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Abstract
Machine learning helps construct predictive models in clinical data analysis, predicting stock prices, picture recognition, 
financial modelling, disease prediction, and diagnostics. This paper proposes machine learning ensemble algorithms to 
forecast diabetes. The ensemble combines k-NN, Naive Bayes (Gaussian), Random Forest (RF), Adaboost, and a recently 
designed Light Gradient Boosting Machine. The proposed ensembles inherit detection ability of LightGBM to boost accu-
racy. Under fivefold cross-validation, the proposed ensemble models perform better than other recent models. The k-NN, 
Adaboost, and LightGBM jointly achieve 90.76% detection accuracy. The receiver operating curve analysis shows that k
-NN, RF, and LightGBM successfully solve class imbalance issue of the underlying dataset.

Keywords k-NN · Light GBM (Gradient Boosting Machine) · Naive Bayes (Gaussian) · Random forest · Classifier 
ensemble · Diabetes detection
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k-NN  K-Nearest Neighbors
RF  Random Forest
NB  Naïve Bayes
GBM  Gradient Boosting Machine
SVM  Support Vector Machine
GA  Genetic Algorithm
WOD  Weighted Objective Distance-based
RFG-GCN  Random Forest graph generation-based 

graph convolutional network
SMOTE  Synthetic Minority Over-sampling 

Technique
IS  Instance Selection
FS  Feature Selection

LR  Logistic Regression
LDA  Linear Discriminant Analysis
CART   Classification and Regression Tree
HM-BagMoov  Hierarchical Multi-level classifier Bag-
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voting

ADASYN  Adaptive synthetic
LightGBM  Light Gradient Boosting Machine
GBDT  Gradient Boosting Decision Tree
GOSS  Gradient-based One-Side Sampling
EFB  Exclusive Feature Bundling
Adaboost  Adaptive Boosting
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BMI  Body Mass Index
BP  Blood Pressure
ST  Skin Thickness
DPF  Diabetes Pedigree Function
ROC  Receiver operating characteristic
AUC   Area Under the Curve

1 Introduction

Diabetes is a metabolic condition primarily caused by 
aberrant insulin secretion. In the long run, high amounts 
of glucose (sugar) pose a significant threat to one’s health. 
Insulin shortage is a major contributing factor, as beta cells 
in the pancreas fail to produce enough insulin, causing the 
body to have difficulties managing blood sugar levels (glu-
cose). Type 2 diabetes is common among the majority of 
individuals who have diabetes. One of the names given to 
Type 2 Diabetes is Pima Indians’ Diabetes. Heart, renal, 
and eye problems may result from smoking. About 5.5% of 
the global population has diabetes, and 90% of those with 
diabetes have type 2, and that number is anticipated to climb 
by 48% over the next few years [1, 2]. The presence of dia-
betes can be identified manually or automatically by medical 
professionals. Each of these approaches has advantages and 
disadvantages. Because manual diagnosis does not necessi-
tate a machine-based detection of diabetes, the intervention 
of a specialized medical professional is essential. It has been 
seen that early symptoms of diabetes are often so subtle 
that even a skilled medical practitioner struggles to detect 
them. On the other hand, data mining is now used in many 
fields of science, including medicine. Because of advances 
in artificial intelligence, machine learning and deep learn-
ing techniques, automated detection of diabetes is getting 
popular among medical practitioners [3–6].

The process of determining a patient’s type of diabetes 
involves several different tests, making it one of the most 
challenging tasks faced by medical practitioners. Machine 
learning techniques have made a huge impact on the health-
care business in recent years. Machine learning is exten-
sively used for diabetes mellitus detection [4]. Diabetes can 
be diagnosed manually or automatically by a physician. 
Because manual diagnosis does not rely on a computer-
assisted approach, the physician must rely on his or her train-
ing, speciality and experience. The symptoms of diabetes at 
its initial stage can be so subtle that even a skilled physician 
finds it difficult to identify and diagnose correctly. Although 
a machine learning-based detection of diabetes cannot take 
the place of manual intervention and diagnosis by medical 
practitioners, at least it can be an aid to detect the disease 
before the actual diagnosis starts. As a result, early diagnosis 
can be undertaken before the disease worsen. Many arti-
ficial intelligence-based diabetes detections and prediction 

systems have been proposed. They have their advantages and 
disadvantages. Yuvaraj et al. [7], for example, developed a 
diabetes prediction application that utilized Random For-
est, Decision Tree, and Naive Bayes. It was employed after 
pre-processing the Pima Indian Diabetes dataset (PID). The 
authors selected and extracted features using an information 
gain approach. The random forest technique outperformed 
the other classifiers with a 94% accuracy rate. Similarly, an 
automated system for diabetes detection has also been pro-
posed by Negi et al. [8] with the help of Support Vector 
Machine (SVM). The purpose of this detection approach is 
to present a universal approach as they have tested their sys-
tem on multiple diabetes datasets. One of the datasets they 
tested upon contains 49 clinical information of numerous 
individuals 102,538, 64,419 of which are positive and 38,115 
of which are negative. However, practically it is interesting 
to see the performance of SVM on such a huge subjects base. 
Maniruzzaman et al. [9] classified and predicted diabetes 
using a machine learning paradigm. They classified diabetes 
using a decision tree, naive Bayes, AdaBoost, and random 
forest. They examined data from the National Health and 
Nutrition Examination Survey of diabetes and nondiabetic 
persons in the United States and obtained encouraging find-
ings using the proposed technique. Using SVM and Naive 
Bayes, Tafa et al. [10] proposed an integrated and superior 
model for diabetes prediction. They employed a dataset with 
eight characteristics and 402 patients, 80 of whom had type 
2 diabetes — combining the offered techniques improved 
prediction accuracy to 97.6%.

The proposed work in this article aims to analyze and 
build an ensemble model on the Pima Indians diabetes 
dataset to estimate the risk of developing diabetes for each 
unique observation based on the independent characteristics. 
The objective of this paper is to utilize different machine 
learning classification algorithms and to adopt an ensem-
ble learning approach thereupon. To reduce overfitting in 
models and to improve robustness over a single model, the 
ensemble technique is implemented. Ensemble techniques 
combine multiple individual models and deliver optimized 
prediction results. For creating an ensemble, the classifi-
ers used here are Naïve Bayes (Gaussian) [11], k-Nearest 
Neighbor (k-NN) [12], Random Forest (RF) [13], Adaptive 
Boosting (Adaboost) [14] and a lighter version of Gradient 
Boosting Machine [15] with hyperparameter optimization 
to predict diabetes mellitus at an early stage of life. These 
algorithms are effective in predicting the category of data 
point when labelled data are available, and it helps in seg-
regating vast quantities of data into distinct values, like 0/1, 
True/False, or a pre-defined output label class.

