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ABSTRACT

Next-generation sequencing (NGS) approaches

rapidly produce millions to billions of short reads,

which allow pathogen detection and discovery in hu-

man clinical, animal and environmental samples. A

major limitation of sequence homology-based iden-

tification for highly divergent microorganisms is the

short length of reads generated by most highly par-

allel sequencing technologies. Short reads require

a high level of sequence similarities to annotated

genes to confidently predict gene function or ho-

mology. Such recognition of highly divergent ho-

mologues can be improved by reference-free (de
novo) assembly of short overlapping sequence reads

into larger contigs. We describe an ensemble strat-

egy that integrates the sequential use of various

de Bruijn graph and overlap-layout-consensus as-

semblers with a novel partitioned sub-assembly ap-

proach. We also proposed new quality metrics that

are suitable for evaluating metagenome de novo as-

sembly. We demonstrate that this new ensemble

strategy tested using in silico spike-in, clinical and

environmental NGS datasets achieved significantly

better contigs than current approaches.

INTRODUCTION

With rapidly declining cost, next-generation sequencing
(NGS) approaches have become common for comprehen-
sive pathogen identi�cation in clinical and environmen-
tal samples. This powerful technology has numerous ap-
plications in diagnosis of infectious diseases, environmen-
tal surveillance, metagenomic analysis of human and ani-
mal microbiomes, and novel pathogen discovery (1–5). Us-

ing bioinformatics, microbial sequences are identi�ed by
comparing millions of NGS reads to sequences in publicly
available reference databases. One crucial step in the anal-
ysis is de novo metagenome assembly of short overlapping
reads into longer contigs. Successful assembly can generate
long contigs or even complete genomes, which has two ma-
jor advantages: (i) enhance the sensitivity to detect novel
pathogens with only weak sequence homology to known
pathogens by generation of long contigs (6); and (ii) reduce
the cost and labor needed tomanually extend newmicrobial
genomes with polymerase chain recation.
Many assemblers have been recently categorized in a re-

view by Miller et al. (7). One school of assemblers such
as AMOS (8), CAP3 (9), Celera (10), VCAKE (11) and
Newbler (12) use traditional olconsensus (OLC) algorithms
which identify overlaps between various long reads and sub-
sequently merge the read fragments into longer sequences.
This approach requires pairwise evaluation of a large num-
ber of reads, which is computationally intensive. Another
group of assemblers, such as SOAPdenovo2 (13), ABySS
(14), Velvet (15),MetaVelvet (16) andALLPATHS-LG (17)
speed up assembly by using de Bruijn graph (DBG) al-
gorithms. DBG methods leverage graph theory by using
strings of a particular length (k-mer) to generate a sequence
graph where each node is a (k-1)-mer and each edge is a
k-mer which connects suf�x and pre�x nodes. For exam-
ple, a 4-mer edge ATTG in a DBG connects pre�x node
ATT and suf�x node TTG. To generate a DBG, each read
is mapped as a path of k-mers, one base at a time. Sequence
redundancy is naturally handled by the graph without af-
fecting the number of nodes. Much greater speed over OLC
assemblers is thus achieved by theDBGalgorithm by avoid-
ing pairwise comparison of all reads, which can be highly
redundant. Assemblers have also been developed for spe-
ci�c genomic applications, such as Trinity (18), a DBG-
based de novo transcriptome assembler, Masurca (19) a hy-
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brid assembler that combines the concept ofDBGandOLC
methods and IDBA-UD, an assembler designed for uneven
metagenomic applications (20). In addition to DBG and
OLC approaches, other assembly algorithms have been re-
ported, including MIRA4 (21) and Omega (22).
Many de novo assemblers were comprehensively eval-

uated by the Assemblathon1 (23), Assemblathon2 (24)
and GAGE (Genome Assembly Assessment Project) (25)
projects. The key lessons learned from these projects are that
there is a lack of consensus from assemblies generated by
different assemblers, and that there are no universal winners
across different datasets. In many cases, the assemblers are
able to generate good-sized contigs up to hundreds of kb.
However, the tested datasets focused on NGS assembly of
large human, animal or bacterial genomes from pure sam-
ples and cultures and at a high depth of coverage, whereas
metagenomic samples present greater challenges because
they contain a complexmixture of sequence fragments from
multiple viruses, bacteria and animal/human host DNA.
Based on published data fromour group (1) and others (26),
DBG assemblers rarely generate contigs more than a few
kb in real-world metagenomic samples. Given the lack of a
‘best’ assembler, the Assemblathon papers advised against
relying solely on a single assembler for any given dataset of
interest. One recent paper presents a tool for comparing the
performance of assemblers by scoring each assembly based
on the consistency between assemblies and input reads and
read pairs (27). However, it is still not clear how to optimally
integrate results from multiple assemblers and derive better
contigs based on a combined approach.
In this study, our goal was to evaluate current assemblers

and to create a de novo assembly strategy tailored for analy-
sis of metagenomic samples. In our previous report (1), we
found empirically that a sequential DBG and OLC method
that also incorporates partitioning was more ef�cient at
contig assembly of viral genomes from metagenomic NGS
data. Here, we formally extend these �ndings by rigorous
comparison of common DBG and OLC assemblers and
show that a two-step ensemble assembly strategy generates
contigs of much higher quality than those achieved from
single assemblers alone. The ensemble strategy is thus di-
rectly applicable for assembly of small viral, bacterial and
eukaryotic mitochondrial genomes from a wide variety of
NGS metagenomic datasets as well as from pure cultures.

