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ABSTRACT

With the recent signing of the Affordable Care Act into law,
the use of electronic medical data is set to become ubiqui-
tous in the United States. This presents an unprecedented
opportunity to use population health data for the benefit of
patient-centered outcomes. However, there are two major
hurdles to utilizing this wealth of data. First, medical data
is not centrally located but is often divided across hospital
systems, health exchanges, and physician practices. Sec-
ond, sharing specific or identifiable information may not be
allowed. Moreover, organizations may have a vested inter-
est in keeping their data sets private as they may have been
gathered and curated at great cost. We develop an approach
to allow the sharing of beneficial information while staying
within the bounds of data privacy. We show that the use of a
probabilistic graphical model can facilitate effective transfer
learning between distinct healthcare data sets by parame-
ter sharing while simultaneously allowing us to construct a
network for interpretation use by domain experts and the
discovery of disease relationships. Our method utilizes ag-
gregate information from distinct populations to improve
the estimation of patient disease risk.

Categories and Subject Descriptors

J.3 [Life and Medical Sciences]: Health—Medical infor-
mation systems; E.1 [Data Structures]: Graphs and net-
works

Keywords

Population Health; Patient-Centered Outcomes; Big Data

1. INTRODUCTION
The growing and mandated use of electronic medical records

will allow scientists to unveil new discoveries about human
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health. An enormous quantity of healthcare data is cre-
ated every year and there are vast amounts of past medical
records that are being imported into electronic formats. A
Center for Disease Control study estimates that patients in
the United States made 1.2 billion visits or an average of 4.05
visits per patient to physicians’ offices in 2007 [11]. The rate
of visitation increased 11 percent since 1997.

Aspirin is one exemplary case of the utilization of avail-
able medical data. Multiple studies have found that Aspirin
reduces the long term risk of colorectal cancer, the progres-
sion of cardiovascular disease and the likelihood of stroke [1,
2]. These studies relied on the wealth of data already avail-
able about Aspirin. Similarly, we hope to utilize existing
electronic medical records (EMRs) to discover relationships
between diseases and to improve disease risk prediction for
patients.

While recently enacted healthcare laws mandate the use
and utilization of EMRs, they do not specify how they should
be stored or who should store and maintain the records in
sufficient detail. At present this lack of centralization is im-
peding the meaningful use of this data. Each hospital and
medical research organization may have their own data set,
which they are compelled by law not to share due to privacy
concerns. Regional data warehousing organizations have
arisen to consolidate and store EMRs, but they are equally
subject to restrictions on sharing the data. Additionally,
EMRs have become a commodity, as the maintenance and
security of the storage systems can be costly. Therefore,
organizations may have incentive to protect their data sets.

Sharing complete EMRs would be the best means of pro-
moting beneficial and meaningful use but there are obstacles
to full disclosure of the data. However, the Health Insurance
Portability and Accountability Act of 1996 stipulates that
aggregated information can be shared freely [7]. We pro-
pose an approach that allows aggregated information to be
shared between distinct organizations with EMR data in a
way that increases the accuracy of computational predic-
tion of disease risk. We utilize an ensemble approach to
gain more predictive accuracy with little information. We
posit that this approach is mutually beneficial to all organi-
zations warehousing EMRs and maintains the privacy of the
patients while protecting any potential interests in keeping
valuable data sets private.

We further propose the use of learned parameters of topic
models as an alternative approach to creating interpretable
network models from EMR data. Networks have been an
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intuitive and useful approach to modeling complex data and
presenting a representation that domain experts can un-
derstand. Perhaps the most closely related work in the
healthcare domain utilizes collaborative filtering to create
a disease-gene network based on some similarity criterion
between diseases [4]. While network models can be very ef-
fective at identifying disease risk, many network approaches
utilize different edge weighting methods, which may lead
to different interpretations of the data [14]. Furthermore,
many approaches to integrating distinct networks are com-
putationally intractable. We view the network approach as
a bottom-up construction of a relational model by inspect-
ing individual health records. We propose a top-down topic
modeling approach that begins with a partitioning function
we wish to optimize on the data. By creating a topic model
that explicitly measures disease co-occurrence we simulta-
neously learn the network that best models the data accord-
ing to our criterion and partition it into meaningful groups
with co-occurring diseases. The use of this approach simul-
taneously creates an interpretable model and allows easily
computed solutions for combining information that creates
a network. To this end we propose a novel extension to a
well known probabilistic graphical model that optimizes the
grouping of medical records on occurrence and co-occurrence
of disease.

