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Abstract— Instead of traditional (nominal) classification we inves-
tigate the subject of ordinal classification or ranking. An enhanced
method based on an ensemble of Support Vector Machines (SVM’s)
is proposed. Each binary classifier is trained with specific weights
for each object in the training data set. Experiments on benchmark
datasets and synthetic data indicate that the performance of our
approach is comparable to state of the art kernel methods for
ordinal regression. The ensemble method, which is straightforward
to implement, provides a very good sensitivity-specificity trade-off
for the highest and lowest rank.
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I. INTRODUCTION

CLASSIFICATION and (metric) regression are by far
the most studied supervised learning problems in the

machine learning domain. In the case of regression or function
estimation labels can have continuous values. For classification
class labels might take binary or nominal values. Ordinal
regression shows resemblance to both of them because labels
are chosen from a finite, in general small number of discrete,
ordered values. Therefore the words ordinal classification and
ranking are used as synonyms for ordinal regression. Cate-
gories typically correspond to quotations or linguistic terms
— varying from “very bad” to “brilliant” for example — that
express a difference in correctness, quality, beauty or any other
characteristic of the analyzed objects.

Ordinal response variables are frequently observed in medi-
cine, psychology and related sciences where human interaction
often forms a part of the data generation process. As a
consequence this learning task has received much attention
by statisticians, which resulted in standard data analysis tools
like cumulative logit models and its variants [1]. Information
retrieval can also be mentioned as an important application of
ranking learning and less common applications can be found
in the literature, such as analyzing beef meat quality [2] or
determining the skills of computer game players [3].

Research on this topic is relatively new in the machine
learning community with only a few papers published in the
last decade. Different authors present methods in which tree
structures are used as classifiers. Kramer et al. [4] report
various ways of transforming classification and regression
trees (CART) into effective learners for ordinal classification
tasks. They map the ordinal scale to a continuous scale
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in a preprocessing step and hence ignore the absence of a
metric for ordinal values. Cao-van [5] uses decision trees and
instance based methods to solve ranking problems and makes
a distinction between ordinal regression and ranking by adding
additional constraints on the ranking problem setting. A similar
approach with decision trees as classifiers is found in [6].
Preference learning, which is another related problem setting,
is discussed by Cohen et al. [7]. They developed greedy and
online algorithms to learn preference relations. Crammer and
Singer [8] proposed an online algorithm for ranking that is
called PRank or perceptron ranking. Harrington [9] extended
this algorithm to a large margin version by using averaging
strategies like bagging.

II. KERNEL METHODS FOR ORDINAL REGRESSION

Ordinal regression has been studied before in the framework
of kernel methods and statistical learning theory. Herbrich
et al. [10] make a theoretical study on this subject and
suggest to model ranks by intervals on a continuous scale.
They present a large margin algorithm that formulates an
ordering by preference judgments and derive generalization
bounds for ordinal regression. In [11] other algorithms are
given for batch and online ranking. Shashua and Levin [12]
embed the continuous scale as a reference in kernel space
as well and extend C-Support Vector Regression (C-SVR)
for ordinal response variables. Therefore, a direction w and
r − 1 thresholds bi are chosen (for ranks 1, ..., r). According
to structural risk minimization the weighted sum of the norm
||w|| and the training errors ξ and ξ∗ are minimized with
regularization parameter C. Consecutive ranks are separated in
kernel space by r−1 parallel hyperplanes that lie perpendicular
to the direction defined by the unobserverd latent variable.

In some cases it can happen that the thresholds are un-
ordered. Chu and Keerthi [13] propose a solution to tackle
this problem by adding the ordering of the thresholds as a
constraint to the original optimization problem. They also
derive another algorithm that penalizes errors of more than
one rank heavier, i.e.
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The transformation function Φ will be replaced by a kernel
function K(., .) in the dual formulation and nk denotes the
number of training examples for class k. The function f(x) =
w ·Φ(x) lies in a Reproducing Kernel Hilbert Space (RKHS)
induced by the kernel function K(., .). From the Representer
Theorem follows that f can be written as a function of the
training objects: f(x) =

∑n
i=1 αiK(x, xi) with αi unknown

variables that need to be estimated. This (kernel) property
holds for a wide branch of pattern analysis methods of which
the support vector machine is the most frequently used (see
[14] and [15] for further information). We will compare our
approach with this ranking algorithm in section V.

