protected methods
NO. public methods
NO. accessor methods

1
1
1
1
1

1
1
1
1
1

10

Inheritance

DIT
NOC
NOP
NIM
NMO
NOII
NOI
NOAC

Depth of inheritance tree
NO. children
NO. parents
NO. inherited methods
NO. methods overridden
NO. implemented interfaces
NO. interfaces
NO. abstract classes

1
1
1
1
1
1
0
0

0
0
0
0
0
0
1
1

8

Sum 40 175 70 245

16

Table 2: Lexical metrics computed for each source code file.

Metric Full name
NOTK Number of (NO.) tokens
NOTKU NO. unique tokens
NOID NO. identifiers
NOIDU NO. unique identifiers
NOKW NO. keywords
NOKWU NO. unique keywords
NOASS NO. assignments
NOOP NO. operators without assignments
NOOPU NO. unique operators
NOSC NO. semicolons
NODOT NO. dots
NOREPR NO. return and print statements
NOCJST NO. conditional jumps
NOCUJST NO. unconditional jumps
NOEXST NO. exceptions
NONEW NO. new objects instantiation
NOSUPER NO. super calls

classes. In summary, sub-metrics for a class can be derived from the method-level metrics

using four different viewpoints, shown in Figure 3. The number of sub-metrics corresponding

to each primary metric is shown in Table 1.

One can observe that some systematically constructed metrics have already been defined

and used in literature, e.g., WMC [7]. Duplicate metrics were eliminated from the final set.

Constructing sub-metrics makes it possible to study the impact of each high-level metric in

more detail. For example, one can answer questions such as whether or not a class with a

high complexity variance is testable.

A similar operation can be performed to create additional package-level metrics from

class-level metrics. In total, 57 metrics were computed, and seven were extended sys-

tematically, resulting in 262 different metrics. The complete list of metrics and samples

used in the experiments is available on the testability prediction dataset published at

https://doi.org/10.5281/zenodo.4650228 .

3.4. Dataset preparation

This section describes dataset schema and preprocessing operations before data is fed to

machine learning models. The format of data used in the dataset is described in Section

17

https://doi.org/10.5281/zenodo.4650228

Statistical
features

Metric’s
type

CC

CC
modified

CC
strict

CC
essential

Sum

Mean

Minimum

Maximum

5 # 4

Sub-metric
1

All methods

Non-accessor
and non-mutator
methods (NAMM)

2

Standard
deviation

Method filters

Sub-metrics
(5 × 2 × 4)

...
Sub-metric

40

Cyclomatic complexity
(Class-level)

Figure 2: Sub-metrics derived from cyclomatic complexity.

Sub-
metrics

Statistical
operators

Various
definitions

Sum

Mean

Max

Min

Statements
& lines of code

Declaration

Execution

Complexity

Not setter & getter setter & getter

Essential

Strict

Modified

SD

Simple

Method type

Figure 3: Sub-metric construction map for a given class.

3.4.1. Before using the collected data for learning, the data should be cleaned and normalized.

Section 3.4.2 describes the dataset preprocessing as a known machine learning stage.

3.4.1. Data representation

The prepared testability prediction dataset is in a tabular format. Each row represents a

class instance, and each column represents a metric as an attribute of that class. The last

column is a numerical variable that expresses the testability value of the class under test,

computed by Equation 6. Figure 4 illustrates the structure of the source code and runtime

metrics in the testability prediction dataset. The context vector consists of the package-level

metrics, repeated for all classes in a package. These metrics are specified in the 5th column

18

of Table 1. Adding package-level metrics to the feature vector of each class in the package

facilitates exploiting the interactions among the features while classifying the class elements.

The labeled vectors should be preprocessed before they can be fed to the learning algorithms.

m...1 m...1

Package-level metrics File-level lexical metrics

Features

Class-level metrics

m+n...m+1 m+n...m+1

Context vector

m+n+p...m+n+1 m+n+p...m+n+1 T(x)

Target

Runtime metrics

Figure 4: Structure of each sample in the testability prediction dataset.

3.4.2. Data preprocessing

Data must be cleaned before building any machine learning model to ensure all the samples’

pertinency and authenticity and avoid incorrect training. The data preprocessing steps are

illustrated in Figure 5. The dataset is prepared to be used for building prediction models in

three steps:

First, data classes (classes that only contain data fields, mutators, and accessor methods)

and simple classes (classes with a LOC less than 5) are removed. The reason is that data and

simple classes are inherently testable and do not impose a high test effort.

Second, data samples for which one or more metrics are very high or very low are identified

and removed as outliers by applying the local outlier factor (LOF) algorithm [62]. These

samples negatively affect parameter tuning during the learning process.

Third, metrics are standardized by scaling their values into the same range [63]. Most learn-

ing algorithms, such as artificial neural networks, are susceptible to the range of independent

variables and simply biased towards the most significant values.

It is important to note that steps two and three are performed after partitioning data into

train and test sets. This way, the methodological mistake related to leaking information from

train to test data is avoided.

After the preprocessing stage, the dataset gets ready to learn the testability prediction

model described in Section 3.5.

19

LOC NL Tx...

529 5 0.3...

...

283 3 0.5...

...

Dataset

LOC NL Tx...

529 5 0.3...

...

283 3 0.5...

...

Dataset

Data and simple
class elimination

Outlier
elimination

Feature
standardization

Train and test split

1 2 3

Figure 5: Preprocessing steps.

3.5. Prediction models

Since the testability, T (X), of a class, X, is continuous in the interval [0, 1], regression

techniques are applied to construct a machine learning model for predicting testability. The

learning algorithms, described in Section 3.5.1, constitute an ensembled meta-estimator.

The testability measures provided by the learned meta-estimator model may require further

modifications, described in Section 3.5.2.

3.5.1. Learning algorithms

This paper examines six regression models from different families of learning algorithms to

find the best model for testability prediction. Firstly, a linear regression model [64] is trained

and evaluated. Five off-the-shelf regressors are also built to capture any possible non-linear

relationships between source code metrics and testability. The non-linear regressors are:

support vector machine regressor (SVMR) [38], decision tree regressor (DTR) [63], random

forest regressor (RFR) [21], histogram-based gradient boosting regressor (HGBR) [53, 54],

and multi-layer perceptron regressor (MLPR) [39]. This paper uses the histogram-based

gradient boosting algorithm instead of näıve gradient boosting. A significant problem of näıve

gradient boosting is that it is slow to train the model, particularly when using the model on

large datasets containing ten thousand samples with hundreds of continuous features. The

histogram-based gradient boosting algorithm discretizes the continuous input variables to

a few hundred unique values or bins (typically 256 bins), which tremendously reduces the

number of splitting points to consider and increases the learning speed.

Finally, a voting regressor (VoR) [63] is used to compute the weighted average of predictions

made by the regressors as the ultimate testability measure. A voting regressor is an ensemble

meta-estimator that fits several base regressors, each on the whole dataset. Then it averages

the individual predictions of the base regressors to form a final prediction [63].

20

Before training the regressors, the relevant hyper-parameters should be configured. A

grid search strategy with cross-validation [65] finds the optimal hyperparameters for each

model during the training process. In this way, the most appropriate configuration for the

hyperparameters is made.

3.5.2. Estimation algorithm

Testability estimation algorithm, shown in Algorithm 1. It receives a class under test and its

enclosing project along with a testability learned model, its hyperparameters, and the learning

dataset. The algorithm computes and returns the testability of the class under test in a given

project as output. By default, a simple or data class’s testability equals 1. Otherwise, the

model is asked to estimate the testability by calling the predict method of the learned model.

The proposed regression model is assumed to compute the class testability in the interval

of [0, 1]. However, if the input (independent variables) falls far from the learned distribution,

the model may compute the testability as a value out of the specified interval. In such rare

cases, the algorithm changes the computed testability value to 0 or 1 depending on whether

it is less than zero or greater than one.

21

Algorithm 1 EstimateTestability
Input: 1. ClassUncerTest (CUT): The class whose testability is going to be predicted,

2. TestabilityPredictionModel (TPM): The learned testability prediction model,

3. Dataset (DS): The labeled dataset used to train the testability prediction model,

4. Hyprparameters (θ): The set of parameters used to configure the regression model,

5. ProjectUnderTest (PUT): Project including the class under test.

Output: Testability

1 metricsNames ← TPM (DS, θ).getMetricsUsed ();

2 classMetricsVector ← computeMetrics (CUT, metricsNames, PUT);

3 isSimpleClass ← classMetricsVector[”CSLOC”] < 5;

4 isDataClass ← classMetricsVector[”CSNOMNAMM”] == 0 ∧ (classMetricsVector[”CSNOIA”]

+ classMetricsVector[”CSNOSA”]) > 0;

/* Check whether ClassUnderTest is a simple or data class */

5 if isSimpleClass ∨ isDataClass then

6 Testability ← 1;

7 else

8 normalizedMetricsVector ← [];

9 foreach metric in classMetricsVector do

/* Normalize metrics with respect to train set */

10 metric ← normlizeMetric(DS, metric.name, metric.value);

11 normalizedMetricsVector.add(metric);

12 end

13 Testability ← TPM (DS, θ).predict (normalizedMetricsVector);

14 if Testability < 0 then

15 Testability ← 0;

16 else if Testability > 1 then

17 Testability ← 1;

18 end

19 end

20 return Testability;

The computational complexity of Algorithm 1 depends on two main steps in lines 2 and

13, which are responsible for calculating source code metrics and predicting testability. Line 2

computes the source code metrics to convert a class in the project under test into a feature

vector. The calculation of each source code metric needs a depth-first traversal of the program

parse tree. The order of the depth-first traversal is O(n), where n is the number of nodes of

the parse tree [66]. Constructing a feature vector with length d in this way is of order O(d ·n).

22

The algorithm’s time complexity to build the parse tree is O(k), where k is the number of

tokens in the project under test [67]. Therefore, the order of the function to compute a

features vector is O(k + d · n). The number of nodes, n, of the program’s parse tree is more

than the number of tokens, k. As a result, the final order is O(d · n) , which is equal to O(n)

as the length of the feature vector is fixed.

