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Abstract

In cross-modal inference, we estimate complete fields
from noisy and missing observations of one sensory modal-
ity using structure found in another sensory modality. This
inference problem occurs in several areas including texture
reconstruction and reconstruction of geophysical fields. We
propose a method for cross-modal inference that simulta-
neously learns shape recipes between two modalities and
estimates missing information by using a prior on image
structure gleaned from the alternate modality. In the ab-
sence of a physical basis for representing image priors, we
use a statistical one that represents correlations in differ-
ential features. This is done efficiently using a perturba-
tion sampling scheme. Using just one example of the alter-
nate modality, we produce a factorized ensemble represen-
tation of feature correlations that yields efficient solutions
to large-sized spatial inference problems. We demonstrate
the utility of this approach on cross-modal inference with
depth and spectral data.

1. Introduction

Reconstruction of missing data in images arises as a key
problem in several fields. In the geosciences, for example,
one may have a digital elevation map (DEM) with missing
depth values at several map locations. As shown in Fig-
ure 2(A), a large proportion of the DEM image lacks any
data. In certain situations, this missing information can be
reconstructed from an alternate modality. In this instance,
Landsat data, which produces spectral measurements, can
act as a surrogate for DEM in the sense that the visual struc-
ture in Landsat images are similar to the depth structure.
The Landsat image corresponding to the DEM is shown in
Figure 2(B). This image is spatially registered to the DEM
data and has structures similar to what we see in the avail-
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able DEM. Problems of this nature can be called as cross-
modal inference problems.

We propose a solution to this spatial inference prob-
lem using state and parameter estimation. Parameter esti-
mation refers to the fact that the relationship between the
two modalities can be modeled by a function, with param-
eters that are estimated from available observations of each
modality. State estimation refers to the fact that an unknown
image, the state, is constructed by combining information
from both sources by respecting their uncertainties. We
combine these two classical estimation methods into a sin-
gle framework. We do this because a model is necessary to
relate the two modalities, and yet it is difficult to build the
perfect model. By combining the two estimation schemes,
we are able to compensate for model imperfections. This
methodology is related strongly to inverse problems studied
in the physical and computational sciences. In a Bayesian
sense, our method can be viewed as a MAP estimate of state
and parameters, whose uncertainties we model as Gaussian
distributions.

The only source of fully-observed information comes
from an alternate modality, often from a single image. A
key step in this process is to capture the structural correla-
tions in the alternate modality to produce the state estimates.
We show that cross-correlation of differential features is a
useful way to capture correlation between image structures.
This feature cross-correlation forms a useful prior for infer-
ence by functioning as an empirical error-covariance of the
prior uncertainty. We then show that the covariance can be
factorized into a square-root form and therefore need not be
computed explicitly. Further we show that a well-ranked
square-root can be produced from a single image of the al-
ternate modality, by perturbing it in space (position) and
scale-space (smoothness). We call the idea of represent-
ing feature responses as a square-root of a prior covariance
as an ensemble prior of image structure. By doing so, we
are able to solve the estimation problem that would other-
wise have been computationally prohibitive. In contrast to
other inference methods that simplify complexity of spatial
interactions by restricting connectivity in space (e.g. a pair-



wise MRF or a tree), our square-root form is a reduced rank
representation of the prior’s error covariance, and one that
preserves long-range correlations in images implicitly.

This framework is based on certain assumptions. First,
we suppose that preserving long-range correlations is use-
ful. This would be if we want to spread the adjustments that
sparse observations of the primary modality prompt to other
locations whose appearance correlates well with it. Sec-
ond, we assume that correlations in differential features can
be a good representation of the similarity we see in visual
structures. This assumption is reasonable for differential
features have had a long history of use in modeling visual
appearance. Third, we assume that differential features are
computed at a scale at which correlations are useful. Fourth,
we assume that both modalities are spatially registered and
if they aren’t some algorithm has been applied to register
them. This will be demonstrated in examples. Specifically,
we demonstrate the cross-modal inference solution on for
inferring DEM from sparse observations of DEM and com-
plete observations of Landsat.