This is to our knowledge the first use of topic models to in-
fer network structure and the first application to EMR data.
However, topic models have been used to identify topics in
medical documents and public health topics in Twitter [17,
10, 6]. Ensemble topic models have also been studied, al-
though not in this context [15].

This study makes three contributions to the medical do-
main:

• A novel application of topic modeling to the analysis
of disease risk.

• A novel topic modeling approach for the study of rela-
tional data.

• We support our proposition that distinct EMR ware-
housing organizations should share general informa-
tion with evidence that it can improve the utility of
disease risk prediction across individual data sets.

2. THE MODEL
Our approach extends the well studied Dirichlet Process

Mixture Model (DPMM), which is depicted in Figure 1.
DPMM is a non-parametric approach that learns an un-
specified number of groups with distinct distributions over
features.

2.1 The Dirichlet Process
The Dirichlet distribution is the multivariate generaliza-

tion of the beta distribution. The Dirichlet process is an
infinite dimensional generalization of the Dirichlet distribu-
tion. One formulation of the Dirichlet process is described
in the stick-breaking process. Imagine that a stick is bro-
ken repeatedly such that the first section has a length de-
pendent on the Beta distribution: β′

1 ∼ Beta(1, α). The
remainder of the stick is broken in the same way such that
βk = β′

k ∗
∏k−1

i=1 (1 − β′

i). It has been shown that if G ∼
DP (α0, G0),

�

� ��

�

�

�
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Figure 1: The Dirichlet Process Mixture Model. H is a base
distribution from which weights are drawn as described in
Equation 1. The mixing proportions of the components are
specified by H0. The parameters of the base distributions
are specified by φi. Xi represents an observed instance.

G =
∞
∑

k=1

βkγφk
(1)

Where βk are stick-breaking weights depending on the pa-
rameter α0, γφk

is an atom at φk, each representing an in-
dependent random variable [12]. Using this stick-breaking
approach, any measure can be used to determine a set of
discrete weights. DPs are often used to set priors for com-
ponents of mixture models [13].

2.2 Dirichlet Process Mixture Model
We focus here on the use of multinomial base distributions

as the multinomial is appropriate for the measurement of
binary and count data.

The model is described by the hierarchical specification:

H0 ∼ DP (H,α)

φi|H0 ∼ H

xi|φi ∼ F (xi, φi) (2)

In the standard DPMM, F is the multinomial probability
mass function. In the context of EMRs, the DPMM with
a multinomial base distribution over disease occurrence op-
timizes for groups of patients that have received the same
diagnoses.

2.3 Our approach
We propose an alternative formulation of a DPMM in

which F is a function of both the multinomial over the dis-
eases and a second multinomial over disease co-occurrence.
This model allows us to construct a network representation
of the data by utilizing co-occurrence counts explicitly. It is
inspired partly by the effectiveness and generality of gaus-
sian mixtures. A multivariate Gaussian is parameterized
by a mean vector and a covariance matrix. The covariance
matrix specifies not only the spread of values around the
mean but the relationship between features. This is much
more specific information than is captured by a multinomial.
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However, inferring the parameters of a multivariate Gaus-
sian can be much more complex than inferring the parame-
ters of a multinomial. Furthermore, a multivariate gaussian
is not appropriate for binary values as a Gaussian distribu-
tion only accurately models a set of binary values in the edge
cases where all values are 1 or 0.