This article is divided into several major sections. Sec-
tion 2 conducts a literature review, highlighting numerous 
significant existing publications on diabetes prediction sys-
tems utilizing various algorithms and models. Section 3 
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contains the data set description and pre-processing steps, 
while Sect.  4 has the study’s essential content, which 
includes the methods and methodology used, as well as the 
proposed ensemble of classifiers. Section 4 also discusses 
the work’s findings and inferences. Finally, the study con-
cludes with a discussion of the paper’s primary findings in 
Sect. 5.

2  Related Works

With the appropriate instance of training and testing, 
machine learning has provided the most support for dis-
ease prediction. Because diabetes cannot be cured, it has a 
negative impact on our health system. Therefore, machine 
learning algorithms can be used to detect diabetes in its ear-
liest stages. Alharbi et al. [16] developed an autonomous 
diabetes prediction model built on top of a Genetic Algo-
rithm (GA)-based feature selection. Diabetes is detected 
with 97.5% using extreme learning machine. Recently, a 
modified version of the Weighted Objective Distance-based 
(WOD) diabetes prediction engine [17] was proposed that 
takes into account the individuals’ personal health status 
[18]. The modified WOD makes use of information gained to 
distinguish positive from negative participants. The WOD-
based approach, on the other hand, is confined to binary 
classification on a tiny dataset. The proposed WOD tech-
nique achieves a detectability rate of 93.22%. A Random 
Forest graph generation-based graph convolutional network 
(RFG-GCN) [19] has been proposed for diabetes mellitus 
detection. The Random Forest generates a graph from the 
structured data using sample correlation, where a 2-layer 
convolutional network classifies the samples to separate 
disease from non-disease instances. Although RFG-GC has 
been used for various clinical diseases, it shows satisfac-
tory results in diabetes detection. Type 2 Diabetes mellitus 
has been detected in recent past using Chi-Squared test and 
binary logistic regression [20]. During the preprocessing 
stage, the Synthetic Minority Over-sampling Technique 
(SMOTE) helps to balance the underlying data. A coopera-
tive co-evolution framework was also suggested as Clinical 
Decision Support System that handles Feature Selection (FS) 
and Instance Selection (IS) as separate subproblems [21]. 
The wrapper approach is used for both feature and instance 
selection in this study. The reduced dataset was utilized for 
training a random forest classifier, which aided clinical deci-
sion-making more effectively. Mishra et al. [22] described a 
novel hybrid attribute optimization technique for removing 
extraneous data and generating a trustworthy dataset of dia-
betic features that can be used for more accurate prediction 
of diabetes. Additionally, the hybrid attribute optimization 
technique along with neural network successfully estimates 
the presence of type 2 diabetes in individuals. Additionally, 

their suggested approach is evaluated on 7 distinct disease 
datasets to determine the capability of the concerned detec-
tor. The proposed model’s performance measures are evalu-
ated against tenfold cross-validation. Their proposed model 
beat all other comparable research in terms of classification 
accuracy. The suggested model’s mean precision and recall 
were 91% and 89.8%, respectively. Thus, the technique may 
be beneficial for healthcare practitioners in identifying the 
existence of Diabetes in patients with high accuracy.

There has been a lot of work done to improve diabetes 
diagnosis and treatment, but the classification of diabetes is 
still a problem. To increase the performance and accuracy 
of the model, researchers have taken an ensemble approach 
by combining individual algorithms/models into one hybrid 
model [23]. Recently, Ismail et al. [24] explored 35 different 
classifiers and presented a Bagging-based Logistic Regres-
sion (Bagging-LR) approach for the prediction of Type-2 
diabetes. The Bagging-LR proved to be the ideal detector, 
where it took only 0.016 min to detect diabetes mellitus. 
Bagging-LR employed only 5 prominent features to boost 
the classification accuracy up to 99%. Random Forest (RF) 
along with Logistic Regression (LR) and Naïve Bayes (NB) 
proved to be an effective ensemble, where the classifica-
tion strategy was decided by soft voting [25]. The LR, RF, 
and NB ensemble proved to be a better choice compared 
to AdaBoost and many other bagging approaches. Similar 
to the soft voting approach, the max voting approach has 
been used in an ensemble of several classifiers [26]. The 
max voting-based ensemble also reveals satisfactory detec-
tion accuracy of 77.83%. Multiple classifiers ensemble was 
also presented, where the LR, Linear Discriminant Analysis 
(LDA), k-NN, Classification and Regression Tree (CART), 
NB and SVM were combined to form the ensemble [27]. The 
suggested ensemble draws a detection accuracy of 82.81%. 
A Quantum-inspired ensemble model has been proposed in 
the recent past for multi-attribute and multi-agent decision 
making [28]. The proposed quantum-inspired model yields 
90.5% detection accuracy while discriminating between 
diabetic and non-diabetic instances. An evolutionary frame-
work using the stacking-based ensemble approach has been 
proposed, k-NN is used as a meta learner to combine base 
learners [29]. The k-NN based ensemble reveals the highest 
accuracy of 83.8%, with a sensitivity of 96.1%. Similarly, a 
parameter-free greedy ensemble approach has been proposed 
for medical disease classification [30]. For classification, 
the primary function of the ensemble approach is the com-
bination of various rough set filters’ subsets of attributes, 
resulting in an optimal subset of attributes. The greedy-
based approach reveals 74.9% detection accuracy with NB 
as the base learner. Bashir et al. proposed an ensemble tech-
nique known as Hierarchical Multi-level classifiers Bagging 
with Multi-objective optimized voting (HM-BagMoov) for 
disease classification. The proposed HM-BagMoov model 



 International Journal of Computational Intelligence Systems           (2023) 16:14 