III. ENSEMBLES OF SUPPORT VECTOR MACHINES FOR

ORDINAL REGRESSION

It has been shown that kernel based ordinal regression
methods perform very well, but the proposed methods solve
specific optimization problems for which new algorithms need
to be derived to find estimates in a reasonable time. We show
that a comparable performance can be obtained with a rather
simple ensemble of SVM’s. Ensembles with weak classifiers
as base learners have been proposed for ordinal regression
(see some of the references above). Frank and Hall [16] took
decision trees as base learners to estimate a ranking function.
In a first step we will do the same with kernel machines as
underlying classifiers. Therefore r − 1 SVM’s are trained for
a ranking problems with r ranks. For each binary classifier
the training instances are transformed to the positive or the
negative class depending on whether their label is greater than
p or not, with p varying from 1 to r − 1.

ypi =
{ −1 if yi ≤ p

1 if yi > p
(2)

In the following step we attach weights vpi to each of the n
training examples. The weighting of an object differs for each
binary classifier. As a result r − 1 optimization problems of
the following form are solved, i.e.

minwp,bp,ξpi

1
2
||wp||2 + C

n∑

i=1

vpiξpi

subject to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ypi · wp · Φ(xi) − bp ≥ 1 − ξpi,
ξpi ≥ 0,
yi = 1, ..., r
p = 1, ..., r − 1
and i = 1, ..., n;

(3)

The weights for each binary system are assigned in such a
way that errors on training objects are penalized proportional
to the absolute difference between their rank and the value of
p.

vpi =

⎧
⎨

⎩
(p + 1 − yi)

|{xi|yi≤p}|
n
i=1;yi≤p(p+1−yi)

if yi ≤ p

(yi − p) |{xi|yi>p}|
n
i=1;yi>p(yi−p) if yi > p

(4)

We also scale the weights so that the sum of training errors of
the positive class and the sum of training errors of the negative

class stays the same, compared to the same ensemble of binary
SVM’s without object weights.

n∑

i=1;yi≤p

vpi +
n∑

i=1;yi>p

vpi = n p = 1, ..., r − 1 (5)

In this way ensembles of weighted and unweighted SVM’s can
be easily compared for a particular choice of the regularization
parameter C and the kernel function. As a consequence
assigning different weights to objects in our way doesn’t have
the side effect that the r − 1 binary optimization problems
become more balanced. Balancing the subproblems will in
general lead to undesirable outcomes on an independent test
set, although the class distributions of the binary systems
might be very unbalanced. For example when p = 1, the
positive class exists of the training objects with rank 1 and
the negative class is formed by training objects with rank
2, ..., r and. In this case we are dealing with a very unbalanced
problem. Penalizing errors of the positive class more severely
will obviously increase the power to correctly identify objects
of rank 1, but it will also affect the global performance of
the ensemble drastically. This will be further discussed in the
experiments section.

Rank estimates for the test set are obtained by combining the
estimated outcomes ŷpi of the r−1 binary classifiers. The intu-
itive interpretation of these binary outcomes says that ŷi > k if
ŷki = 1. We will assign rank k to object xi so that ŷpi = 1 for
all p smaller than k and ŷpi = −1 for all p equal to or bigger
than k. From a theoretical perspective it can happen that this
strategy leads to an ambiguity for few test objects. However,
on the data sets that were investigated (see section 5), such
objects were not detected. For multi-class classification these
ambiguities often occur and are solved by choosing the class
with the highest probability after training the ensemble with
binary SVM’s that generate probability estimates for each
class. Abe and Inoue [17] present fuzzy techniques to tackle
this problem in a One-versus-All ensemble. Similar strategies
could be applied for our ranking algorithm but this wasn’t
necessary for the analyzed datasets. Such objects could also
be seen as outliers in the test set.

IV. IMPLEMENTATION

The weights vpi give rise to a slightly different optimiza-
tion problem than the original SVM quadratic program. The
Lagrange primal function is given by:

LP =
1
2
||wp||2 + C

n∑

i=1

vpiξpi

−
n∑

i=1

αpiypiwp · Φ(xi) + bp − (1 − ξpi)

−
n∑

i=1

μpiξpi (6)
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and can be minimized w.r.t. the primal variables by setting the
respective derivatives to zero. We get

wp =
n∑

i=1

αpiypiΦ(xi), (7)

0 =
n∑

i=1

αpiypi, (8)

αpi = Cvpi − μi,∀i (9)

with constraints αpi, μpi, ξpi ≥ 0. By substituting this into (6)
we obtain the Wolfe dual:

LD =
n∑

i=1

αpi − 1
2

n∑

i=1

n∑

j=1

αpiαpjypiypjΦ(xi)Φ(xj). (10)

There is no need to compute the dot-product in kernel space
explicitly. It can be replaced by the kernel function. We
conclude that LD stays the same when object weights are
included in the primal objective function. The only difference
is that we maximize LD subject to 0 ≤ αpi ≤ Cvpi. To
implement this optimization problem, we carried out some
modifications to the SMO-algorithm (JAVA version) of the
LibSVM-software [18].

