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An ensemble of surrogate models with high robustness and accuracy can effectively avoid the difficult choice of surrogate model.
However, most of the existing ensembles of surrogate models are constructed with static sampling methods. In this paper, we
propose an ensemble of adaptive surrogate models by applying adaptive sampling strategy based on expected local errors. In the
proposed method, local error expectations of the surrogate models are calculated. 0en according to local error expectations, the
new sample points are added within the dominating radius of the samples. Constructed by the RBF and Kriging models, the
ensemble of adaptive surrogate models is proposed by combining the adaptive sampling strategy. 0e benchmark test functions
and an application problem that deals with driving arm base of palletizing robot show that the proposed method can effectively
improve the global and local prediction accuracy of the surrogate model.

1. Introduction

In the engineering design problem, computer simulation is
usually applied to replace the real physics experiments. For
complex engineering problems, sometimes the performance
function is implicit, or due to cost and time limit, the
surrogate model is often applied to approximate the real
physical model. Commonly used surrogate models mainly
include Kriging [1], artificial neural network [2], radial basis
function (RBF) [3], support vector regression(SVR) [4], and
polynomial response surface(PRS) [5].

When surrogate model is applied, how to find a suitable
surrogate model is a difficult task. In order to improve the
adaptability of the surrogate model, a reasonable choice is to
use a linear weighted combination of different surrogate
models, that is, an ensemble of surrogate models. Compared
with the single surrogate model, an ensemble of surrogate
models can save a lot of time wasted in screening the sur-
rogate models. Many scholars have conducted in-depth
research on it and have obtained many good achievements.
Huang [6] found that the ensemble of surrogate models has
higher prediction accuracy than the single surrogate model.

Yan [7] proposed a new weight function construction
method, which has the same accuracy as the optimal sub-
model and can improve the approximation of the true re-
sponse distribution. Lu [8] found that the multisurrogate
model has better optimization results than the single sur-
rogate model’s. Pan [9] applied the ensemble of surrogate
models to the lightweight design of the car body, and the
results achieved a better optimization effect. Liu [10]
established the ensemble of surrogate models to solve the
structure optimization of car parts. Xing [11] assigned
weights to three single surrogate models by using the
adaptive metropolis-Markov chain Monte Carlo method.
Yin [12] compared the application of a single surrogate
model and an ensemble of surrogate models in groundwater
restoration design optimization problems, and the results
showed that the ensemble of surrogate models is more
robust. Li [13] proposed a surrogate-assisted particle swarm
algorithm, which can effectively balance the global search
and local search. Donncha [14] successfully used the en-
semble of surrogate models to improve the forecasting
system with significant effects. Ouyang [15] used the analysis
of variance method to determine the weights of ensemble of
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surrogate models. 0e comparison results show that the
proposed method can not only improve the prediction
performance of surrogate model, but also obtain a reliable
solution. Chen [16] presented a new ensemble model which
combines the advantages of global and local measures. 0e
results show that the proposed ensemble model has satis-
factory robustness and accuracy. Zhang [17] proposed a
unified ensemble of surrogates with global and local mea-
sures for global metamodeling. It is concluded that the
proposed model has superior accuracy while keeping
comparable robustness and efficiency.

Although some progress has been made in the research of
the ensemble of surrogate models, most of the current methods
for constructing the ensemble of surrogate models are sta-
tionary sampling. 0e problem with stationary sampling is that,
in order to obtain an ensemble of surrogate models that meets
the accuracy requirements, the sample size must be large
enough. Adaptive sampling can obtain new samples that benefit
the quality of the surrogate model, which can minimize the total
sample size. However, the current adaptive sampling is often
applied for a single surrogate model [18–21]. Only a few
scholars combine the adaptive sampling strategy with the en-
semble of surrogate models [22, 23]. 0e remainder of this
paper is organized as follows. Section 2 briefly reviews the main
steps to establish the ensemble of surrogate models. In Section 3,
the ensemble of surrogate models using adaptive sampling
strategy based on local error expectations is described. 0e
proposed method is verified by numerical examples and
compared with the three classical ensembles of surrogate
models in Section 4. Section 5 applies the proposed method to
the engineering design problem of driving arm base of pal-
letizing robot. Finally, the conclusions are given.