Our approach finds a balance between parsimony and speci-
ficness by placing equal weight on the co-occurrence of dis-
eases and the presence of disease. We call our approach
Co-occurrence Based Clustering (CBC) for its focus on ex-
plicitly learning the co-occurrence of diseases. In CBC, the
multinomial over the diseases is analogous to the mean vec-
tor of a multivariate Gaussian. The multinomial over the
disease co-occurrences is analogous to the covariance be-
tween each pair of diseases. This formulation allows CBC
to capture co-occurrence explicitly while maintaining gener-
ality. This is essential as patients may be lacking multiple
appropriate diagnoses The model is learned by Gibbs sam-
pling in which the likelihood function gives equal weight to
the two multinomials, as shown in Equation 3.

F (Xi, Xi
′, φ, φ′) =

[
∑k

i Xi]!∏
k
i
Xi!

∏k
i φ

Xi
i +

[
∑k

i X′

i]!∏
k
i
X′

i
!

∏k
i φ

′X
′

i
i

2
(3)

Where X is the matrix of diagnoses for all patients, φ is
the matrix of disease occurrence parameters for each com-
ponent, φi is the probability of observing a disease (alter-
natively φi = Xi/

∑

Xi), and X ′ and φ′ are the analogous
parameters for disease co-occurrence.

Relationships between diseases may not be apparent from
examining their frequency separately. The use of a relational
representation of the data —the co-occurrence of diseases—
allows even simple models to take into account this more
specific information.

While DPMM can be applied to the co-occurrence of dis-
eases, the reliance on co-occurrence alone can undermine the
generality of the model. If a patient has a disease that has
not been diagnosed, then all 252 (in our data) potential co-
occurrences will be missing, whereas in the flat occurrence
representation, only a single value will be missing. Thus a
little noise can have an overwhelming effect on the model.
CBC is more tolerant to this source of noise by virtue of
considering both co-occurrence and frequency.

We demonstrate these differences by comparing disease
ranking results across three formulations of DPMMs: DPMM
is a DPMM trained on disease occurrence data; COOC is
a DPMM trained on co-occurrence data, and CBC is our
model utilizing both the representations of data.

2.4 Markov Chain Monte Carlo inference
We utilize a version of Gibbs sampling with auxiliary pa-

rameters [8]. This approach allows us to sample the compo-
nent membership of the model without having to integrate
with respect to the prior distribution H. Algorithm 1 de-
scribes the steps in our sampler.

In our experiments we used the parameters m = 1 and
α = .01. The algorithm specifically describes the sampler for
CBC, but the samplers for DPMM and COOC are the same
with the exceptions that DPMM uses φc and yi exclusively
and COOC uses φ′

c and y′

i exclusively.

2.5 Ensemble learning
The goal of ensemble learning in this context is to allow

models to achieve performance increases through the use of
data from distinct sources. Examples include data from dif-
ferent domains such as healthcare and genomics, data with
different distributions such as healthcare data from different
ethnic or socioeconomic groups, or even data with differ-
ent feature spaces if for example there are no occurrences
of a disease in one group that is present in another group.
We utilize an approach that is common in transfer learning,
known as parameter passing [9]. In this approach base mod-
els are learned on distinct data sets. The base models are
then combined in a separate step by joining the parameters
of the models. Wang et al. propose a similar approach in
which different topic models are combined by running an ad-
ditional clustering step on the component labels from base
topic models [16].

Figure 2 outlines the process used to create ensembles.
We build ensembles by training base models on each demo-
graphic data set. The ensemble step combines the occur-
rence parameters φ of the base models into a single matrix.
A DPMM is trained on this matrix to form a ensemble-level
model. Disease risk is assessed for an individual patient by
first finding the component of this ensemble model that best
fits their disease profile, then combining the parameters of
every component from the base models whose parameters
are in the ensemble-level component. The base-model pa-
rameters are averaged to form the parameters of a consensus
model.
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Figure 2: The ensemble takes base models, each consisting
of the results from a single model trained on one data set,
then combines the parameters of each component from the
base mixture models into a single matrix.