MATERIALS AND METHODS

Datasets

Three groups of datasets named ‘in silico-virus spiked’,
‘pooled virus standard’ and ‘human/animal pathogens’,
were used to evaluate the ensemble strategy. All datasets
contained at least one target pathogen with a fully se-
quenced reference genome, which was used as the standard
to evaluate contig size and degree of misassembly.
The ‘in silico-virus spiked’ datasets contain sequences

from Bas-Congo virus (BASV), a novel rhabdovirus asso-
ciated with hemorrhagic fever cases in central Africa (28).
In silico-generated BASV sequences were computationally
spiked at various read lengths and depths of coverage (Ta-
ble 1) into a complex in silico metagenomic background
consisting of 10 million human reads, 2.5 million bacterial

reads and 0.5 million viruses, generating sets A through J.
The in silico background reads were generated from the Na-
tional Center for Biotechnology Information (NCBI) hg19,
bacterial RefSeq and viral RefSeq databases, as described
previously (1). In addition, two of the datasets contained
in silico BASV reads that were computationally spiked into
human metagenomic background NGS datasets generated
from nasal swabs from patients with respiratory infection (n
= 3 845 484 reads) and stool samples from patients with di-
arrheal disease (n = 9 652 958 reads), respectively. The two
human background NGS datasets were obtained by Illu-
mina HiSeq sequencing and were constructed as previously
described (1). All in silico reads were paired-end reads and
generated at a 2% error rate using the wgsim program in the
SAMtools software package (29).
The ‘pooled virus standard’ dataset corresponds to a bi-

ological reagent provided by the National Institute for Bio-
logical Standards and Control (NIBSC). This reagent is as-
sembled from clinical specimens and egg- and cell-cultured
passaged viruses and consists of a pool of 25 human viral
pathogens from two DNA and seven RNA viral families,
including adenovirus 2 and 41, herpesviruses 1–5, rotavirus
A, astrovirus, norovirus GI and GII, sapovirus C12, coron-
avirus 229E, parechovirus 3, rhinovirusA39, coxsackievirus
B4, in�uenza viruses A(H1N1), A(H3N2) and B, human
metapneumovirus, respiratory syncytial virus and parain-
�uenzaviruses 1–4. The genome sizes of the reagent viruses
ranged from ∼6 to ∼234 kb. The NGS dataset generated
from Illumina MiSeq sequencing of the reagent contained
∼20 million raw 250 base pair (bp) paired-end reads.
The eight ‘human/animal pathogen’ datasets include a

variety of pathogens of different types and genome sizes
sequenced using the Illumina MiSeq or HiSeq platform
from human and animal metagenomic samples (Table 2).
Datasets I-IV contain NGS reads from four selected viral
metagenomic libraries (human blood, human stool, animal
tissue and animal stool) generated using the Nextera XT kit
and sequenced as 250 bp Paired-end reads on the Illumina
MiSeq platform (30). The four datasets contain 0.28–1.37
million raw NGS reads each and include sequences repre-
senting four viral genomes. Dataset V (virus) was generated
from pooled pediatric diarrheal stool (1,31) and included
sequences representing two viral genomes. Dataset VI (bac-
teria) was generated from a plasma sample from a patient
from Africa with typhoid fever from Salmonella typhi bac-
teremia generated using a Truseq adapted method as de-
scribed previously (n= 16 540 336 reads) (1). In addition, to
compare the performance of the various de novo assembly
approaches in traditional assembly of bacterial and eukary-
otic pathogens from pure cultures, we also analyzed NGS
datasets corresponding to cultured isolates of Staphylococ-
cus aureus prepared using a Truseq DNA library prepara-
tion kit (Dataset VII, n = 1 million reads) and Naegleria
fowleri (32) (Dataset VIII, n= 10 million reads), a parasitic
amoeba that causes primary amebic meningoencephalitis.

Preprocessing

Raw reads obtained from Illumina sequencing were pre-
processed before assembly as follows. Human host reads
were subtracted bymapping the readswith human reference
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Table 1. BASV sequences representing varying degree of read length and coveragewere spiked into synthetic background (setA to setJ) or realmetagenomic

background (Nasal, Stool) to create ‘in silico-virus spiked’ datasets

Dataset Read Length BASV Coverage Background

setA 100 200 10M human + 2.5M bact + 0.5M viral
setB 100 20 10M human + 2.5M bact + 0.5M viral
setC 100 10 10M human + 2.5M bact + 0.5M viral
setD 100 4 10M human + 2.5M bact + 0.5M viral
setE 100 2 10M human + 2.5M bact + 0.5M viral
setF 600 60 10M human + 2.5M bact + 0.5M viral
setG 300 30 10M human + 2.5M bact + 0.5M viral
setH 150 15 10M human + 2.5M bact + 0.5M viral
setI 75 7.5 10M human + 2.5M bact + 0.5M viral
setJ 50 5 10M human + 2.5M bact + 0.5M viral
Nasal 100 10 3.8M nasopharyngeal swab sample
Stool 100 10 9.6M stool background containing a norovirus

Table 2. Eight datasets (‘human/animal pathogens’) containing at least nine pathogens with known genomic sequences represent various pathogen type,

genome size, sample background and sequencing output that were encountered in real world metagenome and clinical applications using NGS

Dataset Target genome Read length #reads Genome type Genome size Description

I Feline sakobuvirus

(NC 022802)

250 + 250 1.37M ssRNA virus 7059 (complete polyprotein) Animal feces

II Unclassi�ed phage 8L3 250 + 250 1.28M dsDNA virus 96429 Human feces

III Parvovirus B19 250 + 250 0.28M ssDNA virus 4876 (near complete genome) Human blood

IV Enhydra lutris

papillomavirus 1

(NC 023873)

250 + 250 0.34M dsDNA virus 8109 Animal tissue

V Human parechovirus

(KJ152442)

75 + 75 12.4M ssRNA virus 7217 Diarrheal pool of 8 individuals

V Human sapovirus

(AY646853)

75 + 75 12.4M ssRNA virus 7429 Diarrheal pool of 8 individuals

VI Salmonella typhi

(CP002099)

100 + 100 16.5M Bacterium 4791958 Plasma from patient with acute hemorrhagic

fever

VII Staphylococcus aureus

(HF937103)

100 + 100 1.0M Bacterium 2864125 Bacterial genome, pure culture

VIII Naegleria fowleri

mitochondrion

(NC 021104)

100 + 100 10M Eukaryote

mitochondrion

49531 Isolation from the cerebrospinal �uid (CSF) of

a patient

genome hg19 using bowtie2 (33). Reads that were identical
fromnucleotide positions 5–45were considered clonal reads
and only one random copy of clonal reads was retained.
The other clonal sequences were replaced with sequence
‘A’ as a place holder; thus the original order of the paired-
end �les was preserved. A paired-end sequence record was
removed only if both ends were replaced. Low-quality se-
quences were trimmed using a Phred quality score 10 as the
threshold. Adaptor and primer sequences were trimmed us-
ing the BLAST-based VecScreen at default parameters (34).