2. Establishment of the Ensemble of
Surrogate Models

0ere are three main steps to establish the ensemble of
surrogate models:

(1) Design of experiment: the experiment design
methods are applied to determine the spatial dis-
tribution of sample points. Experiment design
methods mainly include Central Composite Designs
(CCDs) [24], Orthogonal Design [25], and Latin
Hypercube Design (LHD) [26]. LHD is the most
popular sampling method due to good spatial uni-
formity. 0e experiment design method used in this
paper is also LHD.

(2) Establishment of the ensemble of surrogate models:
the surrogate models can be divided into two cate-
gories. One is interpolation methods, such as RBF
and Kriging. For these methods, the prediction er-
rors of the sample points are zeroes, which has good
unbiasedness. 0e other is the noninterpolation
methods, such as PRS and SVR. 0e non-
interpolation methods have certain fitting capabil-
ities, but the surrogate models do not go through all
sample points. 0erefore, enough sample points are
needed to ensure the high accuracy of the surrogate

models, which has extremely high uncertainty. In
view of the advantages and disadvantages of different
surrogate models, the most commonly used surro-
gate models are the RBF model and the Kriging
model. In this paper, these two surrogate models are
combined to establish the ensemble of surrogate
models. 0e expression of the ensemble of surrogate
models is as follows [27]:

ŷe(x) �∑N
i�1

ωiŷi(x),∑N
i�1

ωi � 1. (1)

where y
⌢
e is the predicted response value of the

ensemble of surrogate models andN is the number of
surrogate models. ωi is the ith weight coefficient. ŷi is
the predicted response value of the ith surrogate
model. Generally speaking, the higher the prediction
accuracy, the larger the weight coefficient of the
corresponding surrogate model.

(3) Accuracy verification: accuracy verification of sur-
rogate model mainly includes two aspects: global
accuracy and local accuracy. root mean square error
(RMSE) [28] and coefficient of determination (R2)
[29] are two main global accuracy evaluation
methods. 0e corresponding expressions are as
follows:

RMSE �

������������
1

n
∑n
i�1

yi − ŷi( )2
√√

,

R2
� 1 −

∑ni�1 yi − ŷi( )2∑ni�1 yi − y)
2,(

(2)

where yi is the actual response value of the ith test
sample and ŷi is the predicted response value of the
surrogate model of the ith test sample. y is the mean
value of the actual response value, and n is the size of
test sample points. For RMSE, the smaller the value, the
higher the global prediction accuracy. 0e range of R2 is
not greater than 1. 0e value of R2 can be negative if the
fitting quality of the surrogate model is extremely low.
0e closer the value ofR2 to 1, the higher the accuracy of
the global approximation of the surrogate model. Al-
though RMSE can evaluate the prediction accuracy of
the surrogate model, the magnitude of the specific
problem greatly affects the value of RMSE, which is not
as intuitive and easy to understand as R2. 0e global
accuracy evaluation method applied in this paper is the
coefficient of determination R2.

0e local prediction accuracy evaluation method is
maximum absolute error (MAE). 0e expression of MAE is
as follows:

MAE � max yi − ŷi|.
∣∣∣∣ (3)

Similar to RMSE, the smaller the MAE, the higher the
local prediction accuracy of the surrogate model. In this
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paper, MAE is also used to evaluate the local prediction
accuracy of the surrogate model.

