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Abstract This study presents the applicability of an
ensemble of artificial neural networks (ANNs) and
learning paradigms for weather forecasting in southern
Saskatchewan, Canada. The proposed ensemble method
for weather forecasting has advantages over other
techniques like linear combination. Generally, the out-
put of an ensemble is a weighted sum, which are weight-
fixed, with the weights being determined from the
training or validation data. In the proposed approach,
weights are determined dynamically from the respective
certainties of the network outputs. The more certain a
network seems to be of its decision, the higher the
weight. The proposed ensemble model performance is
contrasted with multi-layered perceptron network
(MLPN), Elman recurrent neural network (ERNN),
radial basis function network (RBFN), Hopfield model
(HFM) predictive models and regression techniques.
The data of temperature, wind speed and relative
humidity are used to train and test the different models.
With each model, 24-h-ahead forecasts are made for the
winter, spring, summer and fall seasons. Moreover, the
performance and reliability of the seven models are then
evaluated by a number of statistical measures. Among
the direct approaches employed, empirical results indi-
cate that HFM is relatively less accurate and RBFN is
relatively more reliable for the weather forecasting
problem. In comparison, the ensemble of neural net-
works produced the most accurate forecasts.
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1 Introduction

The weather is a continuous, data-intensive, multi-
dimensional, dynamic and chaotic process, and these
properties make weather forecasting a formidable chal-
lenge. Generally, two methods are used to forecast
weather: (a) the empirical approach and (b) the
dynamical approach [16]. The first approach is based
upon the occurrence of analogues and is often referred
to by meteorologists as analogue forecasting. This
approach is useful for predicting local-scale weather if
recorded cases are plentiful. The second approach is
based upon equations and forward simulations of the
atmosphere, and is often referred to as computer mod-
elling. Because of the grid coarseness, the dynamical
approach is only useful for modelling large-scale
weather phenomena and may not predict short-term
weather efficiently. Most weather prediction systems use
a combination of empirical and dynamical techniques.
However, little attention has been paid to the use of
artificial neural networks (ANNs) in weather forecasting
[13, 18-20].

ANNs provide a methodology for solving many types
of non-linear problems that are difficult to solve by
traditional techniques. Most meteorological processes
often exhibit temporal and spatial variability, and are
further plagued by issues of non-linearity of physical
processes, conflicting spatial and temporal scale and
uncertainty in parameter estimates. With ANNs, there
exists the capability to extract the relationship between
the inputs and outputs of a process, without the physics
being explicitly provided [28]. Thus, these properties of
ANNs are well suited to the problem of weather fore-
casting under consideration.

An ensemble neural network is a learning paradigm
where a collection of a finite number of neural networks
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is trained for the same task [2-4, 25]. It originates from
Hansen and Salamon’s work [6], which shows that the
generalisation ability of a neural network system can be
significantly improved through an ensemble of neural
networks, i.e. training many neural networks and then
combining their predictions. In general, a neural net-
work ensemble is constructed in two steps, i.e. training a
number of component neural networks and then com-
bining the component predictions. Ensemble methods
combine the outputs of several neural networks [5, 9,
21]. The output of an ensemble is a weighted average of
the outputs of each network, with the ensemble weights
determined as a function of the relative error of each
network determined in training [10, 17, 21]; the resulting
network often outperforms the constituent networks.
There is a growing body of research into ensemble
methods, for example, improvements in performance
can result from training the individual networks to be
decorrelated with each other [7, 8, 22, 26] with respect to
their errors. We present a novel approach to determine
the ensemble weights dynamically as part of the training
algorithm, i.e. during each propagation through the
network, as opposed to any pre-determined fixed values
or calculations. The weights are proportional to the
certainty of the respective outputs. The certainty of a
network output measures how close the output is to one
or the other of the target values. For example, suppose
we have trained two back-propagation networks to
output 1 if the input is in a particular class and 0
otherwise. Suppose we present a previously unseen input
to the networks and the outputs are 0.6 and 0.9 for the
first and second, respectively. With a threshold for
decision of 0.5, both outputs would lead us to conclude
that the input is in the class, but the first network seems
much less certain than the second.