1 3

   14  Page 4 of 20

employs multi-objective optimization weighted voting 
ensemble scheme to form the ensemble using seven state-
of-the-art classifiers, where the ensemble technique clas-
sifies the diabetes dataset with 78.21% detection accuracy. 
Diabetic Mellitus can be predicted and diagnosed with the 
help of the Adaboost ensemble learning framework [31]. 
The Adaboost ensemble model employs a decision stump 
as its primary classifier. The model was tested against other 
classifiers to ensure the capability of the system. The Ada-
boost classification model exhibits an accuracy of 84.19%. 
A new model for classifying diabetic patients based on their 
characteristics and medical history has been developed and 
tested [32]. The study used a random committee classifier 

as an ensemble method. The presented ensemble was tested 
on diabetic data using the tenfold cross-validation method, 
where the ensemble yielded an 81% accuracy rate. A dia-
betes mellitus prediction mechanism has been proposed for 
class imbalance datasets with the inherent ability to handle 
missing values [33]. Naïve Bayes plays a prominent role at 
preprocessing stage to handle missing values, and the popu-
lar adaptive synthetic sampling method (ADASYN) counters 
the class imbalance issue. Finally, the diabetic patients are 
detected using the random forest classifier. The combina-
tion of ADASYN and Random Forest classifies the diabetic 
and non-diabetic patients with 87.1% detection accuracy, 
which is 8.5% higher than the traditional random forest. A 

Table 1  Summary of literature review of various ensemble approaches for diabetes detection

Author Methods No of features Validation approach Accuracy (%) Precision (%) Recall (%)

Ismail et al. (2022) [24] K-means feature selection 
and Bagging

(Logistic Regression)

8 Tenfold cross-validation 82.00 n.d n.d

Kumari et al. (2021) [25] Soft voting of Logistic 
Regression, Random Forest 
and Naïve Bayes

8 80% training, 20% testing 79.08 73.13 70.00

Rajendra et al. (2021) [26] Max voting of Logistic 
Regression, Decision Tree, 
Support Vector Machine, 
k-NN and Naïve Bayes

8 Tenfold cross-validation 77.83 n.d n.d

Saxena et al. (2021) [12] Ensemble of multiple clas-
sifiers including decision 
tree, naïve bayes, k-NN, 
Logistic Regression etc

8 75% training, 25% testing 82.81 80.00 60.00

Ishwarya et al. (2021) [28] Classification via Quantum-
inspired classifier configu-
rations

8 70% training, 30% testing 86.00 85.00 88.00

Christo et al. (2020) [21] A cooperative co-evolu-
tion framework and

Random Forest

8 90% training, 10% testing 81.01 73.53 80.65

Syed et al. (2020) [20] Synthetic Minority Over-
sampling Technique

and decision forest

8 Tenfold cross-validation 82.10 77.60 89.00

Singh et al. (2020) [29] Stacking-based evolutionary 
ensemble learning system

8 80% training, 20% testing 83.80 n.d 96.10

Bania et al. (2020) [30] Parameter free greedy 
ensemble approach and 
Random Forest

3 Tenfold cross-validation 73.04 72.30 73.00

Sathurthi et al. (2020) [23] Ensemble of decision tree 
and logistic regression with 
majority voting

8 70% training, 30% testing 74.03 67.14 55.95

Wang et al. (2019) [33] Adaptive synthetic sampling 
for class imbalance and 
Random Forest for clas-
sification

8 5-folds cross-validation 87.10 80.60 85.40

Vijayan et al. (2015) [31] Adaboost ensemble learning 
framework with decision 
stump as primary classifier

8 Tenfold cross-validation n.d n.d 88.40

Ali et al. (2014) [32] Boosting technique in 
ensemble of random com-
mittee classifier

18 Tenfold cross-validation 81.00 81.00 81.00
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summary of literature reviewed pertaining to related works 
is presented in Table 1.

3  Materials and Methods

The materials and methods section starts with explaining 
the proposed methodology, followed by the dataset to be 
used to validate the system. Since the proposed approach is 
based on ensemble methods; therefore, various ensembles 
of classifiers are created, and the ensemble reflecting the 
best result has been proposed as the contribution of this 
article. To create the ensemble, we have explored Ada-
boost, LightGBM, k-NN, Random Forest and Naïve Bayes 
(Gaussian). These classifiers are either decision trees, func-
tions based, or an ensemble itself. A mixture of classifiers 
having varied decision-making approaches is expected to 
provide a better result if these classifiers are used alone 
for the classification task. Moreover, the above-mentioned 
classifiers are frequently used for medical diagnostics, 
which is the main reason for considering in the proposed 
ensemble. Before discussing the proposed ensemble, it is 
wise to explore the shortlisted classifiers to understand 
their inherent classification ability. This will provide scope 
for ascertaining the true capability of the proposed ensem-
ble. All the algorithms discussed in this section assumes 
TR: =

{(

tr11, tr
2
1,…… , trr1

)

,
(

tr12, tr
2
2,…… , trr2

)

,…… ,
(

tr1m, tr
2
m,…… , trrm

)}

, 
a set of training instances with m × r dimension and 
TS: =

{(

ts11, ts
2
1,…… , tsr1

)

,
(

ts12, ts
2
2,…… , tsr2

)

,…… ,
(

ts1n, ts
2
n,…… , tsrn

)}

, 
a set of testing instances with n × r dimension. Both the 
trr and tsr contains the class labels, and all the algorithms 
return the predicted class labels for the testing instances, 
which are expected to be overridden at tsr attribute.

3.1  k‑Nearest Neighbor (k‑NN)

The k-Nearest Neighbor or, in short, k-NN is a supervised 
learning classification algorithm [34]. It is a simple way 
to classify new instances based on similarity measures. In 
k-NN we can have multiple ways of calculating the dis-
tance between two data points to consider which is the 
nearest neighbour. However, the k-NN consumes more 
memory as the training data have to be stored entirely on 
memory. Nevertheless, k-NN is frequently used in medical 
diagnostics, especially in diabetes detection. The working 
principle of k-NN has been presented in Table 2 followed 
by a detailed explanation [35].

The k-NN works on various distance measurement 
schemes. However, in this case, the Euclidean distance 
has been taken into consideration. Each training instance 
of TR has been sorted in ascending order on distance val-
ues realized. Ideally, the class label of the row having a 

short distance is the predicted label of the corresponding 
training instance. But according to k-NN, the k number 
of rows is picked up having short distances to the target 
instance. The k instances having most class labels become 
the predicted label of the target instance.