Ensemble assemblers

As a proof of concept that longer viral contigs can be better
detected, sequences of various lengths (200, 500, 1000 and
2000 bp) were extracted fromVirus RefSeq (Release 61) and
mutated at various probabilities (0, 0.1, 0.2, 0.3, 0.4, 0.5) for
each base. We then applied blastx and blastn with E-value
0.01 as cutoff on the simulated contigs against Virus RefSeq
protein or nucleotide database. Figure 1A shows that longer
contigs clearly have a better chance to be detected by blastx,
which is especially true for highly divergent contigs. Figure
1B shows the same pattern using blastn. However, amino
acid-based search shows better detection rate for highly di-
vergent organisms than nucleotide-based homology search.
We sampled commonly used assemblers including SOAP-

denovo2 r240 (S), ABySS 1.3.7 (A),MetaVelvet 1.2.10 (V),
OLC assemblers including Celera wgs-8.1 (W), Cap3 (C)
and Minimo amos-3.1.0 (O) and other assemblers includ-

ing Omega v1.0.2 (G), Mira 4.0.2 (M),MaSuRCA-2.2.0
(X), IDBA-UD 1.1.1(I) and Trinity r20140717 (T). Parti-
tioning was performed by randomly splitting original se-
quences into chunks of 100K reads each. The de novo as-
sembly was then performed on each chunk separately. Re-
sultant contigs from each chunkwere then combined as out-
put.We use ‘s’, ‘a’ and ‘v’, to represent partitioned assembly
for SOAPdenovo2, ABySS and MetaVelvet respectively.
Figure 1C outlines the ensemble assembly strategy, which

can be viewed as a 3-step process. The �rst step is to per-
form S, A, V and their corresponding partitioned versions
s, a, v individually. The second step is to combine one or
more output contigs from the �rst step and use a length
�lter (e.g. 300 bp used here) to only retain longer contigs
above a certain threshold. The purpose of the length �lter-
ing is to eliminate smaller contig fragments that can signif-
icantly slow down the �nal step. The �nal step is to apply
O or C on the combined contigs to generate �nal contigs.
We also tested whether using T or M at the second assem-
bly step can produce performance advantages, although T
and M are technically not OLC assemblers. The ensemble
assembly algorithms are labeled by their components. For
example, SC represents S followed by C; SAVaO represents
�rst combining the outputs of S, A, V and a, and then ap-
plying O as the last step.
The main conventional quality metric for de novo as-

sembly is the contig size. We initially evaluated the com-
monly applied N50 or N95 metrics (data not shown), but
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Figure 1. Motivation and design of the ensemble assembly strategy. (A)
Detection rates using blastx at various sequence lengths and mutation
rates. Sequences were randomly extracted from virus RefSeq at various
lengths (200 bp, 500 bp, 1000 bp, 2000 bp). Each base were mutated at dif-
ferent probability (P= 0, 0.1, 0.2, 0.3, 0.4, 0.5) to simulate various degrees
of divergence. (B) Detection rates using blastn at various sequence lengths
and mutation rates. (C) The ensemble assembler that integrates DBG as-
semblers and OLC assemblers. The cleaned reads were �rst assembled in-
dividual DBG assemblers, partitioned assemblers orMira4. The output of
the �rst step is combined, length �ltered and feed into the OLC assemblers
for �nal assembly. The choice of individual assemblers as components can
generate a number of ensemble assembly strategies.

decided that they are not applicable here, because N50
and N95 can be signi�cantly skewed if the assembly out-
put contains a large number of small fragments, as is fre-
quently the case for metagenomic data. Furthermore, N50
and N95 do not speci�cally address assembly of small tar-
get genomes within a complex metagenomic background
(a ‘needle-in-a-haystack’ problem). Direct measurements
of the sizes of contigs aligning to known target microbial
genomes and of the degree of misassembly are more rel-
evant for metagenomic samples. Thus, we de�ned three
alignment-based parameters as metrics for the ef�ciency of
de novo assembly of target genomes: (1) the ‘Max Aligned
Contig Region (MACR)’ or ‘Max Aligned Contig Region
Percentage (MACRP)’, the size (bp) or percent coverage
(%) of the target genome achieved by the single longest lo-
cal alignment between any contig and that genome; (2) the
‘C1000’, the size (bp) or percent coverage (%) of the target
genome covered by alignments 1000 bp or larger; and (3) the
‘chimera index’, the percentage of unaligning regions within
all contigs that align to the target genome. Speci�cally, for
a given target genome of size R, the de�nitions of MACR,
MACRP, C1000 and chimera index are as follows:

CT: the full set of contigs that can be aligned to the target
genome

AL: all aligned regions in CT
AL1000: all aligned regions in CT that are 1000 bp or
greater

UA: all unaligned regions in CT

M: summed length of AL (bp)
N: summed length of UA (bp)
C1000: union of AL1000 bymerging the overlapped regions
MACR (bp) = max (AL)
MACRP (%) = max (AL)/R × 100%
Chimera Index (%) = N/(M+N) × 100%

MACR and MACRP measure single largest alignment
size, C1000 measures collectively the size of large align-
ments and chimera index measures the percentage of incor-
rect contig formation. Supplementary Figure S1 shows an
example how these metrics were computed.
Determination of the exact alignment between contigs

and target genome was performed using the stringent align-
ment programMegaBLAST (34) at default parameters. We
also recorded timing performance metrics for each run. All
assembly runs were executed on identical Intel R© 8-core
Xeon servers each with 32 GB memory and 1 TeraBytes di-
rect attached storage. The S, A, V, M, W, T, X, s, a, v as-
semblies were all executed using 8-threads, whereas O and
C only support single-thread processing.