As an extension to the previous efforts, the objective
of this study is to develop ensembles of ANNs for
weather analysis in southern Saskatchewan, Canada.
This development will be based on: (a) multi-layered
perceptron network (MLPN), Elman recurrent neural
network (ERNN), radial basis function network
(RBFN) and Hopfield model (HFM) predictive models
for forecasting hourly temperature, wind speed and
relative humidity in winter, spring, summer and fall
seasons; (b) examination of the applicability of the ANN
approach for weather forecasting; (c) comparison of the
proposed predictive models with regression models; and
(d) performance quantification of the developed models,
their ensembles and the regression models based on a
number of statistical measures.

2 Related research work

This section summarises some of the past research done
in ensemble methods, in terms of classification. Consider
a population of n networks trained on a set A=(xm,ym)
of labelled instances of a binary classification problem.

2.1 The naive classifier

Let the function computed by the ith network be fi (x). If
the networks are trained to give an output of 0 or 1 for a
negative or positive classification, respectively, we can
use a threshold of 0.5 on the output of a network to
decide the class for an instance of the problem. The
naive approach usually used a cross validation set [12]
CV=(xl,yl) and picked the network, fNaive, that mini-
mises the mean squared error (MSE) on CV. The MSE
for each network is:

MSE fi½ � ¼ ECV ym � fi xmð Þð Þ2
h i

ð1Þ

This technique throws out any knowledge contained
in the other networks. Although fNaive has the best
overall performance on the cross validation set, some of
the other fis may lead to correct classification where
fNaive does not.

2.2 The basic ensemble method

A simple approach to combining network outputs is to
simply average them together. The basic ensemble
method (BEM) output is defined by:

fBEM ¼
1

n

X

n

i¼1

fi xð Þ ð2Þ

This approach by itself can lead to improved per-
formance [14, 21], but does not take into account the
fact that some networks may be more accurate than
others. It has the advantage of being easy to understand
and implement [1, 15] and can be shown not to increase
the expected error [1, 23, 24].

2.3 The generalised ensemble method

A generalisation to the BEM method is to find weights
for each output that minimises the MSE of the ensemble.
The general ensemble model (GEM) is defined by:

fGEM ¼
X

n

i¼1

aifi xð Þ ð3Þ

where the ais are chosen to minimise the MSE with re-
spect to the target function, f (estimated using the cross
validation set), and sum to 1. Define the error, ei (x), of a
network, fi, as ei (x)=f(x)�fi(x). Define the correlation
matrix, Cij=Ebei (x)ej (x)c. Then, we must find weights,
ai, that minimises the following:

MSE fGEM½ � ¼
X

n

i¼1

X

n

j¼1

aiajCij ð4Þ

It can be shown [1, 21] that the optimal choice for the
is follow

113



ai ¼

Pn
j¼1 C

�1
ij

Pn
k¼1

Pn
j¼1 C

�1
kj

ð5Þ

This method yields better performance than BEM,
and can be shown to always give a better estimate than
the naive classifier [21]. However, this method depends
on a reliable estimate of C and the fact that it is non-
singular so that it can be easily inverted [21]. In practice,
errors are often highly correlated, thus, the rows of C are
nearly linearly dependent so that inverting C leads to
significant round-off errors. Some techniques to avoid
this include ignoring networks whose errors are highly
correlated with others [21], using specialised techniques
for the inversion of near-singular matrices and training
the networks to be decorrelated with each other [22, 26].

2.4 Dynamic ensemble method

2.4.1 Certainty

If the output of a neural network, y=fi (x), can be
interpreted as the probability that an instance, x, is in a
class, then, as y approaches 1, we feel more certain that
the instance is in the class. As y approaches 0, we
become more certain that the instance is not in the class.
Let us quantify this notion; we define the certainty, c(y),
of a neural network output as:

c yð Þ ¼
y if y>0:5

1� y otherwise

�

ð6Þ

The certainty rises for output y<0.5 as y falls, and
for outputs y‡0.5 as y rises. We say one network output,
y1, is less certain than another, y2, if c(y1)<c(y2). Note
that the certainty behaves symmetrically with respect to
positive and negative decisions; the certainty of an out-
put of 0.1 is the same as that of an output of 0.9, but the
decision they are certain about is different.