3.2  Naïve Bayes (Gaussian)

Gaussian Naive Bayes is a simple classification algorithm 
with high functionality and takes less computational time. It 
is a variant of the Naive Bayes algorithm, which is based on 
the Bayes theorem that follows Gaussian or normal distribu-
tion and is used when the features have continuous values. 
In the training phase, instances are segregated based on the 
class labels. The classwise mean and standard deviation are 
estimated. Further, in the testing phase, each data instance of 
the training data is processed by estimating the probability 
density, conditional probability, and posterior probability. 
The probability density helps to verify the normal distribu-
tion of data points; hence, it can be estimated as

Here, �
(
tr1tor

)
 and �

(
tr1tor

)
 represents the standard devia-

tion and mean of all the rows of the training instances esti-
mated during the training phase. Once the probability den-
sity is in hand, the conditional probability of each testing 
instance tsi can be estimated as the traditional Naïve Bayes 
but with probability density.

Finally, the posterior probability is estimated to come 
across the final decision.

It should be noted that the predicted class label for 
any test instance tsi is the class with maximum posterior 
probability.

3.3  Light Gradient Boosting Machine (LightGBM)

Gradient Boosting Decision Tree (GBDT) uses an ensemble 
of several weak decision tree classifiers as a boosting algo-
rithm, thus, having low reliance on the selection of features 
[36]. Decision trees are the foundation for GBDT, where the 
predictions made by each tree in the chain are added up to 
come across the final decision. Throughout the process, a 
new decision tree is created in each step to fit the difference 
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between the current prediction and the ground truth. The 
accuracy, efficiency, and interpretability of GBDT made it a 
popular choice for many researchers [37]. For a training set 
TR =

{(

tr11, tr
2
1,…… , trr1

)

,
(

tr12, tr
2
2,…… , trr2

)

,…… ,
(

tr1m, tr
2
m,…… , trrm

)} 
of size m × r dimensions, where tr is the training instances 
and trr attribute denotes the class labels, then f (TR) is the 
optimization and projected goal. The estimated function then 
f (TR) for minimizing the loss L(trr, f (TR)) would be

and the criteria for iteration of GBDT can be ascertained 
as

Here, k represents the iteration number and hk(TR) repre-
sents the base decision tree on training set TR . Although the 
GBDT classification approach is suitable for small data sets, 
as the number of data sets with many dimensions increases, 
the GBDT approach struggles to produce suitable results 
[38]. This is because GBDT is unable to determine the 

(4)f̂ = argmin
f

E
TR,trr

[
L(trr, f (TR))

]

(5)
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[
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∑
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L
(
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(

TRi
)

+ �hk
(

TRi
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]

optimal splitting point throughout the decision tree learn-
ing process. To overcome the GBDT’s inherent drawbacks, 
an improvised version of the GBDT has been recently pro-
posed. It combines the concept of Gradient-based One-Side 
Sampling (GOSS) with the capability of Exclusive Feature 
Bundling (EFB), popularly referred to as the Light Gradi-
ent Boosting Machine (LightGBM) [39]. The LightGBM is 
another kind of gradient boosting, and light refers to the light 
version, which allegedly makes this framework for gradi-
ent boosting that uses tree-based learning methods faster, 
distributed, high-performance, and efficient. In a gradient 
boosting framework, the trees are constructed sequentially, 
in contrast to a random forest, which constructs a tree for 
each sample. The framework employs a leaf-wise tree 
development algorithm that splits the tree leaf-wise if the 
tree is not balanced. To be precise, the information gain is 
used to determine the split at each node. The GOSS func-
tion in LightGBM determines the splitting point using vari-
ance gain. The GOSS function used in LightGBM finds the 
splitting point with the help of variance gain. The GOSS 
first sort the training instances TR in descending order of 
the absolute gradient values. From the sorted instances, 
top A = � × 100% instances having larger gradients are 
selected. Further, the GOSS function randomly samples 

Table 2  Pseudocode of k-NN algorithm
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B = � × 100% instances from the rest of the instances. The 
samples are boosted further using a constant value 1−a

b
 . 

Finally, the splitting point can be estimated through vari-
ance gains V with the help of a splitting feature j at any point 
p can be estimated as

where Au =
{
tri ∈ A ∶ tr

j

i
≤ p

}
 , Av =

{
tri ∈ A ∶ tr

j

i
> p

}
 , 

Bu =
{
tri ∈ B ∶ tr

j

i
≤ p

}
 , Bv =

{
tri ∈ B ∶ tr

j

i
> p

}
 , gi is the 

subset of g =
{
g1, g2,……… , gn

}
 , the negative gradients 

of the loss function concerning the output of the model. 
Here, 1−a

b
 helps to normalize the sum of the gradients.

3.4  Random Forest

Random Forest (RF) is the best and most adaptable super-
vised machine learning algorithm in the concept of ensemble 
technique and hybrid model for the improvement in per-
formance and prediction accuracy. RF algorithm combines 
many decision trees into an ensemble model using bootstrap-
ping. RF predictions are made on random subsets of fea-
tures and average voting, rather than giving every classifier 
a chance to vote in favour of a single class (Table 3).

3.5  Adaptive Boosting (Adaboost)

Adaboost, the abbreviation for adaptive boosting, is used 
to classify data by pooling the knowledge of many weak 
learners. Adjusting the weights of each instance means that 
instances that have been incorrectly classified will be given 
more weight, while correctly handled instances will be given 
less weight. Adaboost is the boosting technique that employs 
an ensemble of decision trees by default (Table 4). However, 
Adaboost provides flexibility to use many other classifiers 
as weak learners, where boosting is done by averaging the 
outputs [40].

T h e  Ad a b o o s t  a s s u m e s  a  t r a i n i n g  s e t 
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having m instances and r attributes. The rth attributes repre-
sent the class label such that trr ∈ {−1, 1} . If the number of 
weak classifiers is denoted as F =

{
F1,F2,F3,…… ,Fr−1

}
 , 

such that Fk(tr) ∈ {−1, 1} , the loss function can be defined as
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Adaboost as an ensemble principle combines multiple 
classifiers. For j number of learners, the target is to mini-
mize the objective function, which can be represented as

Further, for each training instance, the weight has to be 
updated as

Once the learning process by all the weak learners F  
completes, the final output of Adaboost becomes the linear 
combination of classification output provided by F  . The 
predicted output of Adaboost can be presented as

It should be noted that the number of weak learners F  
is based on the number of attributes in the training data-
set, excluding the class attribute [41]. Since the number of 
attributes in TR is r including the class attributes, therefore 
the total number of weak learners are r − 1.