Composite performance metric and ranking of assemblers

We generated comparative performance metrics for the dif-
ferent assemblers by normalizing each metric into a range
of 0–5, with larger values representing better performance.
For example, given the C1000 metric, the corresponding
normalized ratio, denoted as C1000NR for a speci�c target
genome, can be de�ned as:

C1000NR =

5 × C1000/max(C1000 of all assemblers).

Similarly, we de�ne

MACRNR =

5 × MACR/max(MACR of all assemblers),

AccuracyNR =

5 × (1 − ChimeraIndex/max(ChimeraIndex of all assemblers)),

SpeedNR =

5 × (1 − Time/max(Time of all assemblers)).

The composite performance metric (CPM) is the
weighted average of four metrics about contig qualities. We
assign equal weights to alignment size and accuracy:

CPM = 0.25 × (MACRNR + C1000NR) +

0.5 × AccuracyNR

Based on CPMs calculated for each assembler and target
genome, we can rank the assemblers based on the average
CPMs across all target genomes.

RESULTS

Determination of optimal k-mer size for DBG assemblers

MostDBG assemblers require that a k-mer size be provided
as a con�gurable parameter. As the choice of an optimal k-
mer value is not clear with metagenome assembly, we tested
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Figure 2. Comparison of different assembly strategies using the in silico-
virus spiked BASV datasets. (A) Comparing MACR for different K-mer
size using A, V and S on the in silico-virus spiked BASV dataset (SetA-
SetJ). Note that V only supports K ≤ 31. The bottom and top of the box
are always the �rst and third quartiles, and the band inside the box is the
median; (B) C1000 distribution for each assembler; (C) MACR for each
dataset; (D) chimera index; (E) execution time; (F) percentage of execution
time spent on OLC �nal assembly; and (G) contig formation for setB: the
blue line represents the 12 648 bp BASV genome. The red lines are contigs
that are aligned to the BASV genome. The assemblers of Figure B, D, E
and F were ordered by average values. Individual assemblers A, S, V, M,
T, W were executed using eight threads and O and C were executed using
single thread.

S and A using the ‘in silico-virus spiked’ datasets at increas-
ing k-mer values of 31, 41, 51 and 61 (V does not support
k-mer values >31) (Figure 2A). K-mer values ranging from
31 to 61 have previously been shown to be useful for DBG
assemblers, whereas shorter k-mer values below 31 seem
to generate shorter contigs (35). Using the ‘in silico-virus
spiked’ dataset, A performed better than S or V. For the S
or A algorithms, no signi�cant differences were observed by
varying the k-mer values from 31 to 61 ( P> 0.05, Kraskal–
Wallis test). Since k-mer values must be smaller than the
read length, we chose k = 31 as providing the greatest �ex-
ibility in analysis of very short reads and keeping the pa-
rameter constant for comparative benchmarking of the S,
A and V algorithms. It should be noted that the choice of
optimal k-mer depends on the data being applied. Here we
use k= 31 for this study, but it may not be optimal on other
datasets.

Using various assembly strategies to test ‘in silico-virus
spiked’ datasets

With the in silico-virus spiked datasets, we tested a number
of different assembly strategies: (i) individual assembly with

S, A, V, M, G, T, X and W alone; (ii) two-step assemblies
with SC, AC, VC, SO, AO or VO; (iii) partitioning schemes
with AaC, SsC, VvC, AaO and SsO, (iv) combining mul-
tiple DBG assemblers with SAVC and SAVO; (v) combin-
ing multiple DBG assemblers and partitioning with SAVaC
and SAVaO; (vi) addingMandT to other assembly schemes
with SAVMC, SAVMO, SAVMaC, SAVMaO and SAVTaC;
and (vii) using M or T at the second step as a replacement
for OLC assembly rather than at the �rst step with SAVaM
or SAVaT.
To calculate theMACRP, C1000 and chimera index met-

rics, contigs were aligned to the target in silico-spiked viral
genome, BASV, using MegaBLAST (Figure 2B–G). Here
we chose to use BASV for our spiked viral genome be-
cause it is a novel, highly divergent virus with a uniquely
identi�able sequence and has no known close viral relatives
(28). Widely different results were observed across the var-
ious assembly strategies after analysis of the in silico-virus
spiked datasets using different read lengths and depths of
BASV coverage (Figure 2B, sets A–J) and two clinical sam-
ple backgrounds (Figure 2B, ‘Nasal’ and ‘Stool’). Perfor-
mance improvements were observed with the inclusion of
M or partitioning scheme ‘a’, with the best ensemble com-
binations assembling the nearly complete genome (∼12 kb)
in a single contig that is signi�cantly larger than what was
achieved with DBG assemblers alone (Figure 2C). The in-
dividual DBG assemblers A, S, V, T and OLC assembler
W all generated typically poor-sized contigs even in high-
coverage datasets (Figure 2C, setA, 200x coverage; setF, 60x
coverage). M was the only individual assembler found to
produce good-sized contigs in certain cases (setA, set F–
H). Many simple combinations, such as SC, AO and VC,
did not result in an improvement in overall performance.
Not surprisingly, increasing coverage resulted in better

assembly in terms of greater MACR for all assembly meth-
ods (Figure 2C). With setA, setB, setF and setG, all con-
taining in silicoBASV reads at>20× coverage, nearly 100%
of the genome could be obtained for some of the assembly
combinations. With datasets at <15× coverage, none of the
methods produced contigs >5 kb in length. Notably, SsC,
SsO, VvO and VvC did not perform nearly as well as AaO
andAaC, suggesting that partitioning ismost advantageous
when using A. Using M as the �nal assembler (SAVaM)
appeared to generate slightly worse contigs than using C
(SAVaC), O (SAVaO) or T(SAVaT), although SAVaM was
also slightly faster than the others (Figure 2C and E). Al-
though the number and distribution of BASV ‘spike-in’
reads were identical for the nasal and stool datasets, de novo
assembly of BASV in the nasal dataset was consistently bet-
ter than in the stool dataset, indicating that a less com-
plex background (as is the case for respiratory secretions
relative to stool) is a favorable factor for assembly. All of
the assembly combinations yielded very low levels of mis-
assemblies on analysis of the in silico-spiked virus datasets,
with a chimera index consistently <0.15%, except for a few
datasets analyzed usingWandT inwhich the chimera index
was as high as 0.8% (Figure 2D).
When comparing the timing for each assembler (Figure