3. The Ensemble of Adaptive Surrogate Models
Based on Local Error Expectations

0e existing adaptive sampling strategy of sample points is
mainly for a specific surrogate model, which has poor
versatility. In addition, due to the inconsistency of the
existing adaptive sampling strategies, it will be very com-
plicated to combine the ensemble of surrogate models with
the adaptive sampling strategy. In this section, a universal
adaptive sampling strategy based on local errors is proposed.
By combining the new adaptive sampling strategy, the
method to construct the ensemble of surrogate models is
proposed.

3.1. Adaptive Sampling Based on Local Error Expectations.
Since Kriging and RBF models usually can provide good
accuracy for fitting highly nonlinear behaviors, so these two
surrogate models are used in general engineering problems.
At present, the most commonly used adaptive sampling
method is the maximin distance approach proposed by
Johnson [30]. Jin and Chen [31] made corresponding im-
provements and proposed the Maximin Scaled Distance
Approach. In this paper, we also propose a universal
adaptive sampling strategy based on the local error expec-
tations named LEE strategy for different surrogate models
and it is proposed to serve the construction of the ensemble
of adaptive surrogate models. 0e process is shown in
Figure 1.

0e following are main steps of the LEE strategy:

(1) Build an initial surrogate model. First, LHD is used
to obtain the initial sample points and obtain their
response values. Since high accuracy is not required
at the beginning of sampling, for different dimen-
sional surrogate models, the initial number of sample
points can be 5nd, 10nd, and 20nd (nd is the number
of design variables).

(2) Calculate the expected value E[AE] of the local error.
Use the existing sample points and their response
values to construct a surrogate model, and use cross-
validation error method (LOO-leave one method) to
obtain the local error of each point. 0e local error of
ith sample point is evaluated by the absolute error
AEi � |ŷi − yi|. 0en the local error expectation E
AE] can be obtained by the following expression:

E[AE] �
∑ni�1 AEi

n
. (4)

By using cross-validation error method, each sample
point serves as a test point, and the other sample
points serve as the sample points that constitute the
surrogate model. When each sample point serves as
the test point, it can reflect its importance for
modeling and the uncertainty around the sample
point’s location. 0e absolute error AEi can reflect

the uncertainty around this location, and the ex-
pected absolute error E[AE] of all sample points can
reflect the uncertainty of the overall sample points.

(3) Calculate the dominating radius of the sample
points. Since the initial sample points determined by
LHD have certain uniformity, the same radius can be
set for each sample point. n sample points can divide
the design space into n− 1 part. In order to ensure
that the radius of each sample point does not in-
tersect as much as possible, we propose the concept
of the dominating radius of the sample point. Rj is
the dominating radius of the jth dimension

Getinitial sample points
by using Latin hypercube

sampling

Calculate the response
values of the real model

corresponding to the
sample points

Database

Construct the surrogate
model

Calculate values of
surrogate model’s
AEi, E[AE], R2

R2 > η ?

Add sample
points wherethe
existing points’
AEi > E[AE]

The final
surrogate model

Yes

No

Save

Save

Extract

Figure 1: 0e adaptive sampling process based on local error
expectations.
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coordinate of the sample point; the expression is as
follows:

Rj �
xjmax − xjmin

∣∣∣∣∣ ∣∣∣∣∣
n − 1

, j � 1, 2, . . . , nd( ), (5)

where nd is the size of the dimension and xjmax and
xjmin are the upper and lower bounds of the jth
dimension. 0en, R � (R1, R2, . . . , Rnd) is domi-
nating radius of each sample point.

(4) Obtain new sample points. When AEi> E[AE], the
prediction uncertainty near ith sample point is
greater than the average prediction uncertainty of the
existing sample points. It means the degree of
nonlinearity near ith sample point is relatively large.
So a sample point is randomly added within the
dominating radius of ith sample point with equal
probability. In order to avoid the added sample point
being too close to the existing sample points, the
sample point that meets the following condition is
not added to the sample database:

X∗(j) − Xclosest(j)( )∣∣∣∣∣ ∣∣∣∣∣<Rj10
, j � 1, 2, . . . , nd( ), (6)

whereX∗ stands for the point to be added andXclosest

represents the sample point closest to point X∗.
Formula (6) means that if the sample points X∗ and
Xclosest are too close, they will influence the condition
of the correlation matrix of the surrogate model, so
the added sample point should be invalid.