Line 13 predicts testability based on the vector of source code metrics using the proposed

testability prediction model. The ensemble meta-estimator model is based on the RFR, HGBR,

and MLPR models. The prediction of a given sample with PFR and HGBR models is of the

order O(t · log d), where t is the number of trees and d is the number of features assuming

that the trees are free to grow to the maximum height, O(log d) [68]. The computational

complexity of predicting a sample with the MLPR model depends on the size of the features

vector, the number of hidden layers, and the size of each layer. Both the space and time

complexity of a multi-layer perceptron network is O(H · (K + d)), where d is the input

dimension, H is the number of hidden units, and K is the number of outputs [69]. In the

trained model, the size of the features vector, the number of hidden layers, and the size of

each layer are fixed values. Moreover, the only output of the regressor model is testability.

Therefore, the computational complexity of the proposed MLPR model’s feed-forward pass

used in prediction time is linear in terms of the input dimension, d. Overall, the computational

complexity of the proposed testability prediction algorithm for a given class is of the order

O (d · n + 2 · t · log d+H · (1 + d)). Since the parameters d, t, and H are fixed numbers, the

complexity of the testability prediction algorithm concerning the program’s parse tree size, n,

is O(n) in the worst case. It concludes that the computational complexity of the proposed

algorithm is linear in terms of the input program size.

3.6. Implemented tool

The proposed testability prediction approach has been implemented in Python 3 and can be

used as a standalone tool. Both the implemented tool and the evaluation dataset are

available at a public GitHub repository, https://github.com/m-zakeri/ADAFEST. Com-

plete documentation of the source code and the dataset are also available on https://m-

zakeri.github.io/ADAFEST.

23

https://github.com/m-zakeri/ADAFEST
https://m-zakeri.github.io/ADAFEST
https://m-zakeri.github.io/ADAFEST

Code coverage information for each Java class was extracted from EvoSuite reports using

a python script. Source code metrics for each class were extracted using SciTools Understand

API [61]. The Understand software kit provides a command-line tool, und, that analyzes

project files and creates a database containing code entities and their relationships. It offers

an API to query the database and compute the source code metrics. The proposed tool first

extracts the required metrics for a given class with Understand API and then calls the machine

learning module. Data preprocessing and machine learning algorithms were implemented

using the Scikit-learn [63], an open-source python data analysis framework.

4. Experiments and evaluations

In this section, the experiments with the proposed methodology and thier results are reported

to answer the following research questions:

• RQ1 What is the best machine learning model to predict testability?

• RQ2 Does the newly introduced sub-metrics, lexical metrics, and package-level metrics

improve the testability prediction model accuracy by enhancing the feature space?

• RQ3 Which source code metrics affect the testability of a class more than others?

• RQ4 Is it possible to improve software testability by improving influential source code

metrics via automatic refactoring?

• RQ5 Does refactoring for testability improve other quality attributes?

4.1. Experimentation setup

All experiments were performed on Windows 10 (x64) machine with a 2.6 GHz Intel® Core™ i7

6700HQ CPU and 16 GB RAM. The static metrics extraction and preprocessing of the primary

dataset on this machine took about 25 hours. The SF110 corpus [51], containing 23,886

classes from 110 different Java projects, was used as the benchmark to create train and

test sets for the machine learning models. EvoSuite [50] was run five times on each project

with different random seeds and averaged the results to minimize the randomness effects

caused by evolutionary test data generation. A general timeout of six minutes per class was

24

Table 3: Datasets used in the experiments.

Dataset Applied preprocessing # Metrics

DS1
Simple and data classes elimination,
outliers elimination, and metric standardization

262

DS2 DS1 + Feature selection 20
DS3 DS1 + Context vector elimination 194
DS4 DS1 + Context vector & lexical metrics elimination 177
DS5 DS1 + Systematically generated metrics elimination 71

given to each execution to ensure that the experiments with Java classes in SF110 finished

within a predictable time. The experimental results showed that when repeating the test data

generation five times, the mean standard deviation of the coverage provided by the generated

test data reduces to 0.024, which is acceptable.

Seven regression models, described in Section 3.5.1, were trained and compared to find the

best machine learning algorithm for predicting testability. In addition to the original dataset

(DS1), different subsets of source code metrics were used to construct four datasets (DS2 to

DS5). The aim is to experiment with the impact of context vector (package-level) metrics,

lexical metrics, and systematically generated metrics on the effectiveness of predictive models.

Table 3 represents the datasets and their schema. The DS1 dataset was initially taken

from the SF110 [51] benchmark. SF110 contains 110 Java projects with more than 23,800

classes, which is big enough for the learning tasks. The preprocessing steps applied to DS1

led to the elimination of 4,100 classes, and the final dataset includes 19,750 samples. DS2 to

DS5 datasets were built by removing specific columns, shown in Table 3, from DS1. Each

model was trained and evaluated on all datasets in Table 3. Datasets were randomly split to

train and test sets before applying the model selection process. Models were trained on 70%

of the data (14,000 Java classes) and tested on the remaining 30% (5,750 samples).

4.2. Prediction models evaluation

Concerning RQ1, the effectiveness of each learned model was measured with standard metrics

used for evaluating the performance of regression models, including mean absolute error

(MAE), mean square error (MSE), root mean square error (RMSE), median absolute error

(MdAE), and R2 score. Table 4 shows the evaluation metrics for all models learned using

DS1. The last row shows the result of the VoR model, which is an ensemble of RFR, HGBR,

25

Table 4: Performance of different testability prediction models on DS1.

Model MAE MSE RMSE MdAE R2-score
Linear 0.14745 0.03748 0.19361 0.11405 0.56899
SVMR 0.15865 0.04423 0.21032 0.11696 0.47144
DTR 0.14620 0.04090 0.20223 0.10485 0.52974
RFR 0.12343 0.03013 0.17358 0.08703 0.65354
HGBR 0.11912 0.02842 0.16859 0.08182 0.67319
MLPR 0.13676 0.03416 0.18482 0.09868 0.60723
VoR 0.11921 0.02801 0.16738 0.08231 0.67787

and MLPR models. These three models were selected because of their relatively higher R2

scores in the model selection process. In Table 4, the best value obtained for each evaluation

metric is bolded. According to the evaluation results given in this table, it concluded that:

• The ensemble meta-regressor, VoR, performs better than the individual model in terms

of MSE, RMSE, and R2 score, revealing that combining different models may result in

more accurate predictions.

• Overall, non-linear models denote relatively better performance which confirms non-

linear relationships between source code metrics and testability.

Table 5 shows the hyperparameters of each regression model and their best values found

for DS1 in the model selection process. RMSE has been used as a metric for scoring and

ranking the model’s performance along with five cross-fold validation during model selection.

For VoR, the only available option is weights used to weight the occurrences of predicted

values before averaging. The weight array elements in Table 5 correspond to the Linear,

SVMR, DTR, HGBR, RFR, and MLPR models, respectively. It is observed that the RFR,

HGBR, and MLPR models contribute to the VoR meta estimator.

The ensembled model and its base models were applied 100 times to predict the testability of

randomly selected subsets of the SF110 dataset [51], and the difference between the evaluation

metrics of the learned regressors was computed. Afterward, the statistical test, independent

t-test, was used to determine whether the ensemble meta-estimator, VoR, performed better

than base regressors. Table 6 shows the p-value of the independent t-test on MSE and R2-score

of the VoR model and three base regressors. The p-value less than 0.05 for MSE and R2-score

26

Table 5: Models configurable parameters and results of hyperparameter tuning.

Model
Hyper-parameter name
in Scikit-learn

Searching values (python statement) Best value

Linear

loss
penalty
learning rate
max iter

[’squared loss’, ’huber’]
[’l2’, ’l1’, ’elasticnet’]
[’invscaling’, ’optimal’, ’constant’, ’adaptive’]
range(50, 1000, 50)

’huber’
’l2’
’invscaling’
50

SVMR
kernel
nu

[’linear’, ’rbf’, ’poly’, ’sigmoid’]
[0.25, 0.5, 0.75, 1.0]

’rbf’
0.5

DTR
criterion
max depth
min samples split

[’mse’, ’mae’]
range(3, 50, 5)
range(2, 30, 2)

’mse’
8
28

RFR

n estimators
criterion
max depth
min samples split

range(50, 200, 50)
[’mse’, ’mae’]
range(3, 50, 5)
range(2, 30, 2)

150
’mse’
28
2

HGBR

loss
max depth
min samples leaf
max iter

[’least squares’, ’least absolute deviation’]
range(3, 50, 5)
range(5, 50, 10)
range(100, 500, 100)

’least squares’
18
15
500

MLP

hidden layer sizes
activation
learning-rate
epoch

[(256, 100), (512, 256, 100)]
[’logistic’, ’tanh’, ’relu’]
[’constant’, ’adaptive’]
range(100, 500, 50)

(512, 256, 100)
’tanh’
’constant’
100

VoR weights
[None, [0, 0, 0, 1/3, 1/3, 1/3],
[0, 0, 0, 3/6, 2/6, 1/6], [0, 0, 0, 2/6, 3/6, 1/6]]

[0, 0, 0, 2/6, 3/6, 1/6]

metrics in all tests indicates that the VoR model predictions are significantly more accurate

than three base regressors, i.e., RFR, HGBR, and MLPR.

Some researchers consider coverage metrics such as branch coverage as a basis for predicting

test effectiveness [36, 70].

The proposed testability prediction (TP) model was compared with the line coverage

(LCP), branch coverage (BCP), and branch coverage prediction models by Grano et al. [36].

As shown in Figure 6, the proposed testability prediction model significantly outperformed

these three models. In Figure 6, the ’+’ and ’−’ symbols on the left column of each plot from

Table 6: Results of statistical test on different regressors’ performance.