3. DATA
Our deidentified and anonymous dataset contains data of

7,895,283 individuals with three or more diagnoses. The raw
data set contains ICD-9-CM codes for describing the diag-

ACM-BCB 2013 335



Algorithm 1: Gibbs sampler with auxiliary parameters

1: For i = 1, ..., n: Let k− be the number of components cj for j �= i, and h = k− +m, where m is the number of auxiliary
variables. If ci = cj for some j �= i, draw values independently from the base distribution H for the parameters of
components φc (and correspondingly φ′

c) for which k− < c ≤ h. If ci �= cj for all j �= i, let ci have the label k− + 1,
and draw values from H for those φc for which k− + 1 < c ≤ h. Draw a new value for ci from 1, ..., h with the following
probabilities:

P (ci = c|c−i, yi, y
′

i, φ−c, φ
′

−c) =

⎧

⎨

⎩

b
n−i,c

n−1+α
F (yi, y

′

i, φc, φ
′

c) for 1 ≤ c ≤ k−

b α/m
n−1=α

F (yi, y
′

i, φc, φ
′

c) for k− < c ≤ h
(4)

where yi is an instance, y′

i is the corresponding set of co-occurrences, n−i,c is the number of cj for j �= i that are
equal to c, and b is a normalizing constant. Remove φc that are not associated with at least one observation.

2: For all c ∈ c1, ..., cn: draw a new value from φ|yi such that ci = c.

noses that apply to each patient. ICD-9-CM codes exist in
a hierarchy of disease that can complicate analysis [5]. Col-
lapsed ICD-9-CM codes provide a mapping from specific di-
agnoses to general diagnoses. For example, ICD-9-CM codes
“9843” and “9845” correspond to pneumonia from whooping
cough and pneumonia from anthrax, respectively. Both can
be described by the shortened ICD-9-CM code “984” or by
the Clinical Classifications Software (CCS) code“122”. CCS
codes provide a standardized coding system based on the
ICD-9 specification and is designed to be clinically mean-
ingful and more useful for statistical analysis. Therefore,
we utilize the CCS codes to provide a more general non-
hierarchical classification of disease than ICD-9-CM codes
[3].

We approach our goal of demonstrating the effectiveness
of learning across distinct healthcare data sets by splitting
the data into distinct populations by demographics based
on poverty level, gender, race, and age. Table 1 shows that
these groups tend to have similar numbers of disease di-
agnoses. The most significant difference appears to exist
between the two poverty groups, in which the variance and
kurtosis are strikingly different. This indicates that there
is a wider range of number of diagnoses among these two
groups.

Individual disease prevalence is much more strikingly dif-
ferent between these groups. The top 20 most common dis-
eases in the original data set are listed in Table 2. A patient
who is in demographic “poverty 1” is twice as likely to be
diagnosed with a cognitive disorder as a patient on the other
side of the poverty line. A patient of gender 0 is nearly three
times as likely to suffer from genitourinary symptoms as a
patient of gender 1. There are many additional differences
between races and other demographics that demonstrate the
distinctions between these populations. We were surprised
to find that the disease prevalence in the 10% youngest pa-
tients in the data set was very similar to the disease preva-
lence in the 10% oldest patients. However, this may be
explained by the fact that the distribution of patient age is
strongly skewed towards the younger patients and that the
data set consists entirely of patients with at least 65 years
of age. Given the lack of interesting differences between the
age groups, we focused on the poverty, gender, and race de-
mographics for our analysis. Among the race demographics,
only 8,075 patients were of Race 4, providing a relatively
small sample. As such, Race 4 was not used for analysis.

4. EVALUATION
We trained DPMM, COOC, and CBC on fifty random

samples of 4,500 instances from each poverty, race, and gen-
der dataset. Models trained on a single sample from each
demographic data set were combined as described in Sec-
tion 2.5. Ensembles of CBC, DPMM, and COOC models
were constructed in the same way. Gibbs sampling was car-
ried out for 1000 iterations for each base model and for the
ensemble models.

The accuracy of disease risk was measured by holding out
a test set of instances of 500 patients from each demographic
and calculating the likelihood of each disease given all but
one of the observed diseases in the test instance. This was
repeated by withholding each observed disease for every test
instance. A test set of 500 instances with an average of 5
diseases per patient would result in 2500 individual rankings.