2.4.2 Dynamically averaging networks

If, instead of choosing static weights derived from fis
performance on a sample of the input space, we allow
the weights to adjust to be proportional to the certainties
of the respective network outputs, we might achieve
better performance. We define the dynamically averaged
network (DAN) by:

fDAN ¼
X

n

i¼1

wifi xð Þ ð7Þ

where the wis are according to:

wi ¼
c fi xð Þð Þ

Pn
j¼1 c fi xð Þð Þ

ð8Þ

The wis sum to 1, so fDAN is a weighted average (WA)
of the network outputs. The difference is that the weight

vector is recomputed each time the ensemble output is
evaluated, to try to give the best decision for the par-
ticular instance under consideration, instead of statically
choosing weights that give an optimal decision with re-
spect to a cross validation set. Each network’s contri-
bution to the sum is proportional to its certainty. A
value close to 0.5, for instance, would contribute very
little to the sum while a very certain value of 0.99 (or
0.01) among many less certain values would dominate
the sum. This method is similar to the idea of using
agreement among a set of classifiers to obtain a measure
of confidence in the decision, but the confidence level
(certainty) of each classifier itself is used to obtain the
final decision. Each fully connected ANN in the
ensemble is generated with random initial weights. Then,
each ANN is trained partially with training data and
tested with the validation data.

2.5 The proposed ensemble neural network algorithm

The back-propagation networks set the initial weights at
random and train to decrease the MSE. Differences in
the initial weights gives different results. Thus, neural
network ensembles [21] integrate these independent
neural networks to improve the generalisation capabil-
ity. This method has a guarantee of accuracy improve-
ment from the viewpoint of bias/variance decomposition
of the MSE [27].

Consider a single NN that has been trained on a
given data set. Let x denote an input vector not seen
before and let d denote the corresponding desired re-
sponse; x and d represent realisations of the random
vector X and random variable D, respectively. Let F(x)
denote the input-output function realised by the net-
work. Then, in light of the material on the bias/variance
dilemma [27], we decompose the MSE between F(x) and
the conditional expectation, E[D|X=x], into its bias and
variance components as follows:

ED F xð Þ � E DjX ¼ x½ �ð Þ2
h i

¼ BD F xð Þð Þ þ VD F xð Þð Þ ð9Þ

where BD(F(x)) is the bias squared:

BD F xð Þð Þ ¼ ED F xð Þ½ � � E DjX ¼ x½ �ð Þ2 ð10Þ

and VD (F(x)) is the variance:

VD F xð Þð Þ ¼ ED F xð Þ � ED F xð Þ½ �ð Þ2
h i

ð11Þ

The expectation, ED, is taken over the space D, de-
fined as the space encompassing the distribution of all
training sets (for example, inputs and target outputs)
and the distribution of all initial conditions.

There are different ways of individually training the
networks and also different ways of combining their
outputs. Here, we consider the situation where the net-
works have an identical configuration, but they are
trained starting from different initial conditions. For the
combiner at the output of the neural network ensembles,

114



we used a simple ensemble average. Let w denote the
space of all initial conditions. Let FI (x) denote the
average of the input-output functions of the networks
over a representative number of initial conditions. By
analogy with Eq. 9, we may write:

Ew FI Xð Þ � E DjX ¼ x½ �ð Þ2
h i

¼ Bw F xð Þð Þ þ Vw F xð Þð Þ

ð12Þ

where Bw (F(x)) is the squared bias defined over the
space w:

Bw F xð Þð Þ ¼ Ew FI xð Þ½ � � E DjX ¼ x½ �
� �2

ð13Þ

and Vw (F(x)) is the corresponding variance:

Vw F xð Þð Þ ¼ Ew FI xð Þ � Ew F xð Þ½ �
� �2
h i

ð14Þ

The expectation, Ew, is taken over the space w.
From the definition of space D, we may view it as the

product of the space of initial conditions, w, and the
remnant space denoted by D¢. Accordingly, we may
write, again by analogy to Eq. 9:

ED0 FI xð Þ � E DjX ¼ x½ �ð Þ2
h i

¼ BD0 EI xð Þð Þ þ VD0 FI xð Þð Þ

ð15Þ

where BD‘ (FI(x)) is the squared bias defined over the
remnant space, D¢:

BD0 FI xð Þð Þ ¼ ED0 FI xð Þ½ � � E DjX ¼ x½ �ð Þ2 ð16Þ

and VD‘ (FI(x)) is the corresponding variance:

VD0 ¼ ED0 FI xð Þ � ED0 FI xð Þ½ �ð Þ2
h i

ð17Þ

From the definitions of spaces D, w and D¢, we
readily see that:

ED0 FI xð Þ½ � ¼ ED F xð Þ½ � ð18Þ

It follows, therefore, that Eq. 16 may be rewritten in
the equivalent form:

BD0 FI xð Þð Þ ¼ ED F xð Þ½ � � E DjX ¼ x½ �ð Þ2 ¼ BD F xð Þð Þ

ð19Þ

Consider the variance VD‘ (FI (x)) of Eq. 17. Since the
variance of a random variable is equal to the mean
square value of that random variable minus its bias
squared, we may equivalently write:

VD0 FI xð Þð Þ ¼ ED0 FI xð Þð Þ2
h i

� ED0 FI xð Þ½ �ð Þ2 ¼ ED0 FI xð Þð Þ½ �

ð20Þ

Similarly:

VD FI xð Þð Þ ¼ ED F xð Þð Þ2
h i

� ED F xð Þ½ �ð Þ2 ð21Þ

Note that the mean square value of the function F(x)
over the entire space, D, is destined to be equal to or
greater than the mean square value of the entire aver-
aged function, FI (x), over the remnant space, D¢. That
is:

ED F xð Þð Þ2
h i

>ED0 FI xð Þð Þ2
h i

ð22Þ

In light of this inequality, comparison of Eqs. 20 and
21 immediately reveals that

VD0 FI xð Þð Þ6VD F xð Þð Þ ð23Þ

Thus, from Eqs. 19 and 23, we draw two conclusions:

– The bias of the ensemble-averaged function, FI (x),
pertaining to the multiple classifier systems, is exactly
the same as that of the function F(x) pertaining to a
single neural network.

– The variance of the ensemble-averaged function, FI is
less than that of the function F(x).

Ensembles of linear networks have demonstrated
improved performance over individual networks, but
linear models have problems due to limited capacity.
Ensembles of more complex well-trained networks offer
a promising alternative. An ensemble of non-linear feed-
forward neural networks generated by a constructive
algorithm is presented in this paper. A similar approach
could be extended to ERNN, RBFN and HFM net-
works. The ensemble method presented exhibits better
generalisation than linear ensembles, and shows promise
towards a reduction in time-complexity over well-
trained ensembles. We also used a winner-take-all
(WTA) approach to compare with the WA approach.

3 Experiment setup

The weather parameters, including temperature, wind
speed and relative humidity, recorded at the Regina
Airport were collected by the Meteorological Depart-
ment, Environment Canada in 2001 for developing and
analysing the intelligent-based forecasting models. To
examine the seasonal variations, the available weather
data were split into four seasons, namely, winter
(December-February), spring (March-May), summer
(June-August) and fall (September-November). For all
four models (i.e. MLPN, ERNN, RBFN and HFM),
hourly seasonal data were used for training the net-
works. Training data sets of December 1, 2000-February
25, 2001; March 1-May 5, 2001; January 1-August 6,
2001; and September 1-November 9, 2001 were used for
the winter, spring, summer and fall seasons, respectively.
The hourly data sets of February 26, May 6, August 7
and November 10 were selected as typical days (test data
sets) for winter, spring, summer and fall, respectively, in
order to test the trained models. In fact, these typical
days represent one of the severe weather days during the
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winter, spring, summer and fall seasons. The idea behind
this selection was to examine the applicability of the
proposed ANN paradigm on these days. Moreover,
these days exhibit a larger variation in temperature,
wind speed and humidity within the 24-h period com-
pared to other normal days within the forecasting sea-
sons. A Pentium-III, 1 GHz processor computer with
256 MB RAM was used to simulate all of the experi-
ments using MATLAB version 5.3.

Neural networks generally provide improved perfor-
mance with the normalised data. The use of original
data as the input to the neural network may cause a
convergence problem [11]. All of the weather data sets
were, therefore, transformed into values between �1 and
1 by dividing the difference between the actual and
minimum values by the difference between the maximum
and minimum values. The main goal of normalisation,
in combination with weight initialisation, is to allow
the squashed activity function to work at least at the
beginning of the learning phase. Thus, the gradient,
which is a function of the derivative of the non-linearity,
will always be different from zero. At the end of each
algorithm, the outputs were denormalised into the
original data format for achieving the desired result.