(5) If the value of R2 is greater than the preset value η, the
final surrogate model is obtained; otherwise update
the surrogate model. 0e new acquired sample
points are added to the sample database. 0e cor-
responding response values of these new sample
points are calculated. 0en the surrogate model is
updated according to the current database of sample
points. Calculate the determination coefficient R2. If
the value of R2 is greater than the preset value η, the
adaptive sampling process ends; otherwise, return to
step 2.

In order to illustrate the feasibility of LEE strategy, the
one-dimensional test function in [32] is selected and its
expression is

f(x) �(6x − 2)2 sin(12x − 4), x ∈ [0, 1]. (7)

Figures 2–4 are initial Kriging model, the absolute errors,
and the updated Kriging model. Figure 2 shows that the
overall prediction accuracy of the initial Kriging surrogate
model is low, and the local errors near point 5 and point 6 are
very large. It can be seen from Figure 3 that errors of sample
points 5 and 6 of the initial Kriging model exceed E[AE], so
random sample points are added in the dominating radius of
points 5 and 6. It can be seen from Figure 4 that the added
Kriging surrogate model has higher prediction accuracy.
After adding the sample points, the prediction error in this
area is significantly reduced, and the prediction accuracy is

higher, which proves the effectiveness and feasibility of
adaptive sampling based on LEE strategy.

In order to prove the versatility of LEE strategy for
different surrogate models, the RBF surrogate model is also
constructed based on the existing sample points and their
response values. Figures 5–7 are initial RBF model, the
absolute errors, and the updated RBF model. It can be seen
from Figure 5 that the overall prediction accuracy of the
initial RBF surrogate model is low, and the local errors near
points 1 and 6 are the largest. It can be seen from Figure 6
that local errors of sample points 1 and 6 of the initial RBF
model exceed E[AE], so random sample points are added in
the dominating radius of sample points 1 and 6. It can be
seen from Figure 7 that the overall prediction accuracy of
updated RBF surrogate model with two new sample points
has been greatly improved, which further proves the fea-
sibility and versatility of adaptive sampling based on LEE
strategy.

0e proposed LEE strategy is also compared with an-
other adaptive sampling strategy called the Maximin Scaled
Distance Approach (MSDA) [31] through the classic test
functions. 0e specific information of the test functions is
shown in Table 1.

0e initial Kriging and RBF surrogate models are
established, respectively, according to a certain number of
initial sample points. 0e proposed LEE strategy and MSDA
are applied to improve the accuracy of surrogate models. 0e
convergence condition is R2> 0.8. Comparison results of
Kriging and RBF surrogate models are listed in Table 2.

It can be seen from Table 2 that when the numbers of
initial sample points of the two methods are the same, the
numbers of total sample points used by LEE strategy are less
than MSDA’s. At the same time, except for CN function, the
final values of R2 of the LEE strategy are greater than those of
the MSDA in most functions, which means that surrogate
models constructed by LEE strategy can achieve higher
prediction accuracy than those constructed by MSDA.

3.2. ,e Ensemble of Adaptive Surrogate Models. In this
section we construct the ensemble of surrogate models with
LEE strategy. 0e flowchart is shown in Figure 8.