2 Related Work

The inference problem presented here is related to sev-
eral research threads. Techniques developed for various ap-
plications including texture synthesis, texture infilling, in-
painting, image quilting [3] and image analogies [9] are
related to the present work. In texture synthesis, Heeger
and Bergen [8] used histograms of filter responses at mul-
tiple scales and orientations. This is useful for represent-
ing random textures, but less so for structured textures. De
Bonet [2] uses a multiscale procedure that randomizes the
fine scale texture patches in a way that preserves the con-
ditional distribution of filter outputs over coarser scale out-
puts. Portilla and Simoncelli [10] algorithm for texture syn-
thesis uses joint statistics of first and second order wavelet
coefficients.

Example-based methods for synthesis, super-resolution
and transfer are also related to the present work. We bor-
row the idea of using the best match as the first guess to
the inference problem (see 4) from this work. Efros and
Leung [4] synthesize textures one pixel at a time by find-
ing closely matching neighborhoods and randomly choos-
ing one. The evolving context constrains the new choices
and provides sufficient “continuity” of the texture, but this
algorithm is quite expensive/slow. In example-based super-
resolution [6] a low-resolution image is used to find simi-
lar patches in a dictionary, whose high resolution counter-
parts are used for inference on a Markov network. Although
this isn’t directly related, example-based schemes need to
solve a spatial inference problem. The Markov assumption
in space, in particular, leads to a simplification that stands in
contrast to what we do, rank reduction. We posit that long

range correlations are easier to represent in our scheme.
Work in image-infilling is related, but only from an ap-

plication point of view. In one PDE-based infilling frame-
work, Bertalmio et al. [1], combine Efros and Leung’s [4]
texture synthesis scheme with an advection scheme. Ad-
vection is modulated by the image laplacian, which the
isophotes and image brightness values are propagated. Al-
though there is, in general, a relationship between PDE
methods and variational formulations, what we propose is
different.

From a methodological perspective, the proposed tech-
nique is close to the ensemble Kalman filter [5]. As noted
in the introduction, our technique may be viewed as re-
stricting rank instead of restricting connectivity in space
or scale. Therefore, non-parametric inference on a Markov
graph also bears some relation to the proposed method. Our
technique is parametric because we assume the distributions
are Gaussian. But the parameters of the Gaussians are ob-
tained statistically. A low-rank factorization allows us to
solve estimation quite quickly. Of course, if one were to
disallow long-range correlations using a decaying kernel,
then the proposed method can, in principle, be sped up us-
ing a multipole expansion [7]. The proposed method can
also be implemented in a multiresolution manner, but these
extensions are not a subject of this paper.

3 Cross-modal Fusion

One way to solve the cross-modal inference problem is
via parameter estimation.

We can suppose that we have an observed image of
modality B, called Y (b). This image is assumed to be in-
complete and noisy, and therefore we may model the obser-
vation via the equation:

Y (b) = H X(b) + η (1)

This equation states that the observations can be obtained
from a true state (or image) of modality B, X (b), using ad-
ditive noise η at few locations indicated by the binary inci-
dence matrix H.

We also assume we have an observation of modality A
called Y (a), and an associated state X (a). We model the re-
lationship between the two modalities as a function of their
states

X(b) = f(X(a); r) (2)

Where r is a vector of unknown parameters. This function
is deterministic.

We can write the inference problem by characterizing the
posterior density P (X(b), X(a), r|Y (b), Y (a)). This can be
written via Bayes rule as

P (X(b), X(a), r|Y (b), Y (a)) ∝ P (Y (b)|X(b))



P (X(b)|X(a), r)

P (X(a)|Y (a))

P (r) (3)

We assume that we observe modality A perfectly, that is
P (X(a)|Y (a)) = δ(Y (a)). We also assumed that the
model between modality A and B is deterministic, that is
P (X(b)|X(a), r) = δ(X(a), r) With these assumptions, it
follows that the inference problem is

P (r|Y (a), Y (b)) ∝ P (Y (b)|Y (a), r)P (r) (4)

This is a parameter estimation problem and can be solved
by regression. If we model η as an i.i.d. random variable,
that is η ∼ N(0, σ2

I) and assume we have a uniform prior
on r, then the solution r̂ is one that minimizes the norm
Jo(r) = 1

σ2 ||Y
(b) − Hf(Y (a); r)||.