2E), we found that assemblers A, S, V and T were relatively
fast, typically �nishing within seconds to minutes. As ex-
pected, OLC assembler W took longer to complete than
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A, S and V. Among all individual assemblers, M took the
longest to run on average, taking anywhere from a few min-
utes to a few hours to �nish. Thus, any ensemble assembly
with M as a component took signi�cantly longer to run.
The total run-time corresponding to ensemble strategies

is the sum of the run-time for each individual component
assembly: (i) an individual assembly (A, S, V, M and T), (ii)
a partitioned assembly (a, s, v) and (iii) the OLC step (C, O,
M and T).We executed the components of ensemble assem-
blers sequentially on a single server and recorded the total
run-time for all datasets (Figure 2E). In practice, however,
the timing performance of an ensemble assembly method
can be improved by executing the �rst-step assemblies (A,
S, V,M, a, s, v) in parallel, provided that multiple servers are
available. To test whether the second OLC assembly step is
an execution bottleneck, the relative percentage time spent
on the second assembly step was calculated (Figure 2F). In
most cases, the second OLC step did not appear to be a sig-
ni�cant bottleneck (<∼20% of the execution step). Never-
theless, in the worse-case scenario, more than 80% of the
execution step was spent on the second OLC assembly step.
Mapping of the contigs produced by the S, A, V, M,

SAVaC and three different partitions on the BASV genome
revealed that distinct albeit short contigs are produced by
the three individual DBG assemblers and by partitioning
(Figure 2G). When combined, these distinct contigs may
help to form overlaps, �ll gaps and facilitate the construc-
tion of much larger contigs, suggesting the utility of com-
bining DBG assemblers with partitioning for the �rst as-
sembly step.

Using various assembly strategies to test ‘pooled virus stan-
dard’ dataset

When benchmarking the performance of various assem-
bly strategies with the ‘pooled virus standard’ dataset, we
observed that the ranking of assemblers by C1000 and
MACRP was similar to those in the ‘in silico-virus spiked’
datasets (Figure 3A and B). The assembler T, however, per-
forms surprisingly well for this dataset in terms of MACR
and C1000, unlike what was observed in the ‘in silico-virus
spiked’ datasets (Figure 2B and C). The best assembly
strategies, except T individually, were all found to be en-
semble assembly combinations with partitioning or includ-
ing M or both. One of the best ensemble assembly meth-
ods, SAVaC, produced a median MACRP of 17.5%, a 7-
fold improvement over S alone (2.4%). Heat map analysis
of the MACPR parameter for the top 20 viruses with con-
tig alignments (Figure 3B) showed the superiority of the en-
semble assembly strategies SAVaC and AaO (>20% of the
target genome assembled for eight viruses) over the individ-
ualDBGassemblers (>20%of the target genome assembled
for only two viruses). M, T and combinations with M or T
showed an elevated level of chimeric assembly as compared
to strategies using other assemblers, in which the chimeras
index for most viruses was <1% (Figure 3C). Timing anal-
ysis revealed that the ensemble combination AaO was al-
most two-fold faster than SAVaC, while maintaining almost
equivalent contig quality for this dataset (Figure 3A and
B). However, the three slowest ensemble assembly strate-
gies were also found to use O, suggesting that O may not

Figure 3. Comparison of different assembly strategies using the ‘pooled
virus standard’ dataset: (A) C1000 for each assembler; (B) MACRP for
each assembler; (C) chimera index as a heatmap; (D) execution time; and
(E) percentage of execution time on the OLC step. All boxplot �gures were
ordered by average values on the y-axis.

scale well with the larger input sizes generated using multi-
ple DBG assembly combinations (SAVO and SAVaO) or in-
ef�cient DBG assemblers (SsO) (Figure 3D). For this large
dataset with 20 million reads, the percentage time spent on
OLC step is 29% for SAVaC and 4% for AaO respectively
(Figure 3E), suggesting that the ensemble assemblers are
relatively ef�cient in their handling of larger datasets.

Using various assembly strategies to test the ‘human/animal
pathogen’ datasets

To extensively test these assembly strategies across multi-
ple datasets, eight metagenomic ‘human/animal pathogen’
datasets containing nine target genomes (feline sakobuvirus
(NC 022802), unclassi�ed phage 8L3, parvovirus B19, En-
hydra lutris papillomavirus 1 (NC 023873), human pare-
chovirus (KJ152442), human sapovirus (AY646853), S. ty-
phi (CP002099), S. aureus (HF937103) and N. fowlerimito-
chondrion (NC 021104)) were tested using various assem-
bly strategies (Figure 4). Similar to the C1000 and MACP
distributions in the ‘in silico-virus spiked’ datasets and the
‘pooled virus standard’ dataset (Figures 2 and 3), the strate-
gies that employ M or T generated the largest contig align-
ments (Figure 4A and B). However, these strategies also re-
sulted in the highest level of misassemblies, with signi�cant
increases in the average chimera index to 5% or higher (Fig-
ure 4C). Ensemble assembly strategies withoutM or T, such
as SAVaC, showed much lower levels of misassembly, with
a chimera index typically under 5%. Similar to the other
datasets, the assembly performance of the individual DBG
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Figure 4. Comparison of different assembly strategies using the
‘human/animal pathogens’ eight pathogen datasets: (A) C1000 distri-
bution; (B) MACRP distribution; (C) chimera index distribution; (D)
execution time; and (E) percentage of execution time on the OLC step. All
boxplot �gures were ordered by average values on the y-axis.