3.6  The Proposed Ensemble for Diabetes Detection

Using the supervised learning algorithms discussed above, 
various combinations of ensemble methods have been 
trained and tested. The best ensemble evolved has been 
proposed as the diabetes detector. The detection process of 
the ensembles has been presented in Fig. 1, where the blue 
colour blocks indicate training and the pink color blocks 
indicate testing blocks.

The identification of suitable ensemble of classifiers 
has been conducted in four steps, viz., data fold creation, 
ensemble training, ensemble testing and decision making. 
In the first stage, the entire dataset was divided into five 
blocks. For five blocks, five iterations have been made for 
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training and testing of the ensembles, where a single data 
fold is used for testing and the rest of the four folds are 
used for training. Secondly, the k-NN, NB(G), RF, Ada-
boost and LightGBM classifiers are used to prepare nine 
ensemble schemes, viz., k-NN + NB(G), RF + k-NN, k-
NN + Adaboost, LightGBM + k-NN, Adaboost + RF + k-NN, 
LightGBM + k-NN + RF, LightGBM + k-NN + Adaboost, 
LightGBM + k-NN + Adaboost + RF and LightGBM + k-
NN + Adaboost + RF + NB(G). As we have mentioned ear-
lier, each of the ensembles has been trained with four folds 
of data and tested with a single fold of data. The average 
performance of five iterations of training and testing has 
been realized. The entire process of classification has been 
conducted using a voting classifier [42, 43] that combines 

different machine learning classifiers for classification. 
The final decision about any test instance is decided either 
through hard voting or soft voting, where the projected prob-
ability for the underlying classifiers is used to forecast the 
class labels. In our case, the soft voting approach is used 
to obtain the prediction of the ensemble models. For the 
ensembles mentioned here, soft voting can be achieved as –

Here wj is the weight that can be assigned to the jth clas-
sifier and p indicates the predicted probabilities.

(11)ŷ = argmax
i

k∑
j=1

wjpij

Table 3  Pseudocode of Adaboost Random Forest
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It is evident that, combining multiple machine learning 
algorithms can improve the average prediction performance 
by either helping tune one another, generalize, or adapt to 
unknown tasks [44]. However, according to Raschka et al. 
[45] soft voting method enhances the cumulative predictive 
results only if the underlying classifiers are well-calibrated. 
Therefore, in the proposed ensemble utmost care has been 
taken to tune individual classifiers through various param-
eter settings. The settings for the classifiers are presented 
in Table 5.

3.7  Dataset Description

The dataset for this study was collected from the Kaggle 
website. It is originated from the National Institute of Dia-
betes and Digestive and Kidney Diseases’ (NIDD) Pima 
Indian Diabetes Database, which is freely available online. 
There are 768 instances in this collection, eight attrib-
utes, and a class attribute. 500 patients are non-diabetic, 
and 268 patients are diabetic, i.e., 65.1% of the dataset is 
healthy and 34.9 percent is diabetes. All patients in this 
data collection are females aged at least 21 years of Pima 
Indian ancestry. Eight medical predictor factors and one 

Table 4  Pseudocode of Adaboost Ensemble
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Fig. 1  The proposed ensemble diabetes detection module
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outcome variable comprise the datasets. The number of 
pregnancies the patient has had, their BMI, insulin level, 
age, glucose, blood pressure, skin thickness, and diabetes 
pedigree function are all predictor variables [46]. Table 6 
contains a description of the attributes, whereas Table 7 
contains the precise characteristics.

The dataset presented here is mostly cited by numerous 
researchers due to a smaller number of diagnostic meas-
urements. The only shortcoming of this dataset is that it 
contains diagnostic measurements of female subjects only. 
Although we can predict the presence of diabetes for other 

genders also, since clinical measurements in diabetes are 
almost similar among genders.

The dataset discussed here can be further explored 
through feature correlation matrix. We have tried to ascer-
tain correlation between features and the result can be visu-
alized in Fig. 2. According to Fig. 2, the dark color box 
represents the concern features that are more correlated 
than the features pertaining to light color cells. As it can 
be seen very few features are correlated, and most of the 
features are not correlated, therefore any feature selection 
procedure is not essential as a preprocessing task. Hence, 

Table 5  Classifier’s parameters 
and input values

Classifiers Parameters Values

k-Nearest Neighbor (k-NN) n_neighbors 25
Range 1–30

Naïve Bayes (G) var_smoothing 0.000000001
Light Gradient Boosting Machine 

(LightGBM)
Number of iterations 300
Learning rate 0.01–0.4
Number of estimators 100–2000
Number of leaves Sp_randint (6, 50)
Child samples (minimum) Sp_randint(100, 500)
Child weight (minimum) 1e-5 to 1e4
Sub-sample Sp_uniform (loc = 0.20, scale = 0.80)
Maximum depth  – 1 to 7
Column sample by tree Sp_uniform (loc = 0.40, scale = 0.60)
Alpha (reg) 0–100
Lambda (reg) 0–100
Grid search Randomized Search
Early stopping rounds 100

Adaptive Boosting (Adaboost) Number of estimators 50
Rate of learning 0.9
Number of samples 1000
Number of features 8
Base estimator Decision tree

Random Forest Maximum depth 5
Number of estimators 10
Maximum features 1

Table 6  Attribute description of 
the PIMA dataset

Attribute name Attribute description

Age Age of the person (in years)
Pregnancy Number of pregnancies the patient has had/ Occurrence of pregnancy
Glucose The concentration level of plasma glucose noted in 2-h of Oral Glu-

cose Tolerance test
Blood pressure Diastolic blood pressure of individual
Insulin Serum insulin at 2-h interval
BMI Body Mass Index (in Kg/mm2)
Skin thickness Triceps skin folds thickness (in mm)
Diabetes pedigree function It is an indicator of a history of diabetes in the family
Class/outcome Has diabetes or not (0 if non-diabetic, 1 if diabetic)
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we have decided to continue the detection process with the 
current set of features.