We suppose that the model f is linear. In particu-
lar, we model it as a convolution, and write X (b)[p] =
(X(a) ? a)[p] + b following Torralba and Freeman [11]. By
writing the vector r = [a b]T this model can be writ-
ten as f(X(a)) = ξr, where ξ is constructed from X (a)

and r is a vector of parameters. We can also construct a
convolution matrix from a and write the linear model as
f(X(a)) = AX(a) + B, where B is a vector of replicated b
values.

If models were perfect, then parameter estimation would
suffice, but this is often not the case. For example, Fig-
ure 2(C) shows the result of applying a linear model to a
Landsat image. As can be seen in an overlay of DEM data
on the reconstructed output, in Figure 2(D), the reconstruc-
tion is smooth and captures some variability, but there is a
significant difference that is not just white noise. We posit
that by combining state estimation with parameter estima-
tion we can address model imperfections.

3.1 State and Parameter Estimation

The motivation for the proposed approach is that by
making adjustments to the state X (a) in some consistent
way, we may be able to compensate for model imperfec-
tions. This immediately suggests that the conditional prior
P (X(a)|Y (a)) is no longer degenerate. We can expand
equation 3 now to be:

P (X(a), r|Y (a), Y (b)) ∝ P (Y (b)|X(a), r)P (X(a)|Y (a))
(5)

We have once again assumed that the model f is determin-
istic and we have a uniform prior on r. If we assume the
conditional prior is Gaussian, we can derive a quadratic ob-
jective:

J(X(a), r) =

(Y (b) − H(AX(a) + B))T C−1
bb (Y (b) − H(AX(a) + B))

+ (X(a) − Y (a))T C−1
aa (X(a) − Y (a)) (6)

Here Cbb = σ2
I because we assume the noise to be

iid. To solve this objective we compute the Euler-Lagrange
equations, which lead to the following coupled equations.
The first is parameter estimation:

ri = (Hξi)
−1Y (b) (7)

The second is state estimation:

X
(a)
i+1 = X

(a)
i

+ CaaHT (HCaaHT + Cbb)
−1

(Y (b) − H(AiX
(a)
i + Bi))) (8)

The subscript i is used to denote the fact that these cou-
pled equations must be iterated. Starting at i = 0, we set
X

(a)
0 = Y (a), solve equation shape to compute r0. Then

we rewrite it as A0, B0 and estimate X
(a)
1 . Then we iterate

until the objective does not improve. The final solution is
f(X

(a)
n ; rn) at some iteration n

The matrix Cbb is the covariance of the noise model and
is conveniently assumed to be diagonal and much smaller in
energy than Caa, indicating high confidence in modality B
data where it is observed. The matrix Caa can be viewed as
a conditional Gaussian prior on modality A. But just what
is this prior supposed to be?

3.2 Ensemble Priors

We would like to construct Caa so that it captures the
correlation between structures in the image. This way,
sparse measurements can be used to update unobserved
state elements. If we suppose that visual structures can
be represented by some features computed from the im-
age, then we can represent Caa using the feature correla-
tions. One set of features that prove to be good representa-
tion of image structures is the differential structure of the
image. As an example lets think of an image as a one-
dimensional vector X, its differential structure is JN =
[∂X

∂p
∂2X
∂p2 · · · ∂NX

∂pN ] to some order N . Please note that here
JN is a matrix of size n × N where each column of size
n is the vector of spatial derivatives. In practice we restrict
the derivatives to the first two orders, that is use J2.

So we can now think of Caa = J2J
T
2 (1). Computing

Caa explicitly in this manner is both space and hence time
consuming. For example if the vector X is of size 360000,
a 600x600 image, then Caa is 360, 000 × 360, 000. It is
impractical to construct this matrix, let alone inverting the

1We ignore the normalizing denominator in the rest of the paper. To be
sure, For JN is N-1 and J2 is 1. It eventually cancels out in Equation 8



innovation covariance HCaaHT + Cbb in equation 8, or
using it to solve a linear system. We need a factorization
that can be exploited usefully.