Figure 5. Normalized measures and CPMs averaged over all target
genomes for each assembler: (A) C1000NR distribution; (B) AccuracyNR

distribution; (C) CPM distribution; (D) MACRNR distribution; and (E)
SpeedNR distribution. These measures are in the range of 0–5 with higher
values representing better performance. Numbers in parentheses are num-
bers of target genomes evaluated for each method. Genomes that no as-
sembler could generate MACR > 1 kb were excluded in the calculation.
Note that certain assemblers such as G, W, X and SAVaM failed to �nish
in many of the datasets due to software issues.

assemblers was limited, with only 3–10% of target genomes
being successfully de novo assembled versus >20% of tar-
get genomes for the top ensemble strategies. For example,
heatmap analysis ofmultiplemicrobial genome targets con-
�rmed the superiority of ensemble strategies such as SAVaC
and SAVTaC (Figure 4A and B). Notably, SAVaC achieved
a C1000metric of>80% in four of nine target genomes, ver-
sus only zero or one of nine genomes for the S, A, V and M
algorithms run individually. The timing data (Figure 4D)
showed that using M individually or as a component in the
�rst assembly takes a signi�cantly longer time to execute

Figure 6. Relationship of normalized performance metrics: (A)
AccuracyNR versus C1000NR; (B) SpeedNR versus C1000NR; (C)
MACRNR versus C1000NR; and (D) SpeedNR versus AccuracyNR. In all
of the four plots, upper right corner represent ideal performance. The
quadratic regression curves were computed without including the method
W.

than other methods. While the timing differences were not
as pronounced as in the ‘pooled virus standard’ dataset, the
AaO strategy, as well as the related AaC and VvO strate-
gies, were overall faster than SAVaC but resulted in the gen-
eration of shorter contigs. The percentage of time spent in
the OLC step was also found to be acceptable, with average
case below 50%, in these very diverse metagenomic datasets
(Figure 4E).

Normalized and composite performance metrics
To summarize the results from the three datasets, we
calculated the average normalized performance metrics
MACRNR, C1000NR, AccuracyNR, SpeedNR and compos-
ite performance metrics CPM across target genomes in all
datasets for each assembler (Figure 5). For individual as-
semblers, I and T clearly produced the best C1000NR among
individual assemblers; whereas A, S VW, G produced poor
sized contigs (Figure 5A). Ensemble strategies including
partitioning or M or T produced the best C1000NR. The
MACRNR is highly correlated with C1000NR (Figure 5D).
T, M, I and ensemble methods using them as a component,
however, are among the worst assembler in AccuracyNR

(Figure 5B). M and methods with M as a component,
are the slowest (Figure 5E), indicating they are not suit-
able for time-critical diagnosis applications. According to
CPM which measures overall contig qualities, the high-
est ranked assemblers were SAVaC, SAVTaC, SAVaO (Fig-
ure 5C). The best individual assembler is I but its CPM is
still signi�cantly lower than the best ensemble assemblers.
SAVTaC achieved very high C1000NR and MACRNR, but
its AccuracyNR and SpeedNR were below average. SAVaC
and SAVaO achieved better AccuracyNR and competitive
C1000NR andMACRNR. Figure 6 shows the relationship of
the normalized measures. Figure 6A shows that assemblers
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Table 3. MACR (bp) of ensemble assemblers (SAVaC and AaO) and individual assemblers

Dataset:target genome A V S AaO SAVaC

setA:BASV 235(54) 158(80) 183(69) 12 555(1) 12 617(1)
setB:BASV 2969(4.2) 1501(8.3) 796(16) 3439(3.6) 12 522(1)
setC:BASV 758(2.2) 645(2.6) 857(2) 758(2.2) 1694(1)
setF:BASV 776(16) 200(63) 234(54) 12 538(1) 12 538(1)
setG:BASV 6730(1.8) 269(46) 233(53) 12 396(1) 12 445(1)
setH:BASV 2487(1.7) 573(7.5) 448(9.6) 2487(1.7) 4304(1)
Stool:BASV 436(3.7) 718(2.2) 857(1.9) 436(3.7) 1595(1)
Nasal:BASV 758(3.5) 2667(1) 857(3.1) 758(3.5) 2667(1)
Pooled:HHV4Mutu 991(1.3) 804(1.6) 804(1.6) 991(1.3) 1291(1)
Pooled:HHV5 3040(1.4) 944(4.6) 923(4.7) 4350(1) 4350(1)
Pooled:HRVA-CAU09–371 229(14) 299(11) 301(11) 2572(1.3) 3302(1)
Pooled:Human parechovirus 89(80) 283(25) 388(18) 7155(1) 7155(1)
Pooled:Human sapovirus 3491(1) 568(6.4) 512(7.1) 3640(1) 3640(1)
Pooled:HumanAastrovirus1 1246(2.6) 464(6.9) 400(8) 2747(1.2) 3186(1)
Pooled:HumanAdenovirusC 1582(4.3) 899(7.5) 586(12) 4565(1.5) 6744(1)
Pooled:HumanCoxsackievirusB4 1349(5) 251(27) 317(21) 6664(1) 6800(1)
Pooled:HumanHerpesvirus3 2425(1.8) 776(5.7) 480(9.3) 5599(0.79) 4451(1)
Pooled:HumanMetapneumovirusSA 2259(1.6) 877(4.1) 878(4) 3494(1) 3555(1)
Pooled:HumanParain�uenzaV1 2502(2.8) 710(9.8) 681(10) 6924(1) 6924(1)
Pooled:HumanParain�uenzaV2 1065(13) 365(37) 296(46) 4095(3.3) 13 488(1)
Pooled:HumanParain�uenzaV4b 2624(1) 781(3.4) 751(3.5) 2624(1) 2624(1)
Pooled:HumanRhinovirus39 2768(1.1) 769(4) 643(4.8) 2772(1.1) 3112(1)
Pathogens:Enhydra lutris papillomavirus 1 893(1.7) 890(1.7) 654(2.4) 1539(1) 1539(1)
Pathogens:Feline sakobuvirus 476(12) 339(17) 311(18) 5596(1) 5596(1)
Pathogens:Human sapovirus 654(3.3) 801(2.7) 483(4.5) 1009(2.2) 2182(1)
Pathogens:Naegleria fowleri mitochondrion 501(20) 841(12) 169(60) 8235(1.2) 10 158(1)
Pathogens:Parvovirus B19 793(2.7) 2162(1) 2162(1) 1322(1.6) 2162(1)
Pathogens:Salmonella typhi DNF 1000(2.2) 2227(1) 1324(1.7) 2229(1)
Pathogens:Staphylococcus aureus DNF 40 417(2.5) 3617(28) 17 606(5.7) 100 476(1)
Pathogens:Unclassi�ed phage 8L3 2365(5.9) 247(57) 301(47) 13 809(1) 14061(1)
Average MACR (fold versus SAVaC) 1327(7.3) 1645(11.9) 647(13.6) 3954(1.6) 6859(1)