0e main steps are as follows:

(1) Build Kriging and RBF surrogate models. Existing
researches [8–12] prove that, in most cases, inter-
polation type (Kriging and RBF) surrogate models
are more suitable for engineering problems. 0ere-
fore, this paper chooses Kriging and RBF models to
form the ensemble of surrogate models. Construct
Kriging and RBF models by using the initial sample
points. 0en, obtain the predicted error sum of
square (PRESS) [33], MAE, and R2 values of Kriging
and RBF models by applying CV verification method
(LOO-leave one method). 0e absolute errors (AEs)
of each sample point of Kriging and RBF models are
calculated. Since Forrester [34] has already proved
that the surrogate model has better predictive ability
when the coefficient of determination R2 is greater
than 0.8, we use R2> 0.8 as convergence conditions.
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(2) Obtain new sample points. 0e new sample points are
generated by applying adaptive sampling method based
on LEE strategy. 0e sample database is updated.

(3) Update the Kriging and the RBF models. Calculate the
true response values of the newly added sample points
and reconstruct the Kriging and the RBF models. As
long as the R2 of one of the two surrogate models is
greater than 0.8, the operation of adding sample points
is ended, and the final Kriging model and RBF model
are obtained. Otherwise return to step 2.

(4) Calculate the weight coefficients of the Kriging and
the RBF models and get the final ensemble of
adaptive surrogate models. Cross validation (CV)
[35] is performed to obtain the respective PRESS
values of Kriging and RBF models. When there are n
sample points in the database, all sample points
except the ith point are used to construct the single

surrogate model, and the ith point is used as a test
point. 0e prediction error of the ith sample point is

ei � yi − ŷ− i, (8)

where yi is the true response value of the ith sample point
and ŷ− i is the predicted response value of the ith sample
point in the single surrogate model composed of all sample
points except ith sample point. 0e prediction sum of
squares is the sum of the prediction errors of all sample
points, as shown in the following formula:

PRESS �∑n
i�1

e2
i . (9)

0e weight coefficient corresponding to each single
surrogate model is calculated by the inverse proportional

Table 1: Test function expression.

Test function Dimension Test function expression

Branin (BN) 2
f(x) � (x2 − (5.1/4π2)x2

1 + (5/π)x1 − 6)2 + 10(1 − (1/8π))cos(x1) + 10
x1 ∈ [− 5, 10], x2 ∈ [0, 15]

Hartmann3 (H3) 3

f(x) � − ∑4
i�1 αi exp(− ∑3

j�1 Aij(xj − Pij)
2)

α � (1.0, 1.2, 3.0, 3.2)T

A �

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

 

P � 10− 4

3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

 
xi ∈ [0, 1]

Colville (CV) 4

f(x) � 100(x2
1 − x2)

2
+ (x1 − 1)2 + (x3 − 1)2 + 90(x2

3 − x4)
2

+10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1)

xi ∈ [− 10, 10], i � 1, 2

Six-Hump Camel (SHC) 2
f(x) � (4 − 2.1x2

1 + (x
4
1/3))x2

1 + x1x2 + (− 4 + 4x2
2)x

2
2

x1 ∈ [− 3, 3], x2 ∈ [− 2, 2]

Table 2: Comparison results of Kriging surrogate model.

Test
function

Approach
0e number of initial

samples

Kriging model RBF model

0e number of total
samples

Final value of
R2

0e number of total
samples

Final value of
R2

BN
LEE

10
18 0.946 15 0.908

MSDA 27 0.899 27 0.873

H3
LEE

15
26 0.896 35 0.902

MSDA 34 0.837 39 0.879

CV
LEE

20
29 0.909 30 0.934

MSDA 44 0.943 41 0.901

SHC
LEE

10
25 0.920 21 0.941

MSDA 36 0.883 29 0.866
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averaging method, and the weight coefficient calculation
formula is

ωi �
1/Pi( )∑Nj�1 1/Pj( ), (10)

where Pi is the PRESS value at the ith sample point. In this
paper, N is equal to 2. 0en the final ensemble of adaptive

surrogate models is obtained by linearly weighting each
surrogate model.