We will show that the innovation covariance can be fac-
torized. J2 represents the square root form of the covari-
ance, so one already has a nice factorization of Caa. We
can also factorize e Cbb. To do this construct an ensem-
ble of observations arranged in a matrix Y (b). Each col-
umn of this matrix is obtained by perturbing Y (b) using
the noise model. We need as many columns as J2 has.
Then Cbb = Ỹ(b)(Ỹ(b))T where Ỹ(b) is a matrix of obser-
vation deviations. If we assume that the observations are
uncorrelated, we can write a square-root for the innovation
as C = HJ2 + Ỹ(b) and express the posterior covariance
HCaaHT +Cbb = CCT . The matrix C is small, and singu-
lar value decomposition C = USV T can be used to invert
CCT , without ever computing the latter. This appears to
be a nice scheme. The key here was to use the square-root
form of the observational noise using samples from the dis-
tribution that observations are drawn from. Since Cbb is di-
agonal it is easy to draw random samples, so we don’t have
a sampling problem per se.

But there is a problem! The number of columns in J2 is
too small (2 for 1D or 5 for 2D); and so C is a 360000× 5
matrix. Its rank is too low to be useful. We are faced with
a dilemma. Computing the innovation covariance directly
is nearly impossible, it is too big. The square-root form C
may be too rank deficient unless we use “lots of features”
but yet, intuitively we can argue that even the gradient corre-
lations J1J

T
1 must provide useful information about image

structures to construct a prior covariance.
We propose a solution that represents Caa using ensem-

bles that are perturbations in some space (to be discussed)
and its construction is similar to the discussion for Cbb.
Let’s start with the first derivative. Observe that J1J

T
1 can

be computed statistically. To see this, write the observed
image of modality A as Y (a)(p) and consider a truncated
Taylor expansion for a perturbation in position ∆. This per-
turbation is a normal random variable of two dimensions
with mean 0 and some (user specified) standard deviation.
All pixels are perturbed by the same amount. The expansion
can be written as

Y (a)(p + ∆) − Y (a)(p) ≈ ∆T ∂Y (a)

∂p
(9)

The mean of this deviation is zero, because
E[∆T ∂Y (a)

∂p
] = 0. We are now in a position to com-

pute sampled representations that represent the gradient
correlations of the image. We assemble the ensemble matrix
Y

(a)
1 = [Y (a)(p + ∆0) Y (a)(p + ∆1) . . . Y (a)(p + ∆N )].

Its covariance is Ỹ
(a)
1 (Ỹ

(a)
1 )T . This covariance, by con-

struction, contains the correlation of the first derivative
responses. Similarly, by generating an ensemble matrix

Y
(a)
2 comprising of images that are blurred versions of each

other, a covariance matrix that represents the correlations
of the image laplacian is generated. The prior covariance
Caa ∝ (Ỹ

(a)
2 (Ỹ

(a)
2 )T + Ỹ

(a)
1 (Ỹ

(a)
1 )T )). This can be

generated from a square-root Y (a) = [Y
(a)
1 Y

(a)
2 ] as

Caa = Ỹ(a)(Ỹ(a))T .

(A) Position perturbed signal (B) Covariance

(C) Scale perturbed signal (D) Covariance

Figure 1. Ensemble generation with position and scale
perturbations. The top-left image (A) shows a num-
ber of Gaussian signals that are displaced from one
another. It is easy to see that their covariance, shown
in image (B) captures the outer-product of the first
derivative of the signal, or the correlation of the first
derivative. Similarly, the second derivative corre-
lations can be obtained by perturbing in scale (or
smoothness) as shown in (C) and (D).

Figure 1 depicts an ensemble prior for a simple exam-
ple. A one-dimensional Gaussian is perturbed in position,
shown in image (A) and its covariance is a good representa-
tion of the outer-product of the derivative, shown in image
(B). Image (C) shows a “scale” perturbation and its covari-
ance, shown in image (D), represents the outer-product of
the second derivative well. Thus an ensemble representa-
tion of feature correlations is generated.