The configuration of the neural network depends
highly on the problem. Therefore, it is left with the
designer to choose an appropriate number of hidden
layers and hidden layer nodes based on his/her experi-
ence. Thus, an appropriate architecture is determined
for each application using the trial and error method. In
this study, the training of different neural networks took
from a few seconds to 30 min with a Pentium-III, 1 GHz
processor computer. The learning rate parameter and
momentum term were adjusted intermittently to speed
up the convergence. In order to keep the simplicity of the
modelling structure, only one hidden layer with 72 hid-
den layer nodes was used for the MLPN and ERNN
models. This number was arrived at after analysing 24,
48, 72, 98 and 120 neurons in the hidden layer. The
architecture with 24 and 48 neurons in the hidden layer
was faster in computation, but the convergence rate was
very slow. The architecture with 98 and 120 neurons in
the hidden layer was converging equally well as that with

72 neurons. Therefore, the architecture with 72 neurons
in the hidden layer was selected. It was noted that, with
the increased number of hidden layers, the convergence
rate of the MLPN and ERNN models was decreased.
On the other hand, two hidden layers with 180 nodes
were chosen for training the RBFN model. The input
matrix contains 24 inputs presenting the hourly-pre-
dicted weather parameters for one day in each season,
thus, 96 inputs constitute our algorithm for all four
seasons.

The MLPN, ERNN, RBFN and HFM networks
were used after deciding the relevant input/output
parameters, training/testing data sets and learning
algorithms. To decide on the architectures of the
MLPN, HFM and ERNN networks, a trial and error
approach was used. Networks were trained for a fixed
number of epochs, and the error gradient was observed
over these epochs. Performance of the MLPN, HFM
and ERNN networks were evaluated by increasing or
decreasing the number of hidden nodes. Since no sig-
nificant reduction in error was observed beyond 45
hidden nodes, a single hidden layer network comprising
45 neurons was identified. The input and output values
were scaled between �1 and +1, and the one-step-
secant learning algorithm was used for training the
MLPN and ERNN networks. The activation functions
for the MLPN and ERNN models were chosen to be
log-sigmoid and hyperbolic-tangent-sigmoid for hidden
units, respectively, and pureline for the output units.
Since there is no exact rule for fixing the number of
hidden neurons and hidden layers to avoid underfitting
or overfitting in the MLPN and ERNN networks,
therefore, the RBFN model is investigated to address
this difficulty. In RBFN, the numbers of hidden layers
and neurons selected by the model were two and 180,
respectively; the Gaussian activation function was cho-
sen for the hidden units, and pureline for the output
units.

Figure 1 presents the architecture of the ensemble
neural network. The ensemble improves the stability and
accuracy of the model. The ANNs mentioned in the
figure could be different combinations of MLPN,
ERNN, RBFN or HFM architectures.
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Fig. 1 Architecture of the
ensemble neural network

116



4 Results analysis

4.1 Weather analysis using ANNs
and ensemble methods

The obtained results indicate that satisfactory prediction
accuracy has been achieved through the MLPN, ERNN,
RBFN and HFM models, as well as the WA and WTA
ensemble methods for temperature, wind speed and
relative humidity parameters during winter, spring,
summer and fall seasons. All of the obtained results were
analysed, compared and evaluated in the following
subsections. Our experiments were mainly aimed to
investigate the following aspects: (1) to prove that the
use of an ensemble neural network allows one to obtain

satisfactory classification accuracy with short designing
phases; (2) to compare the performance of the proposed
combination method with the ones provided by indi-
vidual methods based on the assumptions of indepen-
dent errors.

Comparison of the neural networks and their
ensembles for the forecasting of temperature, wind speed
and relative humidity in the summer season are shown in
Fig. 2. Such figures of comparisons for the fall, winter
and spring seasons are not presented in this paper in
order to avoid repitition of similar graphs. Their results
are provided in Tables 1 and 2 and analysed in the fol-
lowing sections.

Figure 2 indicates that MLPN can achieve useful
weather forecasting results in an efficient way.
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Compared to the HFM results, MLPN exhibited lower
errors. It is capable of representing non-linear functions
better than the single-layered perceptron. However, the
learning process of the MLPN algorithm is time-con-
suming and its performance is heavily dependent on the
network parameters like learning rate and momentum.

The ERNN model, compared to MLPN, could
efficiently capture the dynamic behaviour of the
weather, resulting in a more compact and natural
representation of the temporal information contained
in the weather profile. The RMS error of the ERNN
model was much lower than that of the HFM method.
The recurrent network took more training time, but
this depends on the data size and the number of
network parameters. It can be inferred that the
ERNN network could yield more accurate results, if
good data-selection strategies, training paradigms and

network input and output representations are deter-
mined properly.