P-value 3.8 × 10−7 1.2 × 10−7 8.1 × 10−8 6.7 × 10−6

Numbers represent MACR (bp) and numbers in parenthesis represent MACR fold differences compared with SAVaC. Bold numbers represent largest
MACR for each row. The paired Mann–Whitney U tests were performed to test whether an assembler produced MACR that are signi�cantly lower than
SAVaC. DNF: Did not �nish.

fall in a curved belt, indicating a reciprocal relationship be-
tween AccuracyNR and C1000NR. Ensemble methods with
M or T as a component in the �rst assembly had the largest
C1000NR and poorest AccuracyNR, suggesting these assem-
blers may be overly aggressive in assembly of larger con-
tigs. On the side of the curve were DBG assemblers which
may be overly conservative in extending contigs. SAVaOand
SAVaC are closest to the ideal upper right corner, indicat-
ing they achieved balance overall performance. Figure 6B
shows that C1000NR is negatively correlated with SpeedNR.
C1000NR and MACRNR are both contig size measures and
they are closely correlated (Figure 6C). Figure 6D shows
positive correlation between AccuracyNR and SpeedNR, in-
dicating faster assemblers are generally conservative and
thus generate lower level of chimeric contigs.
Table 3 compares MACR for DBG assemblers A, V, S

with our ensemble assemblers, AaO and SAVaC across all
datasets. It was observed that SAVaC producedMACR that
are 7.3, 11.9 and 13.6 fold as large as those produced by
A, V and S. SAVaC also produced contigs that are 60%
larger than AaO on average. Tables 4 and 5 show detailed
descriptions and command-line parameters/con�gurations
for preprocessing and running de novo assemblers respec-
tively.

DISCUSSION

Here we introduced an ensemble strategy that sequentially
integrates DBG and OLC assemblers and leverages the use
of a partitioning approach for de novo genome assembly
of pathogens in metagenomic NGS data. By benchmark-
ing of the strategy using test datasets that include both in
silico-generated and ‘real-life’ clinical and environmental
metagenomic data, we demonstrated that ensemble assem-
bly strategies produced accurate contigs that were signi�-
cantly larger than those obtained by individual assemblers
alone. Furthermore, the degree of misassembly for most of
the ensemble strategies generally remained below 5%.Taken
together, our data suggests that the best ensemble assembly
strategy among those tested may be SAVaC (SoapDenovo2,
ABySS,MetaVelvet, partitionedABySS followed by Cap3),
with AaO (Abyss, partitioned AbySS followed by Minimo)
or AaC (Abyss, partitioned AbySS followed by Cap3) a rea-
sonable alternative if fast execution time is of importance.
Although the performance of some individual assemblers,
such asM (Mira4) and T (Trinity) was comparable, the per-
centage of chimeric contigs was also high, and M (Mira4)
was also computationally slow relative to the other assem-
bly methods. IDBA-UD may be the best with respect to
speed and contig alignment size among individual assem-
blers, despite its higher percentage of chimeras.
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Table 4. Preprocessing procedures and parameters for metagenomic datasets

Pre-processing Example command Description/con�guration

1. Host sequence subtraction bowtie2 –quiet –local –no-hd –reorder -p 8 -x
human bac bowtie -U raw read.fq.gz -S
read.sam

Human host reads were subtracted by mapping the
reads with human reference genome hg19 using
bowtie2

2. Sequence De-duplication dedup input1.fastq deduped2.fastq Reads that were identical from nucleotide positions
5–45 were considered clonal reads, and only one
random copy of clonal reads was retained. The
other clonal sequences were replaced with
sequence ‘A’ as a place holder; thus the original
order of the paired-end �les was preserved.

dedup input1.fastq deduped2.fastq
(The program dedup is provided with the main
program)

3. Adaptor and quality trimming blastn -task blastn -evalue 1 -gapopen 5
-gapextend 3 -penalty -5 -max target seqs 100
000 000 -outfmt 6 -query adaptor.fa
-num threads 8 -db reads.db -out reads.tab

Adaptor and primer sequences were trimmed
using the BLAST-based VecScreen at default
parameters. Low-quality sequences were trimmed
using a Phred quality score 10 as the threshold.

Table 5. Parameters and con�gurations for de novo assembly experiments

Ensemble Assembler1.0 ensembleAssembly./con�g.txt PE = 260 30 read1.fq read2.fq
./ensemble.sh NUM THREADS = 8

SOAP KMER = 31
ABYSS KMER = 31
METAVELVET KMER = 31
CON LEN DBG = 150
CON LEN OLC = 300
ASSEMBLY MODE = VO, AaC, . . .