The ranking of the diseases was evaluated as in previ-
ous work by calculating the proportion of predicted disease
rankings that were in the top ranks [5]. The lower ranks are
more important as a medical professional reviewing a list of
predicted diseases is much more likely to read predictions
early in the list.

5. RESULTS
The log-likelihood plot in Figure 3 shows that the likeli-

hood of the algorithms appear to be in stable states after
1000 iterations on the gender demographic.

The proportion of missing diseases that were ranked as
disease risks for patients is shown in Figure 4. The pro-
portions were determined by averaging across the ranking
for patients in test sets from all demographics and all ex-
periments. The ensemble of CBC models provides the best
rankings in the highest ranks, with the most accurate pre-
dictions for 8 of the first 10 ranks, 18 of the first 20 ranks, 27
of the first 50 ranks. This approach ranks the missing dis-
ease from a patient’s diagnosis in the first 10 listed diseases
47.5% of the time and the first 20 ranks 76.5% of the time.
The ensemble of DPMM models performs best when con-
sidering ranks greater than 29. CBC is expected to perform
better at lower ranks as the components in CBC utilize more
specific co-occurrence data. All of the methods place nearly
100% of the missing diseases in the first 50 ranks. Notably,
base-CBC performs next to worst, whereas the ensemble-
CBC performs the best. This indicates that the base CBC
models are diverse; they capture differences in the separate
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Table 1: Descriptive statistics for the number of diseases patients suffer from in each demographic.

All Poverty 0 Poverty 1 Gender 0 Gender 1 Race 0 Race 1 Race 2 Race 3 Race 4 Race 5 Age 0 Age 9
# of patients 7895283 7050861 844421 3247168 4648114 83500 7050861 652158 79181 8075 18437 789528 789528
Maximum 66 66 63 66 57 47 65 51 51 39 43 66 51
Mean 9.25 9.12 10.36 9.18 9.30 8.77 8.21 8.69 8.28 7.12 7.93 8.88 8.85
Variance 20.87 19.97 26.98 20.31 21.25 23.00 20.47 24.55 22.04 14.43 20.21 20.33 19.99
Skewness 1.61 1.63 1.38 1.62 1.60 1.43 1.62 1.51 1.66 1.96 1.81 1.87 1.85
Kurtosis 3.31 3.42 2.34 3.34 3.28 2.43 3.36 2.75 3.60 5.31 4.35 4.71 4.52

Table 2: Percentage of patients with top 20 most prevalent disease by demographic.