The RBFN network can give the best overall results
in terms of accuracy and training time. It is better cor-
related compared to the MLPN, ERNN and HFM
networks. The proposed RBFN network can also over-
come several limitations of MLPN and ERNN, such as
a highly non-linear weight update and the slow conver-
gence rate. Since RBFN has natural unsupervised
learning characteristics and a modular network struc-
ture, these properties make it more effective for fast and
robust weather forecasting.

It is indicated that the HFM model overestimated
most of the predicted values. Overall, the performance
of HFM is reasonable. However, compared to the other
models, it is less accurate for the weather forecasting
problem.

Table 1 Performance of MLPN, ERNN, RBFN and HFM for forecasting temperature, wind speed and humidity

Season Reliability parameter Temperature (�C) Wind speed (km/h) Humidity (%)

MLPN ERNN RBFN HFM MLPN ERNN RBFN HFM MLPN ERNN RBFN HFM

Winter MAD 0.5685 0.5610 0.5242 2.9894 0.8505 0.8158 0.7246 2.8120 0.6285 0.6249 0.5669 3.5575
RMSE 0.0200 0.0199 0.0060 0.0456 0.0199 0.0199 0.0131 0.0327 0.0200 0.0199 0.0071 0.0395
CC 0.9919 0.9883 0.9997 1.0000 0.9526 0.9032 0.9192 0.9872 0.9712 0.9738 0.9845 0.9982
Training time (s) 1,140 1,500 3 2 600 480 3 2 900 1,500 3 2
Iteration number 17678 16983 - - 11909 4894 - - 13742 7513 - -

Spring MAD 0.7958 0.7898 0.9296 3.2721 0.9012 0.8888 0.8678 3.2832 1.1975 1.1699 1.1561 7.7781
RMSE 0.0200 0.0199 0.0032 0.1184 0.0200 0.0199 0.0044 0.1543 0.0200 0.0199 0.0054 0.1537
CC 0.9436 0.9461 0.9992 1.0000 0.9948 0.9974 0.9975 0.9994 0.9976 0.9945 0.9965 0.9999
Training time (s) 600 900 3 2 420 30 3 2 1,500 1,920 3 2
Iteration number 9335 10173 - - 5514 3271 - - 21055 19597 - -

Summer MAD 0.5259 0.4699 0.4641 2.3151 0.8784 0.8794 0.8615 2.5811 1.1211 1.1349 1.2937 6.9252
RMSE 0.0199 0.0199 0.0050 0.0650 0.0200 0.0199 0.0119 0.0365 0.0199 0.0199 0.0155 0.2029
CC 0.9937 0.9976 0.9996 0.9897 0.9691 0.9603 0.9900 0.9892 0.9877 0.9879 0.9891 0.9852
Training time (s) 1,020 1,260 3 2 240 540 3 2 1,140 1,800 3 2
Iteration number 20109 12383 - - 3904 6090 - - 16500 18249 - -

Fall MAD 0.7100 0.6872 0.6739 1.0242 0.8331 0.8633 0.8258 3.0417 1.1910 1.1862 1.0765 6.8769
RMSE 0.0199 0.0199 0.0169 0.0797 0.0199 0.0199 0.0092 0.0533 0.0200 0.0199 0.0120 0.1844
CC 0.9902 0.9853 0.9961 1.0000 0.9909 0.9851 0.9983 1.0000 0.9962 0.9958 0.9991 1.0000
Training time (s) 660 1,620 3 2 240 420 3 2 1,680 1,800 3 2
Iteration number 10117 13523 - - 3812 4777 - - 20731 12614 - -

Table 2 Performance
comparison of WTA ensemble,
WA ensemble and statistical
method for the weather
forecasting

Model Temperature (�C) Wind speed (km/h) Humidity (%)

MAD RMSE CC MAD RMSE CC MAD RMSE CC

Winter season
WTA ensemble 0.0783 0.0053 0.9996 0.3193 0.0119 0.9961 0.1160 0.0069 0.9984
WA ensemble 0.3062 0.0197 0.9982 0.5414 0.0189 0.9895 0.3049 0.0198 0.9940
Statistical method 3.7964 4.5307 0.2247 7.5248 8.7423 0.0035 1.9534 2.9857 0.2715