4. Numerical Example Analysis

In order to verify the versatility and effectiveness of the
ensemble of adaptive surrogate models based on local error
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Figure 8: 0e construction of the ensemble of adaptive surrogate model based on LEE strategy.
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expectations, we compare the proposed method (ensemble
of adaptive surrogate model, EOASM) with three typical
ensemble of surrogate model construction methods: PRESS
method, BestPRESS method, and PWS (PRESS Weighted
Surrogate) method [36].

Among the three most widely used methods for con-
structing an ensemble of surrogate model, the most classic
one is to use PRESS as a measure of the weight coefficient
calculation. If the PRESS value of a certain surrogate model
is larger, the weight coefficient is smaller, also known as an
inverse proportional averaging method, and its weight co-
efficient calculation formula is

ωi �
1/Pi( )∑Nj�1 1/Pj( ). (11)

0e BestPRESS method selects the single surrogate
model with the smallest PRESS value as the final surrogate
model, which is essentially a single surrogate model. An-
other method is the heuristic calculation weight coefficient
algorithm proposed by Goel [36], and its calculation formula
is

ωi �
ω∗i∑nj�1 ω
∗
j

, (12)

where ω∗i � (Ei + αEavg)
β and Eavg � (∑nj�1 Ej)/n. Ei is the

PRESS of the ith surrogate model. 0e recommended pa-
rameter values are α � 0.05, β � − 1.

4.1. Benchmark Functions. In this paper, six benchmark
functions from low dimension to high dimension are se-
lected. 0e information of benchmark functions is shown in
Table 3.

0e Branin, Hartmann-3, and Hartmann-4 functions are
low-dimensional. Latin hypercube sampling with 5n sample
points is enough, which meet the accuracy requirements.
Since the Hartmann-6, Styblinski-Tang8, and Styblinski-
Tang10 are high dimensional, the Latin hypercube sampling
with 20n sample points is used.

4.2. ,e Analysis of Global Prediction Accuracy. 0e global
prediction accuracies of different ensembles of surrogate
models are compared. 0e total number of samples is
recorded when the EOASM method reaches the convergence
condition. For the other three ensembles of surrogate
models constructed by the PRESS method, BestPRESS
method, and PWS method, the Latin hypercube sampling
method is used to generate the same total sample size. So the
number of sample points in the four methods is the same.
After 20 comparative experiments, the average values of the
determination of coefficient R2 of each ensemble of surro-
gate models are shown in Table 4.

It can be seen from Table 4 that when the total number of
sample points is the same, the prediction accuracy of the
ensemble of surrogate model constructed by the EOASM
method is the highest. For example, for the Branin function,
the average value of determination coefficient R2 of EOASM

is 0.9446. Among the other three ensembles of surrogate
models, the PRESS method has the largest average value of
R2, which is much lower than that of the EOASM method.
0e results of the other test functions are similar to the
Branin function.

4.3.,eAnalysis ofLocalPredictionAccuracy. 0e maximum
absolute error (MAE) is used to evaluate the local accuracy.
0e maximum absolute error of the ensemble of surrogate
model constructed by each method is compared when the
number of sample points is the same. Table 5 shows the
mean values of MAE of different ensembles of surrogate
models.

It can be seen from 6 benchmark functions that EOASM
method has the smallest average value of the MAE among
four ensembles of surrogate models, which means that the
proposed method has the highest predict accuracy among
four methods.

4.4. Robustness Analysis. Robustness is an important indi-
cator for evaluating surrogate models. 0e robustness refers
to the insensitivity of the prediction accuracy of the sur-
rogate model to random sampling of sample points. In order
to compare the robustness of each surrogate model intui-
tively, 20 sampling experiments are performed for each
benchmark function. 0e distribution results of the deter-
mination coefficient R2 are presented in box plot [37], which
are shown in Figure 9.

In Figure 9, the box length indicates whether the sur-
rogate model’s determination coefficient R2 fluctuates
greatly. 0e smaller the box length, the stronger the ro-
bustness of the surrogate model. It can be clearly seen that
the box length of the ensemble of surrogate model con-
structed by the EOASM method is the shortest in each
benchmark function, which indicates the EOASM method
has the strongest robustness.