Base regressor
Independent t-test p-value
MSE R2-score

VoR v.s. RFR 2.5311× 10−24 1.4048× 10−22

VoR v.s. HGBR 1.6997× 10−2 5.5463× 10−3

VoR v.s. MLPR 2.3327× 10−93 1.2459× 10−85

27

TP LCP BCP BCP [36]
Approach

0.00

0.05

0.10

0.15

0.20
Va

lu
e

Metric = MAE

TP LCP BCP BCP [36]
Approach

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Metric = MSE

TP LCP BCP BCP [36]
Approach

0.00

0.05

0.10

0.15

0.20

0.25

Metric = RMSE

TP LCP BCP BCP [36]
Approach

0.000

0.025

0.050

0.075

0.100

0.125

0.150
Metric = MdAE

TP LCP BCP BCP [36]
Approach

0.0

0.2

0.4

0.6

Metric = R2-Score

+
+

+
+
+

+
+
+

- -
-
+ +

-

Figure 6: Performance of different testability prediction approaches.

top to bottom denote the statistical significance between the TP model and the other three

models [36]. The ’+’ symbol indicates that the TP model outperforms its corresponding model

regarding the metric shown by the plot. Similarly, the ’−’ symbol indicates no statistical

difference between the two models concerning the compared metrics shown on the plot. As

shown in Figure 6, the prediction error, including MAE, MSE, RMSE, and MdAE, as well as

the accuracy, R2 score, of the proposed model (TP) is more statistically significant than the

other models in almost all (11 out of 15) statistical independent t-tests. The prediction error

of the trained model increases when using statement or line coverage prediction (LCP), branch

coverage prediction (BCP), and specific BCP [36] instead of testability. The underlying reason

is that the test effectiveness needs to be normalized with effort. Two classes with the same

coverage measure may need different test efforts.

RQ1: What is the best machine learning model to predict testability?

Answer to RQ1: The experimental results in Table 4 show that the best model is an

ensemble of three regressor models, random forest, histogram gradient boosting, and

multilayer perceptron. The ensemble model predicts testability with an R2-score of 0.68

and a mean squared error of 0.03. The prediction model is accurate enough to determine

testability in practice. The proposed ensemble model has improved mean absolute error

by 0.08 (38%) and R2-score by 0.21 (43%) due to utilizing new coverage criteria, source

code metrics, and learning dataset compared to the relevant machine learning models

[36] for predicting branch coverage.

28

Table 7: Changes in the VoR performance discarding different code metrics.

Dataset MAE MSE RMSE MdAE R2-score

DS2
+0.03687
(4.2822× 10−16)

+0.01329
(3.1742× 10−15)

+0.03586
(2.0290× 10−14)

+0.04210
(1.7748× 10−14)

−0.15280
(4.5344× 10−13)

DS3
+0.00215
(4.8853× 10−02)

+0.00126
(1.6745× 10−02)

+0.00373
(1.7160× 10−02)

+0.00110
(3.6002× 10−01)

−0.01453
(6.2538× 10−02)

DS4
+0.18829
(5.1738× 10−07)

+0.20685
(3.2255× 10−05)

+0.31725
(2.8377× 10−05)

+0.11268
(6.8180× 10−07)

−0.32186
(4.0390× 10−05)

DS5
+0.00127
(4.7907× 10−03)

+0.00042
(2.7829× 10−02)

+0.00123
(2.7210× 10−02)

+0.00373
(1.4899× 10−02)

−0.00476
(2.9298× 10−02)

Average 0.0571 0.0001 0.0003 0.0009 0.0012

4.3. Sub-metrics evaluation

The VoR model was trained on DS2 to DS5 datasets, and then the performance metrics

were computed for new models. Table 7 shows the difference between evaluation metrics of

the VoR model on DS1 and the other datasets. The last row of the table denotes the mean

change in each performance metric. The numbers inside parentheses show the p-value of the

independent t-test for each metric when testing the prediction models 100 times.

It is observed that the prediction error of the VoR model increases when switching from

DS1 to other datasets. On the other hand, the R2 score of models decreases. According to

resultant p-values, the differences are significant, with a confidence level of α = 0.95 (p-value

< 0.05). The only exception is for the R2 score of DS3, in which the difference with DS1 is not

statistically significant. It concludes that all the newly introduced metrics, including source

lexical metrics, sub-metrics, and package-level metrics, improve source code vectorization and

the testability learning process. It is also observed that the impact of lexical metrics is more

than other introduced metrics since the performance of the VoR model is highly decreased

when using DS4 for training the model. Besides, automatic feature selection (DS2) can still

select the most informative source code metrics while reducing the model complexity.

RQ2: Does the newly introduced sub-metrics, lexical metrics, and package-level metrics

improve the testability prediction model accuracy by enhancing the feature space?

Answer to RQ2: Class containers (context vector), lexical metrics, and systematically

constructed metrics improve the prediction performance of the machine learning models

measuring testability. These metrics improve the model mean absolute error by an

average of 0.0571 (47.94%).

29

4.4. Influential testability metrics

To answer RQ3, the importance of each metric for the best model, VoR, was computed on

the best dataset, DS1. The permutation importance technique [21] was used since the VoR

model, unlike tree-based models, lacks any built-in feature importance functionality. In this

technique, the values of a single feature are shuffled, and the learned model is asked to make

predictions using the same test set with the shuffled feature. Comparing these predictions

and the actual target values determines the extent to which the learned model is affected by

shuffling. The performance deterioration denotes the importance of the shuffled feature, which

is a source code metric in the testability prediction test set. The permutation importance

process was repeated 100 times to alleviate the effects caused by the stochastic nature of this

technique. Figure 7 shows the box-plot of changes to the model’s R2 score after repeated

permutation for the top 15 influential source code metrics. The following results are observed:

• The average lines of execution codes of the class under test (CSLOCE AVG) is the most

influential metric affecting class testability. Removing this metric reduces the R2 score

of the prediction model by 8%.

• Important metrics are scattered among all quality subjects, including size, complexity,

coupling, visibility, and inheritance. It means that source code testability is affected by

all various software quality aspects.

• Nine of the 15 selected essential metrics in Figure 7 are the newly proposed metrics in

this paper, including lexical metrics, sub-metrics, and package-level metrics. It confirms

that vectorization of the source code with newly defined metrics improves the prediction

of testability with machine learning models.

The type of correlation (positive or negative) between each influential metric and testability

is essential to determine in which direction testability can be improved. The Pearson correlation

analysis was used to find the relationship between testability and influential source code

metrics. Figure 8 shows the correlation between the testability value and the top 15 influential

metrics. A normalized metric value is used to improve the visualization of source code metrics

and regression lines. The Pearson correlation coefficient, along with the associated p-value, is

30

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Importance

CSLOCE_AVG

NOCJST

CSLOC_AVG

DEPENDS

NOIDU

NODOT

CSNOIM

CSNOPLM

NIM

CSNOSTD_AVG

CSNOSM

NONEW

NOREPR

CSNOCON

PKNOSM

So
ur

ce
 c

od
e

m
et

ric

Figure 7: Top 15 influential source code metrics in predicting testability.

shown on each plot in Figure 8. A positive correlation indicates that increasing the value of

an influential metric increases the testability, while a negative correlation means the opposite.

The p-value indicates whether the calculated correlation is statistically significant or not. A

p-value greater than 0.01 implies that the correlation is not statistically significant.

Significant negative correlations are observed for nine out of 15 metrics, and positive

correlations are observed for five out of 15 metrics. Moreover, the correlation for one metric,

the number of static methods (CSNOSM), is not significant. Indeed, most source code metrics,

as already expected, negatively impact testability. However, the class instance methods

(CSNOIM), public methods (CSNOPLM), print and return statements (CSNOREPR), con-

structors (CSNOCON), and static methods in its enclosing package (PKNOSM) increase the

class testability.

Investigation of the CSNOIM metric reveals that classes with many small methods are more

testable than classes with few methods in which the methods are typically long. The analysis

of other metrics positively correlates with testability, including CSNOPLM, CSNOREPR,

and CSNOCON, indicating that these metrics primarily measure the visibility of the class.

For instance, the outputs of methods with return statements are more observable and testable

31

than the method which implicitly modified many class fields. Related works have shown the

positive impact of visibility and observability measures on testability [27, 32]. Therefore, the

findings in this research sightly support the results of previous research.

Another interesting observation is that the static methods in the enclosing package of a

class (PKNOSM) increase the class testability while static methods inside that class tend to

decrease its testability. It concludes that defining static methods in a class is not desirable for

testability. However, once they are defined, using them in other classes increases testability.

The main reason is that calling static methods requires no object instantiation and constructor

invocation, which reduces the coupling between objects.

Overall, classes with few lines of code, few jump statements, and many visible methods are

more testable than other classes. These results provide informative clues about the automatic

modification of source code to enhance testability. Some empirical evidence on the possibility

of testability improvement by automated refactoring is demonstrated in the next section.

0.25 0.50 0.75

0.0

0.5

1.0

Te
st

ab
ilit

y

-0.57152
(0.0000E+00)

Metric = CSLOCE_AVG

0.25 0.50 0.75

0.00

0.25

0.50

0.75

1.00

-0.25313
(2.4909E-199)

Metric = NOCJST

0.25 0.50 0.75

0.0

0.5

1.0

-0.57482
(0.0000E+00)

Metric = CSLOC_AVG

0.5 1.0

0.00

0.25

0.50

0.75

1.00

-0.25726
(4.7064E-206)

Metric = DEPENDS

0.5 1.0

0.0

0.5

1.0

-0.28011
(1.7916E-245)

Metric = NOIDU

0.25 0.50 0.75

0.0

0.5

1.0

Te
st

ab
ilit

y

-0.22164
(4.0102E-152)

Metric = NODOT

0.25 0.50 0.75

0.25

0.50

0.75

1.00

0.21676
(2.0040E-145)

Metric = CSNOIM

0.25 0.50 0.75

0.25

0.50

0.75

1.00

0.2685
(5.7402E-225)

Metric = CSNOPLM

0.5 1.0
0.00

0.25

0.50

0.75

1.00

-0.04826
(1.5780E-08)

Metric = NIM

0.25 0.50 0.75

0.0

0.5

1.0

-0.52637
(0.0000E+00)

Metric = CSNOSTD_AVG

0.5 1.0
Value

0.2

0.4

0.6

0.8

Te
st

ab
ilit

y

-0.00116
(8.9212E-01)

Metric = CSNOSM

0.5 1.0
Value

0.00

0.25

0.50

0.75

-0.20769
(2.0437E-133)

Metric = NONEW

0.5 1.0
Value

0.2

0.4

0.6

0.8

1.0

0.08416
(5.6376E-23)

Metric = NOREPR

0.5 1.0
Value

0.25

0.50

0.75

1.00

0.30223
(2.1740E-287)

Metric = CSNOCON

0.5 1.0
Value

0.00

0.25

0.50

0.75

1.00

0.06538
(1.8343E-14)

Metric = PKNOSM

Figure 8: Correlation between testability and important predictors.