V. EXPERIMENTS

We compared our approach — further referred to as multi-
class ordinal support vector machines (MCOSvm) — to the
method summarized in section II, which is called support
vector ordinal regression with implicit constraints (Svorim).
We chose to compare with Svorim for three reasons: (a) the
method is very similar to our approach, (b) the authors claim to
achieve good generalization performance and (c) their software
is publicly accessible.

A. Generalization Performance

We picked 4 data sets from the ones that were analyzed by
[13]: boston housing, abalone, machine cpu and computer1.

These data sets are all (metric) regression data sets. The
continuous labels were discretized into 5 ranks so that each
rank contains an equal number of instances. In the next phase
20 random partitions into training set and test set were created
from the converted data.

We have a strong comment with the procedure of discretiz-
ing metric regression data sets for evaluating ranking methods.
By discretizing one will never achieve a good seperation
between successive ranks. This conclusion also holds for some
real world ordinal regression problems, but definitely not for
all. Therefore we also gave attention to the generalization
performance on 2 synthetic data sets. For the first data set we
sampled 4 ∗ 100 instances from 4 bivariate Gaussian clusters
with consecutive ranks. The mean of the clusters is set to
(10,10), (20,10), (20,20) and (30,20) respectively, σ1,σ2 and ρ

1The other data sets of [13] were not considered for various rea-
sons. We believe that pyrimidines is too small for the ranking problem
setting because it contains only 74 objects. Two versions of the data
set bank were available. The data sets california housing and census
need too much computing power. All data sets can be downloaded from
http://www.liacc.up.pt/l̃torgo/Regression/DataSets.html.

Fig. 1 One of the training data sets generated for the
first experiment with synthethic data

Fig. 2 One of the training data sets generated for the
second experiment with synthethic data

are fixed to 3, 3 and 0. This process was repeated 40 times, as
a result of which 20 train sets and 20 test sets of size 400 were
obtained. Figure 1 shows a scatter plot of one of the training
data sets. For the second synthetic problem again for Gaussian
clusters with means (10,10), (20,10), (30,10) and (40,10) were
considered. This time 10% uniform noise was added to the
data to test the robustness of the ranking methods. This gave
20 train sets of size 440 and 20 test sets of size 400. One of
the training data sets is displayed in figure 2.

We only examined the Gaussian RBF-kernel in our experi-
ments.

K(x, z) = e−γ||x−z||2 (11)

The original software was used to obtain the results for
Svorim. This program does a coarse grid search followed
by a fine search in the zone with initial best settings to
determine the optimal values for C and γ. Our JAVA extension
of LibSVM carries out a grid search in the same region
(−10 ≤ log2γ ≤ 5 and −5 ≤ log2C ≤ 10) as the LibSVM
software and with the same step size (log100.5), but without
zooming. Five fold stratified cross-validation on train set was
done to evaluate each search point2.

Different measures are used to compare the generalization
performance of ordinal regression methods, We looked at three
types of measures. Accuracy (Acc) is the standard measure for
(nominal) classification and is simply the percentage of correct
predictions. Mean absolute error takes the difference between

2For the large data set computer we took the search region smaller for both
methods to reduce computation time

International Journal of Electrical and Electronics Engineering 3:1 2009

49



the real rank and the predicted rank into account, i.e.

MAE =
1
n

n∑

i=1

|yi − ŷi| (12)

In addition “local” performance measures were also investi-
gated. The sensitivity and the specificity between two consec-
utive ranks give an impression of the kind of incorrect rank
predictions that occur the most often. We define the sensitivity
and the specificity of a two consecutive ranks p and p + 1 as:

Sensp+1
p =

|{xi|yi ≤ r ∧ ŷi ≤ r}|
|{xi|ŷi ≤ r}| (13)

Specp+1
p =

|{xi|yi > r ∧ ŷi > r}|
|{xi|ŷi > r}| (14)

Table I and II give an overview of the results averaged over
twenty test sets for Acc. and MAE. A Wilcoxon rank sum
test was used to determine whether the difference between
MCOSvm and Svorim is statistically significant. For accuracy
both methods win on some of the data sets, but the difference
is only significant at the 0.05-level for computer. For MAE
Svorim is slightly better on three of the analyzed problems.
MCOSvm is again significantly better on this measure for
computer.