All Poverty 0 Poverty 1 Gender 0 Gender 1 Race 0 Race 1 Race 2 Race 3 Race 4 Race 5 Age 0 Age 9
Essential Hypertension 43.78 43.88 42.92 39.10 47.04 33.34 36.28 46.10 36.88 37.32 39.34 45.93 46.77
Fluid and electrolyte disorders 39.48 38.18 50.30 34.19 43.18 38.09 31.64 39.29 35.85 29.91 30.69 33.92 34.14
Coronary atherosclerosis 38.69 38.99 36.16 43.39 35.40 34.57 37.07 29.97 31.21 31.45 35.77 39.91 39.45
Cardiac dysrhythmias 32.74 32.94 31.02 35.98 30.47 34.03 32.53 25.93 27.38 25.67 22.99 26.47 28.07
Congestive Heart Failure 27.84 27.09 34.09 27.50 28.08 31.77 25.27 26.11 25.01 17.15 21.12 21.91 21.32
Urinary tract infections 26.58 25.17 38.38 18.16 32.46 24.72 21.03 26.11 21.29 17.23 20.41 18.67 19.39
Bronchitis 25.42 25.13 27.83 31.68 21.05 25.81 25.48 18.73 19.85 16.27 20.91 28.31 27.42
Anemia 20.72 20.25 24.62 18.88 22.00 17.15 14.08 22.18 17.51 15.30 15.18 17.44 17.05
Diabetes w/o complication 18.80 18.31 22.88 18.74 18.84 14.15 13.76 20.57 19.74 17.36 23.29 23.66 22.29
Pneumonia 18.40 17.50 25.90 19.98 17.29 21.32 16.42 15.96 19.92 14.19 15.60 14.62 14.79
Surgical complications 16.67 17.22 12.15 19.70 14.56 13.66 16.50 12.63 15.61 15.62 14.02 19.58 20.37
Osteoarthritis 14.61 14.46 15.82 10.30 17.61 10.45 11.52 10.61 6.67 6.29 8.85 10.83 12.15
Bacterial infection 13.44 12.68 19.76 10.26 15.66 14.01 12.49 13.63 13.06 10.86 13.36 10.73 10.66
Heart valve disorders 12.41 12.70 09.97 11.73 12.88 12.68 12.29 10.33 10.23 9.79 8.77 10.01 10.54
Cerebrovascular disease 11.80 11.38 15.24 11.77 11.81 12.82 10.49 14.37 14.03 13.60 9.76 8.46 9.30
Pneumothorax 11.60 11.57 11.85 12.10 11.25 12.77 11.18 10.51 11.28 9.04 10.34 11.34 11.62
Genitourinary symptoms 11.51 11.56 11.08 17.99 6.98 12.03 11.31 11.36 11.51 11.41 12.24 9.34 10.10
Cystic fibrosis 11.07 11.14 10.54 10.85 11.23 9.52 10.17 7.95 10.67 10.41 7.76 9.64 10.48
Cognitive disorders 10.89 9.76 20.39 8.89 12.29 14.48 10.54 13.16 8.68 6.83 7.43 3.23 3.68
Gastrointestinal hemorrhage 10.69 10.49 12.33 11.07 10.42 8.63 7.33 8.21 9.60 9.18 6.54 8.72 8.99

demographics.
The nearest comparison to this study utilizes collabora-

tive filtering on collapsed ICD-9 diagnoses to rank the likeli-
hood of diagnoses in the last visit based on patients’ medical
history [5]. Where that method identifies 54.7% of future di-
agnoses in the top 20 ranks, our approach identifies 76.5%
of held out diagnoses. While these methods utilize the same
data, it is important to note that the approach of Davis et al.
relies on temporal data and collapsed ICD-9 codes instead
of CCS codes, making direct comparison problematic.

Different patients may have very different histories of diag-
nosis. The specific diagnoses that an individual patient has
may be more or less predictive than others. Figure 5 shows
the relationship between the number of diagnoses and the
mean rank of diagnoses for individual patients. As expected,
the variance in the accuracy of the model decreases sharply
as the number of available diagnoses increases.

6. INTERPRETING THE MODEL
In addition to ranking individual patient disease risks,

we are interested in creating a global model of disease re-
lationships. Figure 6 shows a network constructed from
one ensemble CBC model. Nodes represent diseases. Their
groups (signified by color) are determined by the compo-
nent in the ensemble that contains the most patients with
the given diagnosis. Edge weight was determined by averag-
ing disease co-occurrence across all components. Therefore,
edges may tend to represent global co-occurrences rather
than within component co-occurrences. The figure shows
64 distinct disease groups, determined by the number of pa-
tients in the base model components contributing to each
ensemble component. Many of these groups contain diseases
which are clearly similar. For example, the yellow group in
the top row and fifth from the left, contains 9 cancer di-

agnoses. The remaining three are “gastritis and duodeni-
tis,” “intestinal infection,” and perhaps oddly, “deficiency
and other anemia.” Other clusters appear less specific to
the layman, but still contain common sense groups. For ex-
ample, the larger red group, bottom left and three from the
left, contains 9 pregnancy related diagnoses and 4 abdomi-
nal pain related diagnoses. Edges in the network represent
the mean edge strength from across all components in the
ensemble. We used the 99th percentile edges to form this
network. These weights represent strong relationships that
are not strong enough to determine component membership
alone. Some of the strongest edges join two groups, the
pink group third from the right in the middle row, and the
red group third from the left in the third row. These join
chemotherapy related issues, dizziness or vertigo, nervous
system anomalies, unspecified circulatory disease, and un-
specified eye disorders. A thorough analysis of this network
requires medical expertise, however it is clear that there is
meaningful structure to be investigated here. This model
is provided with CCS designations as a Cytoscape file at
http://www.cse.nd.edu/∼arider1/cbc meta meanedge.cys.