Spring season
WTA ensemble 0.0912 0.0030 0.9993 0.1082 0.0041 0.9999 0.1420 0.0051 0.9999
WA ensemble 1.1867 0.0198 0.9890 1.3862 0.0183 0.9997 1.5509 0.0143 0.9997
Statistical method 2.9584 3.8245 0.5828 6.5478 7.2354 0.0437 3.1254 3.3325 0.3502

Summer season
WTA ensemble 0.1127 0.0049 0.9998 0.3223 0.0108 0.9977 0.1903 0.0151 0.9998
WA ensemble 0.6558 0.0098 0.9974 0.7724 0.0189 0.9976 2.0051 0.0112 0.9983
Statistical method 5.3364 4.3568 0.0895 6.3547 5.1254 0.0329 6.2554 5.0210 0.0827

Fall season
WTA ensemble 0.2958 0.0151 0.9978 0.2560 0.0089 0.9990 0.2645 0.0118 0.9995
WA ensemble 0.7416 0.0195 0.9965 0.6130 0.0187 0.9973 2.0848 0.0196 0.9993
Statistical method 3.1548 2.3658 0.4727 7.6658 6.3225 0.0087 6.0321 4.8644 0.1237
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The optimal network is the one that has a lower error
and a reasonable learning time. Prediction reliability of
the four models was evaluated based on a number of
statistical analyses, as shown in Table 1. The training
time for the MLPN and ERNN models ranged from 5
min to 30 min, while it took only a few seconds to run
the training for RBFN and HFM. The ERNN model
took more training time and had a relatively fewer
number of iterations compared to the MLPN model.
With the improvement of computing speed, the training
time due to different algorithms may no longer be such a
crucial factor if the training record is not too long and
the design architecture is not too complicated. The
testing accuracy could get worse if the selection of the
algorithm to represent the problem is not properly
decided.

Figure 3 indicates that, for the winter and spring
seasons, humidity was predicted with the lowest mean
absolute percentage error (MAPE) values by the four
soft computing models, whereas, for the summer and fall
seasons, temperature predictions were the most accurate
with the lowest MAPE values. In comparison, humidity
predictions represented the least accurate results (i.e.
higher MAPE values) for all of the four seasons. The

different levels of MAPE associated with temperature,
wind speed and humidity could be due to the variability
of data patterns in the four seasons, as well as the
variations of the modelling structures. Overall, the
RBFN model produced the lowest MAPE (i.e. the most
accurate forecast).

The experimental comparisons of the MLPN,
ERNN, RBFN and HFM methods pointed out that no
single classification algorithm can be regarded as a
panacea. Thus, the use of ensembles of neural networks
as an alternative approach is considered. The advantage
of the ensemble model is to reduce variance, or insta-
bility, of the neural network used for weather forecast-
ing. The error surface of neural network training is full
of local minima; trainings with different initial weights
are usually trapped in different local minima. These local
minima reflect partly the fitting to the regularities of the
data and partly to the fitting to the noise in the data.
Ensemble-averaging tends to cancel out the noise part as
it varies among the ensemble members, and tends to
retain the fitting to the regularities of the data.

In this study, WA and WTA ensemble methods are
employed. Figure 2 also presents a comparison of the
two ensemble methods with actual temperature and
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wind speed, respectively. It is indicated that the WTA
ensemble method predicts the weather parameters with
the least error. Table 2 lists the performance of the two
ensembles evaluated based, on the MAD, RMSE and
correlation coefficient (CC) parameters. Experimental
results point out that the use of neural network ensem-
bles can constitute a valid alternative to the development
of new neural classifiers more complex than the present
one. In particular, it is shown that the combination of
neural network results provides classification accuracies
better than the ones obtained by single classifiers after
long designing phases. In Fig. 4, MAPE values of the
dynamic WA and WTA ensemble methods are plotted.
The results indicate that the WTA ensemble produced
the lowest MAPE. In general, the proposed ensemble
neural network models have the capability to be used for

predicting weather on both normal days and severe
days.