3.8  Effectiveness of Chosen Algorithms 
for the PIMA Dataset

The selection of supervised classification algorithms 
discussed in Sect. 3.6 has been undertaken keeping in 
view the dataset size and number of features in hand. A 
similar study has been conducted in recent past pertain-
ing to selection of classifiers on varying datasets, which 
ensures the ideal classifiers specific to dataset size and 
number of features in hand [47]. The study revealed 
that k-Nearest Neighbor (k-NN), Naïve Bayes (Gauss-
ian), Adaptive Boosting (Adaboost) and Random Forest 
(RF) are the leading performer on the similar dataset size 
which we are using in this research work. Additionally, 
we are using LightGBM as an additional boosting clas-
sifier to validate our objective. However, the behavior of 
the aforementioned algorithms for the PIMA dataset is 
still unknown. Although the PIMA dataset contains eight 
features, the most beneficial features for type-2 diabetes 
detection is still unknown. A little attempt has been made 
earlier for identification strength of the features of PIMA 
dataset for a specific classification algorithm [48]. In this 
section an extensive analysis has been conducted for all 
the shortlisted classifiers under study. In order to carry 
out the feature analysis we have evaluated the permuta-
tion importance of each features using ELI5 library [48]. 
The permutation importance score of each feature for each 
classifier is presented in Table 8

In Table 8, the features highlighted with deep green 
color background are most important and the features 
having background color white is least important for the 
concern classifier. In the PIMA dataset the feature Glu-
cose evolved as the most significant feature for all the 
classifiers under study by scoring the highest permutation 
importance score. On the other hand, the Skin Thickness 

parameter is least significant for diabetes detection. Both 
the AdaBoost and LightGBM provide excellent permu-
tation score on 7 features of the PIMA dataset except 
Skin Thickness. The performance score of AdaBoost and 
LightGBM signifies both the classifiers can detect pres-
ence of diabetes with almost all the features of PIMA 
dataset.

The number after the ± indicates how outcome of a clas-
sifier changes from one-reshuffling to the other. The nega-
tive weights reveal that the predictions on the shuffled data 
appears to be more accurate than the actual data. In a nut-
shell, all the five classifiers chosen here are state of the art 
and suitable for diabetes detection using PIMA dataset.

4  Results and Analysis

This section details the suggested diabetes detection 
system’s findings and analysis. Different performance 
metrics are used to evaluate the performance of various 
machine learning algorithms and the suggested ensemble 
approaches. We compare and analyze the performance of 
NB(G), k-NN, LightGBM, RF, and Adaboost using accu-
racy, recall, precision, F1 score, AUC curve, and ROC 
curve. Accuracy is a helpful evaluation metric since it 
quantifies the proportion of correctly diagnosed diabetic 
events to the total number of considered diabetic events. 
However, having an acceptable detection accuracy alone 
may not be sufficient to evaluate the model’s performance, 
as it does not consider incorrectly predicted cases. There-
fore, other performance matrices such as recall, precision, 
and F1 score must be calculated. Precision is defined as 
the number of correctly classified diabetes instances to 
the actual number of diabetic instances. Similarly, recall 
denotes the ratio between the number of correct positive 
results divided by the number of all relevant samples 
present in the data set. Additionally, the F1 score or F1 
measure is the mean of precision and recall harmonically 

Table 7  Characteristics of 
PIMA dataset

Attributes Valid Mean Std deviation Quantiles

Min 25% 50% 75% Max

Pregnancies 768 3.85 3.37 0 1 3 6 17
Glucose 768 121.00 32.00 0 99 117 141 199
Blood Pressure (BP) 768 69.10 19.30 0 62 72 80 122
Skin Thickness (ST) 768 20.50 15.90 0 0 23 32 99
Insulin 768 79.80 115.00 0 0 32 128 846
Body mass Index (BMI) 768 32.00 7.88 0 27.3 32 36.6 67.1
Diabetes Pedigree Function (DPF) 768 0.47 0.33 0.08 0.24 0.37 0.63 2.42
Age 768 33.20 11.80 21 24 29 41 81
Outcome 768 0.35 0.48 0 0 0 1 1
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expressed. The optimal value for Precision, Recall, and 
F1 score is 1. Finally, the Receiver Operating Curve is the 
primary performance parameter discussed in this paper. 
The receiver operating characteristic (ROC) curve is fre-
quently used to solve classification problems at various 
threshold levels. The Area Under the Curve (AUC) illus-
trates the trade-off between true positive and false positive 

rates for each conceivable cut-off value for a test or a set of 
tests. AUC is a measure of performance that is aggregated 
across all possible categorization levels.

Fig. 2  Feature correlation of 
PIMA dataset

Table 8  Permutation importance score of features of PIMA dataset using ELI5 library

Feature Random forest AdaBoost LightGBM Naïve Bayes (G) k-NN

Glucose 0.0885 ± 0.0198 0.1198 ± 0.0198 0.1417 ± 0.0408 0.0760 ± 0.0313 0.1302 ± 0.0452
Age 0.0229 ± 0.0425 0.0490 ± 0.0370 0.0375 ± 0.0212  – 0.0073 ± 0.0141 0.0083 ± 0.0243
Blood pressure 0.0188 ± 0.0106 0.0094 ± 0.0153 0.0094 ± 0.0339  – 0.0010 ± 0.0078  – 0.0073 ± 0.0224
Insulin 0.0031 ± 0.0193 0.0031 ± 0.0051 0.0042 ± 0.0078  – 0.0010 ± 0.0121  – 0.0073 ± 0.0204
BMI 0.0021 ± 0.0193 0.0208 ± 0.0255 0.0104 ± 0.0066 0.0000 ± 0.0147  – 0.0052 ± 0.0147
Diabetes pedigree function  – 0.0021 ± 0.0352 0.0281 ± 0.0141 0.0156 ± 0.0147 0.0083 ± 0.0156 0 ± 0.0000
Pregnancies  – 0.0031 ± 0.0193 0.0156 ± 0.0114 0.0021 ± 0.0156 0.0125 ± 0.0214  – 0.0052 ± 0.0066
Skin thickness  – 0.0062 ± 0.0078  – 0.0052 ± 0.0066  – 0.0083 ± 0.0106  – 0.0073 ± 0.0204  – 0.0052 ± 0.0147
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4.1  Results of the Proposed Hybrid Model

An ensemble voting classifier is implemented to build the 
proposed ensemble model [42, 43]. The ensemble mod-
els are called meta-algorithms as they combine multiple 
machine learning techniques into one predictive model. In 
this case, various combinations of k-NN, Naïve Bayes (G), 
LightGBM, Adaboost, and Random Forest algorithms are 
implemented as ensembles with certain hyperparameters 
tuning. The soft voting method is used as the ensembles’ 
decision. For every implementation of the ensemble model 
fivefold cross-validated performance metrics are evaluated. 
Table 9 represents the cross-validation results of various 
ensembles. In each combination, we ensure that at least one 
traditional classifier and one ensemble technique are com-
bined. In this way, the correct hybrid of ensembles can be 
presented as the proposed model.