32

Table 8: Refactoring operations that potentially improve testability.

Source code metrics Refactoring
LOC, NOST, NOIDU, NODOT, NONEW Extract class, move method, remove dead code
NOIM, NOCON Extract method, move method
NOCJS Simplify conditional logic, extract method
DEPENDS Move method, extract class
NOPLM Increase method visibility
NOSM Make method non-static
NOREPR Extract method, remove dead code
NIM Extract superclass, pull-up method

RQ3: Which source code metrics affect the testability of a class more than others?

Answer to RQ3: Feature importance analysis automatically determines the critical

source code metrics affecting testability without any human interventions. This set of

metrics includes lines of code, conditional jump statements, class dependencies, and the

number of identifiers defined in the class.

4.5. Testability improvement

The impact of automated refactoring on source code testability has remained an open question

[71–73]. Testability prediction provides a means to systematically investigate this question

by determining the source code metrics that should be focused on when refactoring. Table

8 presents a set of refactorings, directly improving those source code metrics that affect

testability.

The least testable classes of the two well-known Java projects, Weka [74] and Scijava-

common [75], with at least one automated refactoring opportunity, are chosen to be used in

this experiment. These projects contain more than 1,000 classes with many scientific and

statistical operations, which make their testing difficult and time-consuming. The testability

of the classes was measured before and after applying each automated refactoring by existing

refactoring tools. Three existing refactoring tools, JDeodorant [76], MultiRefactor [77], and

IntelliJ IDEA [78], were used to identify and apply refactorings listed in Table 8. Each

tool supports some refactoring operations. The ’extract class’, ’extract method’, and ’move

method’ refactorings were performed by JDeodorant [76]. MultiRefactor [78] was used to

identify and apply the ’make method non-static’, ’increase method visibility’, ’pull-up method’,

and ’extract superclass’ refactoring operations. The ’remove dead codes’ and ’simplifying

33

Table 9: Impact of automated refactoring on testability.

Project
Selected
classes

Refactorings
Testability Test time

(minutes)
Prediction time
(minutes)Before After

Weka 31 476 0.1439 0.2696 2856 5.0456
Scijava-common 11 53 0.2782 0.5187 318 0.1643

conditional logic’ refactorings were applied by IntelliJ IDEA [78].

Table 9 shows the number of refactorings, testability values, total test time, and total

prediction time for selected classes in the Weka and Scijava-common projects. An average

testability improvement of 0.1257 (a relative improvement of 87.35%) in the Weka smelly

classes and 0.2405 (a relative improvement of 86.44%) in the Scijava-common smelly classes

are observed. In Table 9, the column titled ’Test time’ lists the time taken to run EvoSuite to

test each class after refactoring and computing testability with Equation 6. Prediction time

includes the static analysis to compute source code metrics and the execution of Algorithm 1.

It is observed that the test time of Weka classes has been improved by 2850.95 minutes (a

relative improvement of 99.82%). In the same way, the test time of Scijava-common classes

has been improved by 317.84 minutes (a relative improvement of 99.94%) which consider a

significant enhancement.

Figure 9 shows the coverage criteria, test suite size, and test effectiveness for the Weka and

Scijava-common classes before and after refactoring. Coverage criteria have been computed

by running EvoSuite [50] on each class five times and averaging the results. Test effectiveness

has been computed by Equation 2. It is observed that all the coverage measures have been

improved, and the size of the test suite also have increased while the test budget has been kept

fixed. Indeed, after refactoring, the number of influential tests grows, leading to increased test

effectiveness and testability. The test effectiveness of the Weka and Scijava-common classes

has been improved by an average of 0.1585 (92.23%) and 0.3228 (98.76%), respectively.

The t-test statistical hypothesis test with a 99% confidence level (α = 0.01) was employed

to indicate whether the differences in the mean of different test criteria before and after

refactoring are statistically significant or not. The null hypothesis (H0) was that the mean

of the coverage provided by any test suite does not vary before and after refactoring. The

alternative hypothesis (H1) was that the mean coverage increases after refactoring. The

p-value of the t-test corresponds to the probability of rejecting the null hypothesis (H0) while

34

Table 10: Results of t-test (p-values) on refactored classes for test criteria, before and after refactoring.

Project
Independent t-test p-value
Line coverage Branch coverage Mutation coverage Test effectiveness

Weka 1.3640× 10−4 4.8578× 10−5 1.7451× 10−4 3.3348× 10−5

Scijava-common 3.1345× 10−3 9.7284× 10−4 5.7722× 10−3 1.9778× 10−3

All 3.4405× 10−5 1.4134× 10−5 6.6132× 10−5 1.3586× 10−5

Weka Scijava-common
Project

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Criterion = Statement coverage

Weka Scijava-common
Project

0.0

0.2

0.4

0.6

0.8

1.0
Criterion = Branch coverage

Weka Scijava-common
Project

0.0

0.2

0.4

0.6

0.8

1.0
Criterion = Mutation coverage

Weka Scijava-common
Project

0

20

40

60

80

100

120

Criterion = Tests suite size

Before refactoring
After refactoring

Weka Scijava-common
Project

0.0

0.2

0.4

0.6

0.8

1.0
Criterion = Test effectiveness

Figure 9: Distribution of important testability metrics.

it is true (type I error). A p-value less than or equal to α (≤ 0.01) means that the H1 is

accepted and H0 is rejected. However, a p-value strictly greater than α (> 0.01) implies the

opposite.

Table 10 shows the p-value of the t-test on refactored classes for each criterion. It is

observed that the null hypothesis is rejected in all tests p-values strictly lower than 0.01. It

indicates that the test adequacy criteria and effectiveness increase significantly after applying

relevant refactoring to classes with low testability.

Figure 10 shows the impact of refactoring on the source code metrics affecting testability.

By comparing Figure 8 and Figure 10, it is observed that the applied refactorings change

source code metrics such that the testability prediction model could predict a higher testability

value for the refactored class.

35

5

10

15

Va
lu

e
Metric = CSLOCE_AVG

20

40

60

80

100

Metric = NOCJST

5

10

15

20

25

Metric = CSLOC_AVG

7.5

10.0

12.5

15.0

17.5
Metric = DEPENDS

100

150

200

Metric = NOIDU

100

150

200

250

300

350

Va
lu

e

Metric = NODOT

10

15

20

25

30
Metric = CSNOIM

10

15

20

25

Metric = CSNOPLM

0

5

10

15

20

25
Metric = NIM

2

3

4

Metric = CSNOSTD_AVG

Before After
Stage

0.0

0.5

1.0

1.5

2.0

Va
lu

e

Metric = CSNOSM

Before After
Stage

10

20

30

40

Metric = NONEW

Before After
Stage

20

30

40

Metric = NOREPR

Before After
Stage

0.5

1.0

1.5

2.0

2.5

3.0
Metric = CSNOCON

Before After
Stage

0

50

100

150

200

Metric = PKNOSM

Weka
Scijava-common

Figure 10: Changes in the source code metrics (before and after refactoring).

RQ4: Is it possible to improve software testability by improving influential source code

metrics via automatic refactoring?

Answer to RQ4: Refactorings focused on source code metrics that affect testability

prediction improved the testability of 42 Java low testable classes by an average of

0.1831 (86.87%). Testability improvement significantly enhances test adequacy criteria,

including statement, branch, and mutation coverage of the class under test. It should be

noted that predicting testability rather than actually testing the code before and after

refactoring saved the time caused due to extra testing by about 99.89%. .

4.6. Evaluating other quality attributes

Testability is only one property of the code. Being able to read, understand, and maintain

the code easily are also very important. The impact of refactoring for testability enhancement

on the other quality factors is investigated to answer RQ5. To this aim, in addition to

testability, four other quality attributes, including reusability, functionality, extensibility,

36

Table 11: Definitions and computation equations of quality attributes.

Quality attribute Definition Computation equation

Reusability
Reflects the presence of object-oriented design
characteristics that allow a design to be reapplied
to a new problem without significant effort.

−0.25 × class coupling + 0.25 × cohesion among methods
in class + 0.5 × number of public methods in a class +
0.5 × design size in classes

Functionality
The responsibilities assigned to the classes of a
design, which are made available by the classes
through their public interfaces.

0.12 × cohesion among methods in class + 0.22 × number
of polymorphic methods in a class + 0.22 × number of
public methods in a class + 0.22 × design size in classes
+ 0.22 × number of hierarchies

Extendibility
Refers to the presence and usage of properties in
an existing design that incorporates new
requirements in the design.

0.5 × average number of ancestors −0.5 × class coupling
+ 0.5 × number of inherited methods in a class + 0.5 ×
number of polymorphic methods in a class

Modularity

Degree to which a system or computer program is
composed of discrete components such that a
change to one component has minimal impact
on other components.

Q = 1
m

∑
ij

(
Aij −

kini ×koutj

m

)
δ(ci, cj)

and modularity for the Weka [74] and Scijava-common [75] classes, were measured before

refactoring for testability enhancement. The first three attributes are measured using the

relations offered in [58]. Modularity was computed using an approach based on the concept

of modularity in complex networks [79, 80].

Table 11 shows the definitions and computation equations of these quality attributes. The

reusability, functionality, and extensibility attributes are computed using QMOOD design

quality metrics [58]. Modularity, Q, is computed considering the module dependency graph

(MDG) [81]. MDG includes all of the modules in the system and the set of dependencies

that exist between the modules. In the modularity equation, A is the adjacency matrix of

the MDG; m is the number of components (e.g., packages in Java programs); kini is the input

degree of node i (e.g., a class in Java programs) in the MDG; koutj is the output degree of

node j in the MDG; ci and cj are the modules that nodes i and j belong to; and δ is the

Kronecker delta function that takes 1 when ci equals cj, and 0, otherwise.