5. Engineering Application

In the design of the palletizing robot, the design of the
driving arm base plays a key role. 0e overall assembly of the
palletizing robot is shown in Figure 10.

0e driving arm base bears large load. When it is as-
sembled with the boom, it will deform to a certain extent,
which will cause strain and stress. However, these physical
quantities are difficult to express using explicit functions. It
is often necessary to obtain their data through a large
number of simulation tests. 0e specific material properties
are shown in Table 6.

0e structure of the driving arm base is shown in
Figure 11. Considering the assembly relationship of each
part, four nonassembly dimensions are selected as design
variables, which are shown in Table 7. When the force
and torque of the driving arm base reach the maximum,
the generated stress is the largest. 0e fatigue damage is
more likely to be caused. Power is carried out through
UG software simulation to obtain the maximum force
and torque of the assembly hole of the driving arm base.
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0e curve of the force and torque with time is shown in
Figure 12. It can be seen that, at 3 seconds, the driving
arm base bears the maximum force and the maximum
torque.

Since the maximum stress is difficult to calculate directly,
it is selected as the object function, and its true response
value is obtained by simulation with Ansys finite element
software, as shown in Figure 13.

Table 4: Mean values of R2.

Benchmark test function Total sample PRESS BestPRESS PWS EOASM

Branin 15 0.7351 0.7089 0.7364 0.9446
Hartmann-3 23 0.6934 0.6643 0.6935 0.9007
Hartmann-4 30 0.6549 0.5847 0.6547 0.9313
Hartmann-6 189 0.6884 0.6612 0.6883 0.9797
Styblinski-Tang8 240 0.4310 0.3903 0.4413 0.9514
Styblinski-Tang10 299 0.2931 0.2588 0.2931 0.9624

Table 3: Test function expression.

Test function expression Dimension Test function expression

Branin 2
f(x) � (x2 − (5.1/4π2)x2

1 + (5/π)x1 − 6)2 + 10(1 − (1/8π))cos(x1) + 10
x1 ∈ [− 5, 10], x2 ∈ [0, 15]

Hartmann-3 3

f(x) � − ∑4
i�1 αi exp(− ∑3

j�1 Aij(xj − Pij)
2
)

α � (1.0, 1.2, 3.0, 3.2)T

A �

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

 

P � 10− 4

3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

 
xi ∈ [0, 1]

Hartmann-4 4

f(x) � (1/0.839)[1.1 − ∑4
i�1 αi exp(− ∑4

j�1 Aij(xj − Pij)
2)]

|α � (1.0, 1.2, 3.0, 3.2)T

A �

10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 

P � 10− 4

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

 
xi ∈ [0, 1]

Hartmann-6 6

f(x) � − ∑4
i�1 αi exp(− ∑6

j�1 Aij(xj − Pij)
2)

α � (1.0, 1.2, 3.0, 3.2)T

A �

10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 

P � 10− 4

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

 
xi ∈ [0, 1]

Styblinski-Tang8 8 f(x) � (1/2)∑8
i�1(x

4
i − 16x2

i + 5xi), xi ∈ [− 5, 5]
Styblinski-Tang10 10 f(x) � (1/2)∑10

i�1(x
4
i − 16x2

i + 5xi), xi ∈ [− 5, 5]
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Figure 9: R2 box diagram of the ensembles of surrogate models. (a) Branin function, (b) Hartmann-3 function, (c) Hartmann-4 function,
(d) Hartmann-6 function, (e) Styblinski-Tang8 function, and (f) Styblinski-Tang10 function.

Table 5: Mean values of MAE.