7. DISCUSSION
We set out with the goal to provide an approach that

would allow and encourage EMR warehousing organizations
and research centers to share EMR data for their mutual
benefit and the benefit of patients. Our analysis demon-
strates that the proposed use of aggregate data improves
ranking across diverse patient populations. Therefore we
strongly recommend that EMR warehousing organizations
share this aggregate data both as an act of good will and as
an act of self interest, as more available data will improve
modeling on individual data sets.

We additionally sought to provide a means to create an
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Figure 3: The log-likelihood of all three algorithms over 1000
iterations of Gibbs sampling. All log-likelihood values are
divided by 1000 for readability. Panel (a) shows the log
likelihood of DPMM. Panel (a) shows the log likelihood of
DPMM. Panel (b) shows the log likelihood of DPMM using
the co-occurrence data. Panel (c) shows the log likelihood
of CBC.

interpretable model from disparate aggregate data. We pro-
posed a method that explicitly utilizes co-occurence data
to learn a network while simultaneously providing imroved
disease risk predictions. We demonstrated that the net-
work constructed contains comprehensible groupings of dis-
ease occurrence, based both on the component labels in our
model and on the global mean edge weights used to con-
struct the network. Although it can be exceedingly difficult
to quantify the utility of a network model, the provided ex-
amples do indicate that this model may contain useful med-
ical information.
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Figure 4: The proportion of held-out diseases given rank
less than or equal to the value on the x-axis. Labels “base”
and “ensemble” correspond to ranks given by the algorithms
trained on a single demographic data set and ranks given by
the ensemble across demographics.
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Figure 5: Mean rank for individual patient diagnoses versus
the number of diagnoses available based on an ensemble of
CBC models.

8. FUTURE WORK
The model described in this work extends DPMM to uti-

lize specific co-occurrence data in addition to the normal
occurrence data representation. While the approach does
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systematically improve results, it comes at a cost of in-
creased computational complexity. However, the increased
computational burden is distributed across numerous dis-
tinct computational resources in our proposed use case of
sharing aggregate EMR data across distinct groups. The
computational cost may be further reduced by utilizing a
similar mixture modeling approach that relies on a conju-
gate prior distribution for the co-occurrence aspect of the
model.

Figure 7 shows a spring-layout view of the same network.
This figure shows that the clustering as determined by edge
weight is also informative. The five of the six nodes in the
group nodes on the rightmost side of the central cluster con-
cern birth related diagnoses. The group of four nodes at the
bottom most edge of the central cluster contain “OB-related
trauma to perineum and vulva,”“fetal distress and abnormal
forces of labor,”“Cardiac and circulatory congenital anoma-
lies,” and “acquired foot deformities.” This layout addition-
ally highlights two hubs, “disorders of lipid metabolism”and
“coma; stupor; and brain damage.”

We refrain from making a full enumeration of interest-
ing clusters, but we have found that various edge weight
based layouts provide additional clusters that seem to make
sense. We encourage the reader to investigate these clusters
by downloading the provided network.
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Figure 6: A network constructed from a single CBC ensemble. Nodes represent disease diagnoses and edges represent co-
occurrences. Node groups are determined by the component in the model with the most diagnoses. Edge weight was determined
by averaging disease co-occurrence across all components. Therefore, edges may tend to represent global co-occurrences rather
than within component co-occurrences. Only edges in the 99th percentile weight category are shown.

Figure 7: Another view of Figure 6 using the spring-layout based on edge weight. Edge weight was determined by averaging
disease co-occurrence across all components and reflects global trends. This view reveals clusters and hubs in the network.
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