Figure 11 shows the improvement of the aforementioned quality attributes after refactoring

classes of Weka and Scijava-common projects. It is observed that all quality attributes are

improved after the refactorings. Figure 11 indicates an average of 6.76, 5.96, 0.02, and 0.001

improvements in the reusability, functionality, extendability, and modularity quality attributes

of the Weka and SciJava-Common software systems.

It is worth mentioning that testability improvement, together with other quality attributes,

is not already mentioned by the other researchers [82, 83]. All the experiments were performed

with automatic test data generation methods. At this point, improving other quality attributes

37

Weka Scijava-common
Project

0

2

4

6

8

Im
pr

ov
em

en
t

Quality attribute = Reusability

Weka Scijava-common
Project

0

2

4

6

8

Quality attribute = Functionality

Weka Scijava-common
Project

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Quality attribute = Extendability

Weka Scijava-common
Project

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Quality attribute = Modularity

Weka Scijava-common
Project

0.00

0.05

0.10

0.15

0.20

0.25
Quality attribute = Testability

Figure 11: Improvement of different quality attributes along with testability.

besides testability assures that even manual testing could also be more straightforward after

refactoring.

RQ5: Does refactoring for testability improve other quality attributes?

Answer to RQ5: Automated refactoring for testability improves other quality attributes,

including reusability, functionality, extendability, and modularity, which is useful for

manual testing.

5. Threats to validity

Threats to construct validity are on how the testability model is defined. In this paper, the

standard testability definition was used to build a new software testability measurement

model, which emphasizes test quality and effort metrics. Test adequacy criteria,i.e., statement,

branch, and mutation coverage, were computed with a fixed test budget for all the projects to

accomplish a fair measurement. However, other test quality and effort metrics can contribute

to the testability measurement model, Equation 6, to achieve more realistic results. Test

adequacy criteria, and on top of that, coverage criteria are general concepts not restricted to

any programming language. Therefore, the proposed mathematical model can be used for

any programming language. However, the source code metrics used to vectorize or represent

source code components may vary depending on whether the programming language is

object-oriented, domain-specific, functional, or logical. The metrics introduced in this paper,

including lexical metrics and sub-metrics, are independent of the programming languages’

type and syntax.

The most important threats to internal validity are the random nature of both evolutionary

and machine learning algorithms used to compute and learn testability. For the sake of the

38

reliability of the coverage provided by EvoSuite tests, the test suite generation process was

repeated five times for each project. The EvoSuite tool with default settings and different

random seeds was used to generate five test suites. Thereafter, the results obtained for each

criterion were averaged. A low variance of results was observed on average for all projects,

which minimizes the possibility of randomness in the results. However, there is still an

opportunity to test with different hyperparameters. The grid search strategy, along with the

five-fold cross-validation, was used to ensure the reliability of the training process, prevent

overfitting, and produce the best possible machine learning model for testability prediction.

In addition, the training of each model was performed with different random seeds, and the

prediction results were averaged to minimize the randomness of the results.

The main threat to external validity regards the testability prediction models’ application

to the programs in other programming languages rather than Java. The SF110 corpus

[51] containing 110 Java projects was used to ensure a generalization of all software types.

The proposed model can be used to predict the testability of programs written in other

programming languages. Nevertheless, there is a need to evaluate this approach on different

programming languages to ensure the goodness of metrics and models.

6. Conclusion

Testability is effectively proportional to the number of test data required to achieve a certain

degree of code coverage. The fewer the test data needed to achieve the desired code coverage,

the more testable the code. Experimental results in this paper demonstrate an average of

95.5% improvement in coverage achieved by the test data generated in 252 minutes after

improving the testability of 42 Java classes by an average of 86.87%. In addition to improving

test effectiveness, testability prediction helps testers avoid ineffective and unnecessary tests.

By predicting the amount of testability instead of generating and measuring the test suite

coverage after each refactoring, the time required for test-based development and modification

can be significantly reduced. The empirical studies in this article demonstrate a 99.89%

improvement in the time required to improve the testability of Weka and Scijava-common

software systems from 0.12 and 0.27 to 0.27 and 0.52, respectively.

Testability prediction could be applied at any stage of software development, even before

39

the code under test is ready to execute. The proposed model in this paper achieves an R2-score

of 0.68, which improves the performance of existing testability prediction models by 43%.

The plausible improvement in the performance is due to the increased number of source code

metrics and the data samples used to learn the proposed model.

This paper designates 15 software metrics highly affecting testability. The metrics can

be identified automatically by applying features importance analysis. Improvements of

these metrics, by automated refactoring, may significantly improve test adequacy criteria,

specifically statement coverage, branch coverage, and mutation score for the units under test.

It is shown in this paper that testability improvement also improves other software quality

attributes, including reusability, functionality, extendability, and modularity. Experimental

results in this paper indicate an average of 6.76, 5.96, 0.02, and 0.001 improvements in the

reusability, functionality, extendability, and modularity quality attributes of the Weka and

Scijava-common software systems.

In future work, the authors aim to introduce a new software development methodology,

testability-driven development (TsDD), to substitute test-driven development (TDD) in agile

methodologies. Testing by itself could be a lengthy and costly process, specifically if the code

under test solves a scientific formula or controls a cyber-physical system. TDD aggravates

the cost by encouraging testing as a tool for the incremental development of software. TsDD

suggests postponing the test to when the testability is optimized due to frequent refactoring and

measuring. Testability prediction could also be used as an objective function in search-based

processes to look for the sequence of refactorings maximizing testability.

Compliance with Ethical Standards

This study has received no funding from any organization.

Conflict of Interest

The authors declare that they have no conflict of interest.

40

Ethical Approval

This article does not contain any studies with human participants or animals performed by

any of the authors.

References

[1] E. W. Dijkstra, The humble programmer, Commun. ACM 15 (10) (1972) 859–866.

doi:10.1145/355604.361591.

URL https://doi.org/10.1145/355604.361591

[2] P. Ammann, J. Offutt, Introduction to Software Testing, Cambridge University Press,

Cambridge, 2016. doi:DOI:10.1017/9781316771273.

[3] R. A. Khan, K. Mustafa, Metric based testability model for object oriented design

(MTMOOD), ACM SIGSOFT Software Engineering Notes 34 (2) (2009) 1. doi:10.

1145/1507195.1507204.

URL http://portal.acm.org/citation.cfm?doid=1507195.1507204

[4] L. D. B. Muhammad Rabee Shaheen, Survey of source code metrics for evaluating

testability of object oriented systems, Tech. rep., Inria France (2014).

URL https://hal.inria.fr/hal-00953403

[5] P. R. Suri, H. Singhani, Object-oriented software testability (OOSTe) metrics analysis,

International Journal of Computer Applications Technology and Research 4 (5) (2015)

359–367. doi:10.7753/IJCATR0405.1006.

[6] I. Cohen, T. J. Mccabe, C. W. Butler, Design complexity measurement and testing

32 (12) (1989) 1415–1423.

[7] S. Chidamber, C. Kemerer, A metrics suite for object oriented design, IEEE Transactions

on Software Engineering 20 (6) (1994) 476–493. doi:10.1109/32.295895.

URL http://ieeexplore.ieee.org/document/295895/

[8] J. M. Bieman, B.-K. Kang, Cohesion and reuse in an object-oriented system, ACM

SIGSOFT Software Engineering Notes 20 (SI) (1995) 259–262. doi:10.1145/223427.

41

https://doi.org/10.1145/355604.361591
https://doi.org/10.1145/355604.361591
https://doi.org/10.1145/355604.361591
https://doi.org/DOI: 10.1017/9781316771273
http://portal.acm.org/citation.cfm?doid=1507195.1507204
http://portal.acm.org/citation.cfm?doid=1507195.1507204
https://doi.org/10.1145/1507195.1507204
https://doi.org/10.1145/1507195.1507204
http://portal.acm.org/citation.cfm?doid=1507195.1507204
https://hal.inria.fr/hal-00953403
https://hal.inria.fr/hal-00953403
https://hal.inria.fr/hal-00953403
https://doi.org/10.7753/IJCATR0405.1006
http://ieeexplore.ieee.org/document/295895/
https://doi.org/10.1109/32.295895
http://ieeexplore.ieee.org/document/295895/
http://portal.acm.org/citation.cfm?doid=223427.211856
https://doi.org/10.1145/223427.211856
https://doi.org/10.1145/223427.211856

211856.

URL http://portal.acm.org/citation.cfm?doid=223427.211856

[9] V. Garousi, M. Felderer, F. N. Kılıçaslan, A survey on software testability, Information

and Software Technology 108 (2019) 35–64. doi:10.1016/j.infsof.2018.12.003.

URL https://linkinghub.elsevier.com/retrieve/pii/S0950584918302490

[10] R. Sharma, A. Saha, A systematic review of software testability measurement techniques,

in: 2018 International Conference on Computing, Power and Communication Technologies

(GUCON), IEEE, 2018, pp. 299–303. doi:10.1109/GUCON.2018.8675006.

URL https://ieeexplore.ieee.org/document/8675006/

[11] Ieee standard glossary of software engineering terminology, IEEE Std 610.12-1990 (1990)

1–84doi:10.1109/IEEESTD.1990.101064.

[12] ISO and IEC, ISO/IEC 25010:2011 systems and software engineering — systems and

software quality requirements and evaluation (SQuaRE) — system and software quality

models (2011) 34.

URL https://www.iso.org/standard/35733.html

[13] V. Terragni, P. Salza, M. Pezzè, Measuring software testability modulo test quality, in:

Proceedings of the 28th International Conference on Program Comprehension, ACM,

New York, NY, USA, 2020, pp. 241–251. doi:10.1145/3387904.3389273.

URL https://dl.acm.org/doi/10.1145/3387904.3389273

[14] M. Bruntink, A. van Deursen, Predicting class testability using object-oriented metrics,

in: Source Code Analysis and Manipulation, Fourth IEEE International Workshop on,

2004, pp. 136–145. doi:10.1109/SCAM.2004.16.