TABLE I

ACCURACY FOR THE ANALYZED METHODS ON BENCHMARK DATASETS

TOGETHER WITH THE P-VALUE OF THE WILCOXON RANK TEST

Dataset Acc. MCOSvm Acc Svorim p-value

Boston Housing 66,52 % 67,44 % 0.34
Abalone 47.4 % 47.3 % 0.96

Computer 73.06 % 71.22 % < 0.001
Machine CPU 41.37 % 40.08 % 0.59

Synthetic1. 91.25 % 90.95 % 0.71
Synthetic2. 86.03 % 85.22 % 0.16

Consequently the sensitivity and specificity between rank
one and two was computed. We noticed that MCOSvm always
gave better results than Svorim for the “border” ranks (ranks
close to rank 1 and rank r). This leads to a much higher
sensitivity on these ranks. Table III gives an overview of
the sensitivity and the specificity for rank 1. One can see
that the sensitivity is much higher for MCOSvm for all
data sets, while the specificity doesn’t change much. Similar
results were obtained for the highest rank with a much higher
specificity for MCOSvm while the sensitivity is equal for
both methods, except for computer. It seems that MAE on
the one hand and Sens2

1 and Specr
r−1 on the other hand are

TABLE II

MEAN ABSOLUTE ERROR OF THE ANALYZED METHODS ON BENCHMARK

DATASETS TOGETHER WITH THE P-VALUE OF THE WILCOXON RANK TEST

Dataset MAE MCOSvm MAE Svorim p-value

Boston Housing 0.38 0.35 0.02
Abalone 0.66 0.65 0.02

Computer 0.29 0.30 < 0.001
Machine CPU 0.49 0.43 0.02

Synthetic1 0.092 0.093 0.74
Synthetic2 0.18 0.18 0.88

TABLE III

SENSITIVITY AND SPECIFICITY OF THE LOWEST RANK FOR MCOSVM

AND SVORIM

MCOSvm Svorim
Dataset Sens2

1 Spec21 Sens2
1 Spec21

Boston Housing 0.80 0.95 0.75 0.96
Abalone 0.45 0.95 0.39 0.96

Computer 0.86 0.98 0.87 0.97
Machine CPU 0.63 0.93 0.51 0.97

3clusters 0.95 0.98 0.92 0.98
4clusters 0.89 0.96 0.86 0.96

contradictory performance measures. The data set computer
is a good example to confirm this point of view because it
is the only experiment where MCOSvm did’n give a better
sensitivity at the lowest rank and simultaneously MCOSvm
achieved a significant lower value for MAE. Svorim is a bit
“biased” towards the middle ranks and this is the reason why
this method gives better results for MAE on three of the data
sets.

We claim that a high sensitivity at the border ranks is very
important for ranking systems. In information retrieval for
example, ordinal regression methods are often used to rank
web sites in accordance with their relevance to a search query
that is typed by a user of the search engine. In many cases
the user will only look at the first few results, so sensitivity
and specificity of the highest ranks are very important in this
case. Another example can be found in the domain of quality
control, where it is crucial to detect products of very low
quality without decreasing the specificity. It is clear that our
approach will give better results in these situations.

B. Computation Time

It is clear that time complexity of MCOSvm is comparable
to the One-versus-all ensemble for multi-class classification.
Here r−1 optimization problems with n constraints are solved
(instead of r for One-versus-all). The quadratic program of
Svorim has (r − 1)n constraints. Therefore our approach is
also comparable to Svorim. Actually the quadratic program
of Svorim is split into r − 1 smaller problems. Some time
could be gained because non support vectors slow down the
optimization process not very much. Unfortunately it was not
possible to compare both algorithms because they are written
in different program languages. Allthough MCOSvm was
written in JAVA and Svorim in C, we noticed that MCOSvm
was much faster. MCOSvm could obviously take advantage of
the speedup techniques built in LibSVM.

VI. CONCLUSION

An enhanced ensemble method for ordinal regression was
proposed in this article. Weighted Support Vector Machines
were used as base classifiers. Specific weights were assigned
to each object in such a way that errors of more than one rank
are heavier penalized. Therefore the weight of a training object
differs for each binary SVM. The insertion of object weights
doesn’t affect the dual objective function. It only leads to
slightly different constraints on the quadratic program. Exper-
iments on benchmark data sets and synthetic dat confirm that
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the ensemble performs good on unseen test data by comparison
with another kernel based ranking method. A much higher
sensitivity on the lowest rank was found, while the specificity
of that rank is more or less the same for both methods. The
high sensitivity on the lowest rank and the high specificity
on the highest rank influence mean absolute error a little
since both objectives work against each other. For accuracy
no significant difference was found between both methods.
Moreover the algorithm has a comparable time complexity
then Svorim and will be faster in practice because existing
(fast) implementations of SVM’s can easily be modified.
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