4.2 Direct regression approach

Besides the neural network approaches, a regression
technique was also employed for predicting temperature,
wind speed and humidity by drawing a polynomial-
function trendline. Figure 5 shows comparisons between
exponential trendlines and the three weather parameters
for the summer season. For the summer season, the
parameters can be predicted based on the regression
equations expressed as follows:

Ts ¼ �0:000003t2 þ 0:0089t þ 13:386 ð24Þ

Summer y = -3E-06x 2 + 0.0089x + 13.386
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Ws ¼ 0:000004t2 � 0:0106t þ 21:566 ð25Þ

Hs ¼ �0:00002t2 þ 0:0352t þ 51:52 ð26Þ

where s denotes the summer season,T is temperature
(�C), W is wind speed (km/h), H is humidity (%) and t is
time of forecast (h). Figures of comparisons between
exponential trendlines and the three weather parameters
for the other three seasons are not presented in order to
avoid repetition of similar graphs. The related equations
are presented in the following section.

For the fall season, statistical forecast of the three
weather parameters can be made with the following
equations:

Tf ¼ 0:0000003t2 � 0:0104t þ 16:193 ð27Þ

Wf ¼ �0:000002t2 þ 0:0056t þ 16:133 ð28Þ

Hf ¼ 0:00005t2 � 0:0013t þ 60:084 ð29Þ

where f indicates the fall season. For the winter season,
the temperature, wind speed and humidity can be fore-
cast as follows:

Tw ¼ �0:000003t2 þ 0:0013t � 9:7946 ð30Þ

Ww ¼ 0:000002t2 � 0:0032t þ 18:476 ð31Þ

Hw ¼ �0:000008t2 þ 0:0125t þ 80:385 ð32Þ

where w indicates the winter season. Likewise, the
weather parameters for the spring season can be forecast
as:

Tp ¼ 0:00000002t2 þ 0:00117t � 8:7303 ð33Þ

Wp ¼ 0:000002t2 � 0:0007t þ 18:629 ð34Þ

Hp ¼ 0:000005t2 � 0:0314t þ 90:246 ð35Þ

where p represents the spring season.
Table 2 presents the CC between the statistically

forecast and actual values of the temperature, wind
speed and humidity for the four seasons. It is indicated
that temperature was forecast with a CC of 0.583,
which implies that the statistical model effectively
captured the general trends of the actual temperature.
In comparison, the wind speed was predicted with a
CC of about 0.009, which means that this model was
inefficient in providing reliable forecasts of wind speed
under the given data set. In general, the statistical
models used in this study captured the weather trends
adequately, but should be applied with caution for
precise forecasting.

Performance of the WA and WTA ensembles were
compared with the statistical models (Eqs. 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35) based on MAD, RMSE and
CC measure, as shown in Table 2. It is indicated that the
WTA method produced the most accurate results com-
pared to those of the WA ensemble and the statistical

models. In comparison, the statistical models forecast
the temperature, wind speed and humidity with the least
accuracy (i.e. low CC, high MAD and high RMSE).
This illustrates the fact that the WTA approach is
superior to the statistical models as well as individual
neural networks for this weather analysis study. In
general, the statistical model generated higher errors (i.e.
high MAD and high RMSE values) than those of the
ensemble methods.

5 Conclusions

Neural-networks-based ensemble models were devel-
oped and applied for hourly weather forecasting of
southern Saskatchewan. The experimental results show
that the ensemble networks can be trained effectively
without excessively compromising the performance. The
ensembles can achieve good learning performance
because one of the ensemble’s members is able to learn
from the correct learning pattern even though the pat-
terns are statistically mixed with erroneous learning
patterns. It is also clear that the proposed neural net-
works are not only able to learn better but also to gen-
eralise better than conventional MLPN, ERNN, HFM
and RBFN models. The forecasting reliabilities of these
models were evaluated by computing a number of sta-
tistical measures. The modelling results indicate that
reasonable prediction accuracy was achieved for most of
the models. The best predictions were shown by the
WTA ensemble, which was based on the four different
learning paradigms. The MLPN and ERNN networks
did equally well in forecasting temperature, humidity
and wind speed. In comparison, the RBFN model per-
formed better than MLPN and ERNN, while the HFM
model showed the lowest accuracy. Compared to the
regression models, the ensemble networks forecast the
weather parameters with higher accuracy. The ensemble
neural network can be easily developed to perform
multi-class classification problems without increasing
the calculation complexity.

Future applications of the proposed ensemble will
include on-line training, design of fault-tolerant systems,
error detection and correction, probability learning and
non-linear equalisation.
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