[15] M. Bruntink, A. van Deursen, An empirical study into class testability, J. Syst. Softw.

79 (9) (2006) 1219–1232. doi:10.1016/j.jss.2006.02.036.

URL https://doi.org/10.1016/j.jss.2006.02.036

[16] L. Badri, M. Badri, F. Toure, An empirical analysis of lack of cohesion metrics for

42

https://doi.org/10.1145/223427.211856
https://doi.org/10.1145/223427.211856
http://portal.acm.org/citation.cfm?doid=223427.211856
https://linkinghub.elsevier.com/retrieve/pii/S0950584918302490
https://doi.org/10.1016/j.infsof.2018.12.003
https://linkinghub.elsevier.com/retrieve/pii/S0950584918302490
https://ieeexplore.ieee.org/document/8675006/
https://doi.org/10.1109/GUCON.2018.8675006
https://ieeexplore.ieee.org/document/8675006/
https://doi.org/10.1109/IEEESTD.1990.101064
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://dl.acm.org/doi/10.1145/3387904.3389273
https://doi.org/10.1145/3387904.3389273
https://dl.acm.org/doi/10.1145/3387904.3389273
https://doi.org/10.1109/SCAM.2004.16
https://doi.org/10.1016/j.jss.2006.02.036
https://doi.org/10.1016/j.jss.2006.02.036
https://doi.org/10.1016/j.jss.2006.02.036

predicting testability of classes, International Journal of Software Engineering and Its

Applications 5 (2) (2011) 69–85.

[17] M. Badri, F. Toure, Empirical analysis of object-oriented design metrics for predicting

unit testing effort of classes, Journal of Software Engineering and Applications 05 (07)

(2012) 513–526. doi:10.4236/jsea.2012.57060.

URL http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jsea.2012.57060

[18] O.-J. Oluwatosin, A. Balogun, S. Basri, A. Akintola, A. Bajeh, Object-oriented mea-

sures as testability indicators: an empirical study, Journal of Engineering Science and

Technology 15 (2020) 1092–1108.

[19] A. Panichella, J. Campos, G. Fraser, Evosuite at the sbst 2020 tool competition, ACM,

2020, pp. 549–552. doi:10.1145/3387940.3392266.

URL https://dl.acm.org/doi/10.1145/3387940.3392266

[20] M. Zakeri-Nasrabadi, S. Parsa, Learning to predict test effectiveness, International

Journal of Intelligent Systems n/a (n/a). arXiv:https://onlinelibrary.wiley.com/

doi/pdf/10.1002/int.22722, doi:https://doi.org/10.1002/int.22722.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22722

[21] L. Breiman, Random forests, Machine Learning 45 (1) (2001) 5–32. doi:10.1023/A:

1010933404324.

URL https://doi.org/10.1023/A:1010933404324

[22] D. V. Carvalho, E. M. Pereira, J. S. Cardoso, Machine learning interpretability: a survey

on methods and metrics, Electronics 8 (8) (2019). doi:10.3390/electronics8080832.

URL https://www.mdpi.com/2079-9292/8/8/832

[23] IEEE, Ieee standard glossary of software engineering terminology, IEEE Std 610.12-1990

(1990) 1–84doi:10.1109/IEEESTD.1990.101064.

[24] ISO/IEC, Iso/iec 9126-1:2001 software engineering — product quality — part 1: Quality

model (2001).

URL https://www.iso.org/standard/22749.html

43

http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jsea.2012.57060
http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jsea.2012.57060
https://doi.org/10.4236/jsea.2012.57060
http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jsea.2012.57060
https://dl.acm.org/doi/10.1145/3387940.3392266
https://doi.org/10.1145/3387940.3392266
https://dl.acm.org/doi/10.1145/3387940.3392266
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22722
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/int.22722
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/int.22722
https://doi.org/https://doi.org/10.1002/int.22722
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22722
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://www.mdpi.com/2079-9292/8/8/832
https://www.mdpi.com/2079-9292/8/8/832
https://doi.org/10.3390/electronics8080832
https://www.mdpi.com/2079-9292/8/8/832
https://doi.org/10.1109/IEEESTD.1990.101064
https://www.iso.org/standard/22749.html
https://www.iso.org/standard/22749.html
https://www.iso.org/standard/22749.html

[25] F. Toure, M. Badri, L. Lamontagne, Predicting different levels of the unit testing effort

of classes using source code metrics: a multiple case study on open-source software,

Innovations in Systems and Software Engineering 14 (1) (2018) 15–46. doi:10.1007/

s11334-017-0306-1.

URL http://link.springer.com/10.1007/s11334-017-0306-1

[26] M. Badri, L. Badri, O. Hachemane, A. Ouellet, Measuring the effect of clone refactoring

on the size of unit test cases in object-oriented software: an empirical study, Innovations

in Systems and Software Engineering 15 (2) (2019) 117–137. doi:10.1007/s11334-019-

00334-6.

URL http://link.springer.com/10.1007/s11334-019-00334-6

[27] J. Voas, K. Miller, Software testability: the new verification, IEEE Software 12 (1995)

17–28. doi:10.1109/52.382180.

URL http://ieeexplore.ieee.org/document/382180/

[28] R. V. Binder, Design for testability in object-oriented systems, Communications of the

ACM 37 (1994) 87–101. doi:10.1145/182987.184077.

URL http://dl.acm.org/citation.cfm?doid=182987.184077

[29] A. Goel, S. C. Gupta, S. K. Wasan, COTT – a testability framework for object-oriented

software testing, World Academy of Science, Engineering and Technology, International

Journal of Computer, Electrical, Automation, Control and Information Engineering 2

(2008) 4224–4231.

[30] A. Gonzalez-Sanchez, E. Piel, H.-G. Gross, A. J. C. van Gemund, Minimising the

preparation cost of runtime testing based on testability metrics, in: 2010 IEEE 34th

Annual Computer Software and Applications Conference, IEEE, 2010, pp. 419–424.

doi:10.1109/COMPSAC.2010.49.

URL http://ieeexplore.ieee.org/document/5676288/

[31] A. Salahirad, H. Almulla, G. Gay, Choosing the fitness function for the job: Automated

generation of test suites that detect real faults, Software Testing, Verification and

44

http://link.springer.com/10.1007/s11334-017-0306-1
http://link.springer.com/10.1007/s11334-017-0306-1
https://doi.org/10.1007/s11334-017-0306-1
https://doi.org/10.1007/s11334-017-0306-1
http://link.springer.com/10.1007/s11334-017-0306-1
http://link.springer.com/10.1007/s11334-019-00334-6
http://link.springer.com/10.1007/s11334-019-00334-6
https://doi.org/10.1007/s11334-019-00334-6
https://doi.org/10.1007/s11334-019-00334-6
http://link.springer.com/10.1007/s11334-019-00334-6
http://ieeexplore.ieee.org/document/382180/
https://doi.org/10.1109/52.382180
http://ieeexplore.ieee.org/document/382180/
http://dl.acm.org/citation.cfm?doid=182987.184077
https://doi.org/10.1145/182987.184077
http://dl.acm.org/citation.cfm?doid=182987.184077
http://ieeexplore.ieee.org/document/5676288/
http://ieeexplore.ieee.org/document/5676288/
https://doi.org/10.1109/COMPSAC.2010.49
http://ieeexplore.ieee.org/document/5676288/
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1701
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1701

Reliability 29 (4-5) (jun 2019). doi:10.1002/stvr.1701.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1701

[32] L. Ma, C. Zhang, B. Yu, H. Sato, An empirical study on the effects of code visibility

on program testability, Software Quality Journal 25 (3) (2017) 951–978. doi:10.1007/

s11219-016-9340-8.

URL http://link.springer.com/10.1007/s11219-016-9340-8

[33] B. Daniel, M. Boshernitsan, Predicting effectiveness of automatic testing tools, in: 2008

23rd IEEE/ACM International Conference on Automated Software Engineering, IEEE,

2008, pp. 363–366. doi:10.1109/ASE.2008.49.

URL http://ieeexplore.ieee.org/document/4639342/

[34] J. Ferrer, F. Chicano, E. Alba, Estimating software testing complexity, Information

and Software Technology 55 (12) (2013) 2125–2139. doi:https://doi.org/10.1016/j.

infsof.2013.07.007.

URL https://www.sciencedirect.com/science/article/pii/S0950584913001535

[35] H. Kobayashi, B. Mark, W. Turin, Probability, random processes, and statistical analysis:

applications to communications, signal processing, queueing theory and mathematical

finance, Cambridge University Press, 2011.

URL https://books.google.com/books?id=DQCMdT-3qbQC

[36] G. Grano, T. V. Titov, S. Panichella, H. C. Gall, Branch coverage prediction in automated

testing, Journal of Software: Evolution and Process 31 (9) (sep 2019). doi:10.1002/

smr.2158.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2158

[37] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, W. A. Stahel, Robust statistics: the

approach based on influence functions, Wiley Series in Probability and Statistics, Wiley,

2011.

[38] C.-C. Chang, C.-J. Lin, Libsvm: A library for support vector machines, ACM Trans.

45

https://doi.org/10.1002/stvr.1701
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1701
http://link.springer.com/10.1007/s11219-016-9340-8
http://link.springer.com/10.1007/s11219-016-9340-8
https://doi.org/10.1007/s11219-016-9340-8
https://doi.org/10.1007/s11219-016-9340-8
http://link.springer.com/10.1007/s11219-016-9340-8
http://ieeexplore.ieee.org/document/4639342/
https://doi.org/10.1109/ASE.2008.49
http://ieeexplore.ieee.org/document/4639342/
https://www.sciencedirect.com/science/article/pii/S0950584913001535
https://doi.org/https://doi.org/10.1016/j.infsof.2013.07.007
https://doi.org/https://doi.org/10.1016/j.infsof.2013.07.007
https://www.sciencedirect.com/science/article/pii/S0950584913001535
https://books.google.com/books?id=DQCMdT-3qbQC
https://books.google.com/books?id=DQCMdT-3qbQC
https://books.google.com/books?id=DQCMdT-3qbQC
https://books.google.com/books?id=DQCMdT-3qbQC
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2158
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2158
https://doi.org/10.1002/smr.2158
https://doi.org/10.1002/smr.2158
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2158
https://doi.org/10.1145/1961189.1961199

Intell. Syst. Technol. 2 (3) (May 2011). doi:10.1145/1961189.1961199.