Cap3 (C) cap3 input.fasta
Minimo amos-3.1.0 (O) Minimo input.fasta -D FASTA EXP = 1
SOAPdenovo2 r240 (S) SOAPdenovo-63mer all -K 31 -s

read soap.con�g -R -o read soap
max rd len = 600

[LIB]
avg ins = 260
reverse seq = 0
asm �ags = 3
rank = 1
q1 = read1.fq
q2 = read2.fq

ABySS 1.3.7 (A) abyss-pe -C read abyss name = read abyss k = 31 in = ‘read1.fq read2.fq’
MetaVelvet 1.2.10 (V) velveth read velvet 31 -shortPaired -fastq read1.fq read2.fq && velvetg read velvet -exp cov auto

-ins length 260 && meta-velvetg read velvet -ins length 260
Mira 4.0.2 (M) mira -t 8 read mira.conf project = setAHumBac

parameters = -GE:not = 8 -DI:trt = /home/user/
-OUTPUT:rtd = yes
job = genome,denovo,accurate
readgroup = DataIlluminaPairedLib
autopairing
data = read1.fq read2.fq
technology = solexa

IDBA-UD 1.1.1(I) idba -r read.fa -o read idba
Omega v1.0.2 (G) omega -se 1 read.fq -l 60 -f read omega
Celera wgs-8.1 (W) fastqToCA -libraryname read celera -technology none -mates read1.fq,read2.fq > read.frg

runCA -d read celera -p read celera read.frg
MaSuRCA-2.2.0 (X) masurca con�g.txt && assemble.sh DATA

PE = pe 260 30 read1.fq read2.fq
END
PARAMETERS
GRAPH KMER SIZE = auto
USE LINKING MATES = 1
LIMIT JUMP COVERAGE = 60
CA PARAMETERS = ovlMerSize = 30
cgwErrorRate = 0.25 ovlMemory = 4GB
KMER COUNT THRESHOLD = 1
NUM THREADS = 8
JF SIZE = 100000000
DO HOMOPOLYMER TRIM = 0
END

Trinity r20140717 (T) Trinity –seqType fq –JM 25G –output read trinity –left read1.fq –right read2.fq –CPU 8
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The poor performance of individual DBG assemblers
in general for metagenome assembly can likely be at-
tributed to (i) the use of k-mers instead of single reads
which discards key layout and position information and
(ii) the optimization of DBG methods for assembly of
bacterial and eukaryotic genomes from pure cultures and
not for metagenome assembly. Although the latest ver-
sion of V (MetaVelvet/Velvet) was speci�cally developed
for metagenomes by decomposing initial graphs into sub-
graphs representing isolated species (16), it did not perform
well individually in our testing. To our surprise, Celera (W),
despite being anOLC assembler, generated poor, small con-
tigs and the highest percentage of chimeric sequences. An-
other recently published assembler, G (Omega) (22), nei-
ther a DBG assembler nor an OLC assembler, did not per-
form well in the ‘in silico-virus spiked’ datasets (Figure 2).
TheMaSuRCA assembler (X) (19), which is a recent hybrid
DBG and OLC assembler, did not generate large contigs as
we would expected.
Because of the need to perform all potential pairwise

alignments between reads and calculate overlaps (7), OLC
assemblers are computationally impractical when applied
directly to a large set of raw NGS sequences. Our ensemble
strategy leverages fast DBG assemblers to quickly reduce
the original NGS reads to a much smaller, non-redundant
set of intermediate contigs. Our results suggest that parti-
tioning is an indispensable part of the ensemble strategy.
The use of a partitioning method produces additional dis-
tinct, albeit short contigs that can be used to �ll gaps in cov-
erage. The much slower OLC assemblers are used only in
the �nal step to extend the contigs, thereby achieving much
longer contigs than possible with DBG or OLC assemblers
alone. Because the number of contigs is typically only 1–3%
of the number of raw reads, the timing for the second OLC
step is usually not a performance bottleneck.We note, how-
ever, that a second round of OLC assembly has the poten-
tial to introduce additional misassemblies, and indeed, the
misassembly level of the ensemble strategies, although re-
maining <5% in general, is still higher than that of most of
the individual DBG assemblers.
For metagenome de novo assembly, it is important to use

alignment-based quality measures such as C1000, rather
than more common N50 or N95, because of the ‘needle-
in-a-haystack’ nature of metagenomic data. As we have
demonstrated in Figures 2–4, these performance measures
were generally consistent across datasets. These metrics can
be ef�ciently calculated using MegaBLAST, which is used
by Chimera.slayer (36).
When directly comparing the stool and nasal samples in

the ‘in silico-virus spiked’ datasets, we �nd that the more
complex background in the stool sample resulted in perfor-
mance degradation in de novo assembly of the target BASV
genome. Thus, rapid and ef�cient computational subtrac-
tion of human host reads (1) will likely remain a critical
step in pathogen assembly from metagenomic data. Our
analysis of the ‘in silico-virus spiked’ datasets also shows
that an average sequence depth of at least 20× (10× in
each direction for paired-end sequencing) is needed to re-
cover 100% of a target genome from metagenomic NGS
data. The actual minimum sequence depth required may
be higher than 20× due to biases in the actual coverage

achieved. Finally, although we have demonstrated the util-
ity of the ensemble assembly strategy for the relatively small
genomes corresponding to viruses, bacteria and the mito-
chondrial genome of the eukaryotic pathogen N. fowleri,
this approach may not be suitable for much larger eukary-
otic genomes, mainly because OLC assemblers such asMin-
imo and Cap3 will likely be unable to handle the increased
computational load.As datasets become increasingly larger,
the OLC assembly step may become the speed bottleneck,
since the DBG assemblers and partitioning scheme are
amenable to parallel computing with multi-core processors.
The full results in tabular format were included in Supple-
mentary Table S1. A diagram illustrating the calculation of
performance metrics was included as Supplementary Fig-
ure S1.

AVAILABILITY

The source code of our method can be obtained at http:
//ensembleassembly.sourceforge.net, or https://github.com/
xutaodeng/EnsembleAssembler.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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