From the above-presented ensemble models in Table 9, 
a combination of LightGBM + k-NN + Adaboost provided 
an accuracy of 90.76% against fivefold cross-validation 
followed by LightGBM + k-NN at 90.62% fivefold cross-
validated accuracy. As seen from Table 10, it is noticed 
that ensembles models LightGBM + k-NN and Light-
GBM + k-NN + Adaboost gave well-nigh correspondent 
results in all the performance matrices. In the earlier anal-
ysis of the classifiers, we have seen that k-NN was strug-
gling in detection accuracy, precision, recall and F1-Score. 
However, the same k-NN reveals a better AUC when the 
ROC was plotted. This reveals the ability of the k-NN 
even in the class imbalance environment. Similarly, we 
have plotted the ROC of all the ensembles mentioned in 
Table 9. Figure 3 represents the ROC of all the ensembles.

The ROCs are shown here, contradicting what we 
have observed in Table 10. From Fig. 3 we found that 
the LightGBM + k-NN + Adaboost + RF and Light-
GBM + k-NN + RF outperform LightGBM + k-NN + Ada-
boost and LightGBM + k-NN ensemble. In a dataset 
with an uneven distribution of classes, the rarest class 
only accounts for a tiny fraction of the entire data. Due 
to lack of diversity, few classification algorithms are 

biased toward predicting the majority class since their 
loss functions seek to perform well in computing error 
rates without considering the distribution of the fea-
ture [49–51]. This is what happened in this case. The 
datasets used here hold 768 instances out of which 500 
patients are non-diabetic and 268 are actual patients. 
This shows the dataset is imbalanced, and therefore, 
the ROC for LightGBM + k-NN + Adaboost + RF and 
LightGBM + k-NN + RF exhibits better results even 
though they have low detection accuracy as compared to 
LightGBM + k-NN + Adaboost and LightGBM + k-NN 
ensembles. On the other hand, the benefits of Light-
GBM + k-NN + Adaboost and LightGBM + k-NN ensem-
ble are due to the presence of a fewer number of classi-
fiers in the model. The appealing part is that with less 
ensemble of classifiers, the LightGBM + k-NN + Ada-
boost and LightGBM + k-NN present a computationally 
efficient model compared to other ensembles. Therefore, 
the LightGBM + k-NN + Adaboost and LightGBM + k-NN 
models are the better choices in diabetes detection, where 
LightGBM + k-NN + Adaboost shows the highest detection 
accuracy of 90.76%.

The performance metrics of the LightGBM + k-
NN + Adaboost ensemble model are experimentally evalu-
ated in terms of the number of folds in the cross-valida-
tion procedure. The number of runs over the training data 
(epochs) is set to 1500 fits, which were achieved by fitting 
five folds for each of 300 candidates in 2.1 min. Nonethe-
less, this alpha hyperparameter tuning is evaluated up to 
3000 fits by fitting up to ten folds for 300 candidates, with 
the greatest scores observed at 1500 fits, or fitting five folds 
for each of 300 candidates. Except for the fivefold cross-
validated scores, all other cross-validated data indicated a 
minor decline in performance measures. Considering time 
and over-fitting, fivefold cross-validated findings are cho-
sen for their overall higher scores and efficient model. This 
procedure was applied to each ensemble model presented, 
yielding the arithmetic mean of performance metrics. Fig-
ure 3 illustrates the output of each fold.

Table 9  Classification results 
about fivefold cross-validation 
of various hybrid ensemble 
models along with the proposed 
LightGBM + k-NN + Adaboost 
model

Ensemble of Classifiers F1-Scr (%) Pre (%) Rec (%) Acc (%)

k-NN + NB(G) 72.26 66.77 78.73 78.91
RF + k-NN 72.76 79.91 66.79 82.55
k-NN + Adaboost 74.95 78.14 72.01 83.20
LightGBM + k-NN 86.47 85.82 87.12 90.62
Adaboost + RF + k-NN 73.12 77.30 69.03 82.29
LightGBM + k-NN + RF 84.45 86.96 82.09 89.45
LightGBM + k-NN + Adaboost 86.63 87.45 85.82 90.76
LightGBM + k-NN + Adaboost + RF 83.69 86.17 81.34 88.93
LightGBM + k-NN + Adaboost + RF + NB(G) 79.78 77.94 81.72 85.55
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Table 10  Pseudocode of Naïve Bayes (Gaussian) algorithm
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The discrimination threshold graph of Light-
GBM + k-NN + Adaboost is also presented in Fig.  4. 
Similarly, the visualization of precision, recall, F1 score, 
and queue rate concerning the discrimination threshold 
also justifies the arguments about the selection of Light-
GBM + k-NN + Adaboost as the best ensemble (Fig. 5).

It should be noted that the detection accuracy, recall and 
F1-score have been increased with an increase in folds, thus 
boosting the overall result of LightGBM + k-NN + Adaboost 
ensemble.