URL https://doi.org/10.1145/1961189.1961199

[39] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT Press, 2016.

URL http://www.deeplearningbook.org/

[40] M. Noorian, E. B. Bagheri, W. Du, Machine learning-based software testing: towards a

classification framework, SEKE 2011 - Proceedings of the 23rd International Conference

on Software Engineering and Knowledge Engineering (2011) 225–229.

URL http://www.scopus.com/inward/record.url?eid=2-s2.0-84855543079&

partnerID=40&md5=3224355016f222d0cb0b1a0e14111908

[41] M. Z. Nasrabadi, S. Parsa, A. Kalaee, Format-aware learn&fuzz: deep test data generation

for efficient fuzzing, Neural Computing and Applications 33 (2021). doi:10.1007/

s00521-020-05039-7.

[42] Y. Abdi, S. Parsa, Y. Seyfari, A hybrid one-class rule learning approach based on swarm

intelligence for software fault prediction, Innovations in Systems and Software Engineering

11 (2015) 289–301. doi:10.1007/s11334-015-0258-2.

URL https://doi.org/10.1007/s11334-015-0258-2

[43] K. Shi, Y. Lu, J. Chang, Z. Wei, Pathpair2vec: An ast path pair-based code representation

method for defect prediction, Journal of Computer Languages 59 (2020) 100979. doi:

10.1016/J.COLA.2020.100979.

[44] D. P. Mesquita, L. S. Rocha, J. P. P. Gomes, A. R. R. Neto, Classification with reject

option for software defect prediction, Applied Soft Computing 49 (2016) 1085–1093.

doi:10.1016/J.ASOC.2016.06.023.

[45] A. Maru, A. Dutta, K. V. Kumar, D. P. Mohapatra, Software fault localization using

bp neural network based on function and branch coverage, Evolutionary Intelligence (11

2019). doi:10.1007/s12065-019-00318-2.

URL http://link.springer.com/10.1007/s12065-019-00318-2

46

https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
http://www.scopus.com/inward/record.url?eid=2-s2.0-84855543079&partnerID=40&md5=3224355016f222d0cb0b1a0e14111908
http://www.scopus.com/inward/record.url?eid=2-s2.0-84855543079&partnerID=40&md5=3224355016f222d0cb0b1a0e14111908
http://www.scopus.com/inward/record.url?eid=2-s2.0-84855543079&partnerID=40&md5=3224355016f222d0cb0b1a0e14111908
http://www.scopus.com/inward/record.url?eid=2-s2.0-84855543079&partnerID=40&md5=3224355016f222d0cb0b1a0e14111908
https://doi.org/10.1007/s00521-020-05039-7
https://doi.org/10.1007/s00521-020-05039-7
https://doi.org/10.1007/s11334-015-0258-2
https://doi.org/10.1007/s11334-015-0258-2
https://doi.org/10.1007/s11334-015-0258-2
https://doi.org/10.1007/s11334-015-0258-2
https://doi.org/10.1016/J.COLA.2020.100979
https://doi.org/10.1016/J.COLA.2020.100979
https://doi.org/10.1016/J.ASOC.2016.06.023
http://link.springer.com/10.1007/s12065-019-00318-2
http://link.springer.com/10.1007/s12065-019-00318-2
https://doi.org/10.1007/s12065-019-00318-2
http://link.springer.com/10.1007/s12065-019-00318-2

[46] A. Dutta, S. S. Srivastava, S. Godboley, D. P. Mohapatra, Combi-fl: Neural network and

sbfl based fault localization using mutation analysis, Journal of Computer Languages 66

(2021) 101064. doi:10.1016/J.COLA.2021.101064.

[47] U. Alon, M. Zilberstein, O. Levy, E. Yahav, code2vec: learning distributed representations

of code, Proceedings of the ACM on Programming Languages 3 (2019) 1–29. doi:

10.1145/3290353.

URL https://dl.acm.org/doi/10.1145/3290353

[48] U. Alon, S. Brody, O. Levy, E. Yahav, Code2seq: generating sequences from structured

representations of code, arXiv preprint arXiv:1808.01400 (2018).

[49] H. Xiao, M. Cao, R. Peng, Artificial neural network based software fault detection and

correction prediction models considering testing effort, Applied Soft Computing 94 (2020)

106491. doi:10.1016/J.ASOC.2020.106491.

[50] A. Arcuri, J. Campos, G. Fraser, Unit Test Generation During Software Development:

EvoSuite Plugins for Maven, IntelliJ and Jenkins, in: 2016 IEEE International Conference

on Software Testing, Verification and Validation (ICST), 2016, pp. 401–408. doi:

10.1109/ICST.2016.44.

[51] G. Fraser, A. Arcuri, A large-scale evaluation of automated unit test generation using

EvoSuite, ACM Transactions on Software Engineering and Methodology 24 (2) (2014)

1–42. doi:10.1145/2685612.

URL https://dl.acm.org/doi/10.1145/2685612

[52] C. Pacheco, M. D. Ernst, Randoop: feedback-directed random testing for Java, in:

OOPSLA 2007 Companion, Montreal, Canada, ACM, 2007.

[53] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-Y. Liu, LightGBM: A

highly efficient gradient boosting decision tree, in: I. Guyon, U. V. Luxburg, S. Bengio,

H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), Advances in Neural

Information Processing Systems 30, Curran Associates, Inc., 2017, pp. 3146–3154.

47

https://doi.org/10.1016/J.COLA.2021.101064
https://dl.acm.org/doi/10.1145/3290353
https://dl.acm.org/doi/10.1145/3290353
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3290353
https://dl.acm.org/doi/10.1145/3290353
https://doi.org/10.1016/J.ASOC.2020.106491
https://doi.org/10.1109/ICST.2016.44
https://doi.org/10.1109/ICST.2016.44
https://dl.acm.org/doi/10.1145/2685612
https://dl.acm.org/doi/10.1145/2685612
https://doi.org/10.1145/2685612
https://dl.acm.org/doi/10.1145/2685612
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf

URL http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-

gradient-boosting-decision-tree.pdf

[54] A. Guryanov, Histogram-based algorithm for building gradient boosting ensembles of

piecewise linear decision trees, in: W. M. P. van der Aalst, V. Batagelj, D. I. Ignatov,

M. Khachay, V. Kuskova, A. Kutuzov, S. O. Kuznetsov, I. A. Lomazova, N. Loukachevitch,

A. Napoli, P. M. Pardalos, M. Pelillo, A. V. Savchenko, E. Tutubalina (Eds.), Analysis

of Images, Social Networks and Texts, Springer International Publishing, Cham, 2019,

pp. 39–50.

[55] G. Fraser, A. Arcuri, Whole test suite generation, IEEE Transactions on Software

Engineering 39 (2) (2013) 276–291. doi:10.1109/TSE.2012.14.

[56] B. Henderson-Sellers, Object-oriented metrics: measures of complexity, Prentice-Hall,

Inc., 1995. doi:Object-orientedmetrics:measuresofcomplexity.

[57] R. Harrison, S. Counsell, R. Nithi, An evaluation of the MOOD set of object-oriented

software metrics, IEEE Transactions on Software Engineering 24 (6) (1998) 491–496.

doi:10.1109/32.689404.

URL http://ieeexplore.ieee.org/document/689404/

[58] J. Bansiya, C. Davis, A hierarchical model for object-oriented design quality assessment,

IEEE Transactions on Software Engineering 28 (1) (2002) 4–17. doi:10.1109/32.979986.

URL http://ieeexplore.ieee.org/document/979986/

[59] F. Arcelli Fontana, M. V. Mäntylä, M. Zanoni, A. Marino, Comparing and experimenting

machine learning techniques for code smell detection, Empirical Software Engineering

21 (3) (2016) 1143–1191. doi:10.1007/s10664-015-9378-4.

URL http://link.springer.com/10.1007/s10664-015-9378-4

[60] A. S. Nuñez-Varela, H. G. Pérez-Gonzalez, F. E. Mart́ınez-Perez, C. Soubervielle-

Montalvo, Source code metrics: a systematic mapping study, Journal of Systems and

Software 128 (2017) 164 – 197. doi:https://doi.org/10.1016/j.jss.2017.03.044.

URL http://www.sciencedirect.com/science/article/pii/S0164121217300663

48

http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
https://doi.org/10.1109/TSE.2012.14
https://doi.org/Object-oriented metrics: measures of complexity
http://ieeexplore.ieee.org/document/689404/
http://ieeexplore.ieee.org/document/689404/
https://doi.org/10.1109/32.689404
http://ieeexplore.ieee.org/document/689404/
http://ieeexplore.ieee.org/document/979986/
https://doi.org/10.1109/32.979986
http://ieeexplore.ieee.org/document/979986/
http://link.springer.com/10.1007/s10664-015-9378-4
http://link.springer.com/10.1007/s10664-015-9378-4
https://doi.org/10.1007/s10664-015-9378-4
http://link.springer.com/10.1007/s10664-015-9378-4
http://www.sciencedirect.com/science/article/pii/S0164121217300663
https://doi.org/https://doi.org/10.1016/j.jss.2017.03.044
http://www.sciencedirect.com/science/article/pii/S0164121217300663

[61] SciTools, Understand, [Online]. Available: https://scitools.com/ ([Accessed: 2020-

09-11]).

[62] M. M. Breunig, H.-P. Kriegel, R. T. Ng, J. Sander, LOF: identifying density-based

local outliers, in: Proceedings of the 2000 ACM SIGMOD international conference on

Management of data - SIGMOD ’00, ACM Press, New York, New York, USA, 2000, pp.

93–104. doi:10.1145/342009.335388.