Benchmark test function Total sample PRESS BestPRESS PWS EOASM

Branin 15 108.8272 83.2561 108.7975 38.8241
Hartmann-3 23 1.2506 1.1722 1.2516 0.9772
Hartmann-4 30 2.2512 2.0696 2.2534 0.7489
Hartmann-6 189 0.4521 0.6021 0.4524 0.1578
Styblinski-Tang8 240 370.6343 331.6834 370.5411 91.3723
Styblinski-Tang10 299 330.5281 308.0860 330.7615 76.8565
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0e proposed method in this paper is used to construct
the ensemble of surrogate model of maximum stress. 0e
Latin hypercube sampling is initially adopted. 0e number
of initial sample points is 10nd, which is 40 sample points.

0e values of global accuracy evaluation index R2 and the
local accuracy evaluation index MAE of surrogate model
constructed by the EOASM method are shown in Table 8. It
can be seen that the number of total sample points after
convergence is 60. 0e CPU of the simulation platform is
Intel Core i5-4590 3.30 GHz, the memory is 16G, and the
operating system is Windows 10. It takes 6 minutes to
perform a static structural simulation. 0e traditional design
requires thousands of simulation experiments to roughly
find the optimal value; optimization based on surrogate
model only requires 60 simulation experiments, which
greatly reduces computational cost of the simulation. 0e

initial value of R2 increases from 0.3822 to 0.8979. 0e global
prediction accuracy is increased by 135%. Meanwhile, the
value of MAE reduces from 4.1565 to 0.5007. 0e local

Wrist axis
Central axis of wrist

Big arm

Flange cover on axle

Chassis rotating turbine box

Box base

Rotating arm
motor

Arm base

Link

Connecting rod
servomotor

Driving arm base

Small electric box

Connecting rod
servo motor

Figure 10: Overall assembly drawing of palletizing robot.

Table 6: Material properties of QT500-7.

Physical quantity Unit Value

Density kg/m3 7×103

Elastic modulus Pa 1.62×1011

Poisson’s ratio — 0.28
Yield strength Pa 3.2×108

Tensile strength Pa 5×108

Shear modulus Pa 6.27×1010

x1

x2x3

x4

Figure 11: Driving arm base of palletizing robot.

Mathematical Problems in Engineering 11



prediction accuracy is significantly improved. In summary,
the EOASM method has good applicability to engineering
problems and can greatly reduce the calculation cost of
physical experiments.

6. Conclusion

(1) 0e adaptive sampling based on LEE strategy can
greatly improve the prediction accuracy of the
surrogate model based on as few sample points as
possible, and it also has strong applicability to dif-
ferent types of surrogate models.

(2) 0e EOASM method based on LEE strategy can
greatly improve the global prediction accuracy, local
prediction accuracy, and the robustness of the en-
semble of surrogate models.

Table 7: Design variables of driving arm base.

Design variables Name Unit Ranges

x1 0ickness of front plate mm 13–18
x2 0ickness of back plate mm 8–13
x3 0ickness of left and right board mm 20–25
x4 0ickness of rib mm 8–13
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Figure 12: 0e force and torque of the driving arm base. (a) 0e force changes with time. (b) 0e torque changes with time.

6.8438 Max

6.0836

5.3234

4.5632

3.003

3.0420

2.2826

1.5224

0.76224

0.0020469 Min

Figure 13: Stress cloud diagram of driving arm base.

Table 8: Prediction accuracy of ensemble of surrogate model
constructed by EOASM method.

Evaluation
perspective

0e initial
samples

0e total
samples

Initial
data

EOASM
data

R2 average
40 60

0.3822 0.8979
MAE average 4.1565 0.5007

12 Mathematical Problems in Engineering



(3) Although the prediction accuracy and robustness of
the ensemble of surrogate models constructed by the
EOASM method have been improved to some ex-
tent, it still has not escaped the high-dimensional
curse of the surrogate model. Under the condition
that the sample size is already large, it is possible that
the accuracy of the surrogate model is extremely low.
0erefore, the high-dimensional problem of the
surrogate model is still a problem to be solved.
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