As noted, the inversion of HCaaHT + Cbb can be con-
ducted from the square-root C = H Ỹ(a) + Ỹ(b). If the
prior square-root is generated using N samples each of dis-
placement and scale-space (smoothness) perturbations, this
matrix is of size m × 2N , where there are m observed lo-
cations. The (pseudo) inverse of the innovation covariance
CCT then is calculated directly from the square-root C us-
ing SVD. That is C = USV T and (CCT )−1 = U#S2

#UT
#

where S#(i) = 1/S(i), i = 1 . . . k. U# = U(:, 1 : k).
That is the k leading singular values and vectors are cho-



sen. Also note that k ≤ N << n, and k is a tunable pa-
rameter. In experiments, we typically use 50 to 200 samples
and have let k to be the same.

Using this ensemble prior the second Euler-Lagrange
equation 8 can be evaluated. To do so, note that it can be
written as

X
(a)
i+1 = X

(a)
i

+ Ỹ(a)
(

H(Ỹ(a))
)T

(U#S2
#UT

#)

(Y (b) − H(AiX
(a)
i + Bi))) (10)

A right to left multiplication solves this equation efficiently.

3.3 The Algorithm

We are now in a position to describe an algorithm for
simultaneous state and parameter inference. The steps of
this algorithm are

1. Inputs: Y (a), Y (b) and σ, the standard deviation of
Y (b).

2. Assemble the ensemble matrix Y (a). Assemble the
ensemble matrix Y(b) and therefore C. Compute the
truncated singular values and vectors of the innovation
square-root C.

3. Set i=0. Set X
(a)
i to be Y (a).

4. Solve Equation 7 and compute the parameters ri and
equivalently Ai and Bi

5. Solve Equation 8 and compute an updated X
(a)
i+1, using

Equation 10.

6. Set i = i+1. Repeat the last two steps until convergence.

4 Application of Methodology

We demonstrate cross-modal inference using an example
illustrated in Figure 2. The top-left image (A) is DEM with
lots of missing data. The Landsat image is shown in (B) and
the two are spatially registered. They are each of size 600×
600. A displacement of standard deviation 10 pixels and
deviation in scale of 2 around a mean of 3 is used to generate
a total of 200 samples. The parameter estimation or shape
recipe output, without any state estimation is shown in (C).
It is overlaid with the true DEM data in (D). This overlay
replaces an estimated pixel with the observed DEM pixel,
where available. This shows that the relation between DEM
and Landsat is not completely captured.

Image (E) shows the output of the state and parameter es-
timation. An overlay of true DEM on the synthesized DEM

(F) shows that the estimate is much better. This is also indi-
cated by a reduced estimation error (not shown).

This example demonstrates that combining state and pa-
rameter estimation is useful.It also shows that correlation in
differential structure can be useful for state estimation. It
should be noted that it is important to capture the feature
scales well. Because using differential features (whether by
sampling or directly) includes some smoothing, we think
this algorithm is useful for smoothly varying fields, such as
the ones shown, and found in many geophysical problems.
It should also be noted that good estimates of state depend
on the balance between the prior uncertainty and the like-
lihood (noise). If we set the observation uncertainty to be
too high, then the filter can depart from the observations
and essentially “paste” the first guess. On the other-hand,
if the observational uncertainty is set too low (in the limit,
0), then the filter will depart too, because the state will stick
to the observations where they are available, but do little
elsewhere.

5 Conclusions and Future Work

In this paper, a Bayesian formulation of the cross-modal
inference problem is developed. The solution simultane-
ously learns a shape recipe model and estimates states. A
statistical basis is used to represent the covariance of the
Gaussian distribution representing the conditional prior. In
particular, the prior is derived from a perturbation of ap-
proximation to the differential image structure. This allows
us to produce a well-conditioned factorization of the prior’s
covariance that yields fast solutions. We are interested in
developing multiscale versions of this inference problem as
well as exploring other perturbation models appropriate for
inference tasks in vision.
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