URL http://portal.acm.org/citation.cfm?doid=342009.335388

[63] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in {P}ython,

Journal of Machine Learning Research 12 (2011) 2825–2830.

[64] T. Zhang, Solving large scale linear prediction problems using stochastic gradient descent

algorithms, in: Twenty-first international conference on Machine learning - ICML ’04,

ACM Press, New York, New York, USA, 2004, p. 116. doi:10.1145/1015330.1015332.

URL http://portal.acm.org/citation.cfm?doid=1015330.1015332

[65] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, J. Mach. Learn.

Res. 13 (null) (2012) 281–305.

[66] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algorithms, 4th

Edition, MIT Press, 2022.

URL https://mitpress.mit.edu/books/introduction-algorithms-fourth-

edition

[67] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman, Compilers: Principles, Techniques, and

Tools (2nd Edition), Addison-Wesley Longman Publishing Co., Inc., USA, 2006.

[68] X. Solé, A. Ramisa, C. Torras, Evaluation of random forests on large-scale classification

problems using a bag-of-visual-words representation (2014). doi:10.3233/978-1-61499-

452-7-273.

49

https://scitools.com/
http://portal.acm.org/citation.cfm?doid=342009.335388
http://portal.acm.org/citation.cfm?doid=342009.335388
https://doi.org/10.1145/342009.335388
http://portal.acm.org/citation.cfm?doid=342009.335388
http://portal.acm.org/citation.cfm?doid=1015330.1015332
http://portal.acm.org/citation.cfm?doid=1015330.1015332
https://doi.org/10.1145/1015330.1015332
http://portal.acm.org/citation.cfm?doid=1015330.1015332
https://mitpress.mit.edu/books/introduction-algorithms-fourth-edition
https://mitpress.mit.edu/books/introduction-algorithms-fourth-edition
https://mitpress.mit.edu/books/introduction-algorithms-fourth-edition
https://doi.org/10.3233/978-1-61499-452-7-273
https://doi.org/10.3233/978-1-61499-452-7-273

[69] E. Alpaydin, Introduction to machine learning, 4th Edition, MIT Press, 2020.

URL https://mitpress.mit.edu/books/introduction-machine-learning-fourth-

edition

[70] R. C. da Cruz., M. Medeiros Eler., An empirical analysis of the correlation between ck

metrics, test coverage and mutation score, in: Proceedings of the 19th International

Conference on Enterprise Information Systems - Volume 2: ICEIS,, INSTICC, SciTePress,

2017, pp. 341–350. doi:10.5220/0006312703410350.

[71] K. O. Elish, M. Alshayeb, Investigating the effect of refactoring on software testing effort,

in: 2009 16th Asia-Pacific Software Engineering Conference, IEEE, 2009, pp. 29–34.

doi:10.1109/APSEC.2009.14.

URL http://ieeexplore.ieee.org/document/5358476/

[72] M. Alshayeb, Empirical investigation of refactoring effect on software quality, Information

and Software Technology 51 (9) (2009) 1319–1326. doi:10.1016/j.infsof.2009.04.

002.

URL https://linkinghub.elsevier.com/retrieve/pii/S095058490900038X

[73] M. Ó. Cinnéide, D. Boyle, I. H. Moghadam, Automated Refactoring for Testability,

in: 2011 IEEE Fourth International Conference on Software Testing, Verification and

Validation Workshops, IEEE, 2011, pp. 437–443. doi:10.1109/ICSTW.2011.23.

URL http://ieeexplore.ieee.org/document/5954444/

[74] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten, The

WEKA data mining software, ACM SIGKDD Explorations Newsletter 11 (1) (2009) 10.

doi:10.1145/1656274.1656278.

URL http://doi.acm.org/10.1145/1656274.1656278http://portal.acm.org/

citation.cfm?doid=1656274.1656278

[75] Scijava-common ([Accessed: 2021-06-23]).

URL https://github.com/scijava/scijava-common

50

https://mitpress.mit.edu/books/introduction-machine-learning-fourth-edition
https://mitpress.mit.edu/books/introduction-machine-learning-fourth-edition
https://mitpress.mit.edu/books/introduction-machine-learning-fourth-edition
https://doi.org/10.5220/0006312703410350
http://ieeexplore.ieee.org/document/5358476/
https://doi.org/10.1109/APSEC.2009.14
http://ieeexplore.ieee.org/document/5358476/
https://linkinghub.elsevier.com/retrieve/pii/S095058490900038X
https://doi.org/10.1016/j.infsof.2009.04.002
https://doi.org/10.1016/j.infsof.2009.04.002
https://linkinghub.elsevier.com/retrieve/pii/S095058490900038X
http://ieeexplore.ieee.org/document/5954444/
https://doi.org/10.1109/ICSTW.2011.23
http://ieeexplore.ieee.org/document/5954444/
http://doi.acm.org/10.1145/1656274.1656278 http://portal.acm.org/citation.cfm?doid=1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278 http://portal.acm.org/citation.cfm?doid=1656274.1656278
https://doi.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278 http://portal.acm.org/citation.cfm?doid=1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278 http://portal.acm.org/citation.cfm?doid=1656274.1656278
https://github.com/scijava/scijava-common
https://github.com/scijava/scijava-common

[76] N. Tsantalis, T. Chaikalis, A. Chatzigeorgiou, Ten years of JDeodorant: Lessons learned

from the hunt for smells, in: 2018 IEEE 25th International Conference on Software

Analysis, Evolution and Reengineering (SANER), IEEE, 2018, pp. 4–14. doi:10.1109/

SANER.2018.8330192.

URL http://ieeexplore.ieee.org/document/8330192/

[77] M. Mohan, D. Greer, MultiRefactor: automated refactoring to improve software quality,

2017, pp. 556–572. doi:10.1007/978-3-319-69926-4_46.

URL http://link.springer.com/10.1007/978-3-319-69926-4_46

[78] JetBrains s.r.o., IntelliJ IDEA ([Accessed: 2021-07-26]).

URL https://www.jetbrains.com/idea/

[79] E. A. Leicht, M. E. J. Newman, Community structure in directed networks, Physical

Review Letters 100 (2008) 118703. doi:10.1103/PhysRevLett.100.118703.

URL https://link.aps.org/doi/10.1103/PhysRevLett.100.118703

[80] Y. Xiang, W. Pan, H. Jiang, Y. Zhu, H. Li, Measuring software modularity based on

software networks, Entropy 21 (4) (2019) 344. doi:10.3390/e21040344.

URL https://www.mdpi.com/1099-4300/21/4/344

[81] B. Mitchell, S. Mancoridis, On the automatic modularization of software systems using

the bunch tool, IEEE Transactions on Software Engineering 32 (2006) 193–208. doi:

10.1109/TSE.2006.31.

URL http://ieeexplore.ieee.org/document/1610610/

[82] M. W. Mkaouer, M. Kessentini, S. Bechikh, M. O Cinnéide, K. Deb, On the use

of many quality attributes for software refactoring: a many-objective search-based

software engineering approach, Empirical Software Engineering 21 (6) (2016) 2503–2545.

doi:10.1007/s10664-015-9414-4.

URL http://link.springer.com/10.1007/s10664-015-9414-4

[83] M. Mohan, D. Greer, Using a many-objective approach to investigate automated refactor-

ing, Information and Software Technology 112 (2019) 83–101. doi:10.1016/j.infsof.

51

http://ieeexplore.ieee.org/document/8330192/
http://ieeexplore.ieee.org/document/8330192/
https://doi.org/10.1109/SANER.2018.8330192
https://doi.org/10.1109/SANER.2018.8330192
http://ieeexplore.ieee.org/document/8330192/
http://link.springer.com/10.1007/978-3-319-69926-4_46
https://doi.org/10.1007/978-3-319-69926-4_46
http://link.springer.com/10.1007/978-3-319-69926-4_46
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://link.aps.org/doi/10.1103/PhysRevLett.100.118703
https://doi.org/10.1103/PhysRevLett.100.118703
https://link.aps.org/doi/10.1103/PhysRevLett.100.118703
https://www.mdpi.com/1099-4300/21/4/344
https://www.mdpi.com/1099-4300/21/4/344
https://doi.org/10.3390/e21040344
https://www.mdpi.com/1099-4300/21/4/344
http://ieeexplore.ieee.org/document/1610610/
http://ieeexplore.ieee.org/document/1610610/
https://doi.org/10.1109/TSE.2006.31
https://doi.org/10.1109/TSE.2006.31
http://ieeexplore.ieee.org/document/1610610/
http://link.springer.com/10.1007/s10664-015-9414-4
http://link.springer.com/10.1007/s10664-015-9414-4
http://link.springer.com/10.1007/s10664-015-9414-4
https://doi.org/10.1007/s10664-015-9414-4
http://link.springer.com/10.1007/s10664-015-9414-4
https://linkinghub.elsevier.com/retrieve/pii/S0950584919300916
https://linkinghub.elsevier.com/retrieve/pii/S0950584919300916
https://doi.org/10.1016/j.infsof.2019.04.009
https://doi.org/10.1016/j.infsof.2019.04.009

2019.04.009.

URL https://linkinghub.elsevier.com/retrieve/pii/S0950584919300916

52

https://doi.org/10.1016/j.infsof.2019.04.009
https://doi.org/10.1016/j.infsof.2019.04.009
https://linkinghub.elsevier.com/retrieve/pii/S0950584919300916

	1 Introduction
	2 Related work
	3 Methodology
	3.1 Testability formal definition
	3.2 Testability prediction
	3.3 Metrics computation
	3.3.1 Dynamic metrics
	3.3.2 Static metrics
	3.3.3 Systematic metrics

	3.4 Dataset preparation
	3.4.1 Data representation
	3.4.2 Data preprocessing

	3.5 Prediction models
	3.5.1 Learning algorithms
	3.5.2 Estimation algorithm

	3.6 Implemented tool

	4 Experiments and evaluations
	4.1 Experimentation setup
	4.2 Prediction models evaluation
	4.3 Sub-metrics evaluation
	4.4 Influential testability metrics
	4.5 Testability improvement
	4.6 Evaluating other quality attributes

	5 Threats to validity
	6 Conclusion