4.2  Comparison of the Proposed Hybrid Model 
with Other Related Models

In the previous analysis, an ensemble of LightGBM + k-
NN + Adaboost has been evolved as the best diabetes detec-
tion mechanism. In this section, various state-of-the-art 
existing ensemble approaches found in the literature are 
taken for comparison. In this regard, kMeans feature selec-
tion and Bagging (Logistic Regression) [24], soft voting of 
Logistic Regression, Random Forest and Naïve Bayes [25], 
max voting of Logistic Regression, Decision Tree, Support 
Vector Machine, k-NN and Naïve Bayes [26], ensemble of 
multiple classifiers including decision tree, naïve bayes, 
k-NN, Logistic Regression, etc. [12], classification via 
Quantum-inspired classifier configurations [28], cooperative 

(a) k-NN+B(G) (b) RF+k-NN (c) k-NN+Adaboost

(d) LightGBM+k-NN (e) Adaboost+RF+k-NN (f) LightGBM+k-NN+RF

(g) LightGBM+k-NN+Adaboost (h) LightGBM+k-NN+Adaboost+RF (i) LightGBM+k-NN+Adaboost+RF+NB(G)

Fig. 3  ROC curve of various hybrid ensemble models along with the proposed ensemble model
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co-evolution framework and Random Forest [21], synthetic 
Minority Over-sampling Technique and decision forest [20], 
stacking-based evolutionary ensemble learning system [29], 
parameter-free greedy ensemble approach and Random For-
est [30], ensemble of decision tree and logistic regression 
with majority voting [23], adaptive synthetic sampling for 
class imbalance and Random Forest for classification [33], 

Adaboost ensemble learning framework with decision stump 
as primary classifier [31], and boosting technique in ensem-
ble of random committee classifier [32] ensemble methods 
are shortlisted. All of these methods use the voting princi-
ple for decision-making and are implemented on the same 
dataset as that of our proposed approach. The comparative 
results are presented in Table 11. The n.d. represents the 

Fig. 4  Discrimination threshold 
of ensemble model Light-
GBM + k-NN + Adaboost

Fig. 5  Fivefold cross-validation of LightGBM + k-NN + Adaboost ensemble model
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value for the said field that has not been documented in the 
concerned literature.

While comparing our suggested diabetes detection strat-
egy with other relevant approaches, we observed that the 
proposed approach yields maximum detection accuracy. The 
proposed approach also took eight features of the underly-
ing data like that of the existing approach. Nevertheless, an 
interesting thing has been observed about the stacking-based 
evolutionary ensemble learning system proposed by Singh 
et al. [29] approach. The stacking approach shows the high-
est ever 96.10% of recall (sensitivity). This provides a great 
scope for successfully detecting positive patients among the 
group of positives on which the test has been performed. 
However, our proposed ensemble approach shows similar 
or better recall compared to existing approaches.

We have discussed numerous ensemble approaches in 
this article, combining k-NN, Naive Bayes (Gaussian), and 
three other ensemble approaches, namely LightGBM, Ada-
boost, and Random Forest. The LightGBM + k-NN + Ada-
boost technique has the highest detection accuracy of all 
the ensembles, but LightGBM + k-NN has a slightly lower 
detection rate but is more computationally efficient due to 
a reduced number of classifiers. Conversely, the ensemble 
models LightGBM + k-NN + Adaboost + RF and Light-
GBM + k-NN + RF imply a larger area under the receiver 
operating curve. Each of the ensemble models presented 
in this section has a unique set of applications and situa-
tions. The LightGBM + k-NN + Adaboost ensemble is rec-
ommended for a variety of applications, including diabetes 
diagnosis. If performance is a priority, LightGBM + k-NN 
is the optimal solution because of the reduced number of 
classifiers. Similarly, if the training data contain a significant 
class imbalance between diabetic and non-diabetic patients, 

both the LightGBM + k-NN + Adaboost + RF and Light-
GBM + k-NN + RF ensemble approaches are beneficial.

5  Conclusion

Several Machine Learning methods, including LightGBM, 
k-NN, Nave Bayes (Gaussian), Random Forest, and Ada-
boost, were used in this study to predict diabetes. Individual 
classifiers have also been compared to the ensemble models 
described in this paper. Performance measures like classi-
fication accuracy, precision, recall, F1-score, and receiver 
operating curve are analyzed. For both individual and 
ensemble models, a fivefold cross-validation procedure has 
been introduced. Adaboost and Random Forest had the best 
detection accuracy in the individual classifier analysis. As 
an ensemble model, the models LightGBM + k-NN + Ada-
boost and LightGBM + k-NN achieved a near-fivefold 
cross-validated accuracy of 90%. The standard deviation 
of ensemble model performance measures has been some-
what increased. The fivefold cross-validation yields the 
best results for all ensemble models. The LightGBM + k-
NN + Adaboost technique has the best detection accu-
racy, while the LightGBM + k-NN approach has a slightly 
lower detection result but is more computationally efficient 
because it has a smaller number of ensemble classifiers to 
process. However, the area under the receiver operating 
curve dictated by the LightGBM + k-NN + Adaboost + RF 
and LightGBM + k-NN + RF ensemble models is better. 
We recommend using the LightGBM + k-NN + Adaboost 
ensemble in diverse fields, including diabetes detection. It 
is preferable to use k-NN + LightGBM ensemble, as they 
are computationally efficient due to the lower number of 
classifiers. Using the LightGBM + k-NN + Adaboost + RF or 

Table 11  Comparison of the 
proposed ensemble model with 
existing ensembles

Author No of features Accuracy (%) Precision (%) Recall (%)

Ali et al. (2014) [32] 18 81.00 81.00 81.00
Vijayan et al. (2015) [31] 8 n.d n.d 88.40
Wang et al. (2019) [33] 8 87.10 80.60 85.40
Bania et al. (2020) [30] 3 73.04 72.30 73.00
Syed et al. (2020) [20] 8 82.10 77.60 89.00
Sathurthi et al. (2020) [23] 8 74.03 67.14 55.95
Singh et al. (2020) [29] 8 83.80 n.d 96.10
Christo et al. (2020) [21] 8 81.01 73.53 80.65
Rajendra et al. (2021) [26] 8 77.83 n.d n.d
Ishwarya et al. (2021) [28] 8 86.00 85.00 88.00
Saxena et al. (2021) [12] 8 82.81 80.00 60.00
Kumari et al. (2021) [25] 8 79.08 73.13 70.00
Ismail et al. (2022) [24] 8 82.00 n.d n.d
LightGBM + k-NN + Adaboost 8 90.76 87.45 85.82
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the LightGBM + k-NN + RF ensemble techniques is equally 
effective when the training data show a major class imbal-
ance between diabetic and non-diabetic individuals.
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