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1 Introduction

Entropy is one of the most fundamental concepts in physics. While it is well-defined and

intuitive, its effect on physical processes is somewhat and surprising and far reaching. The

second law of thermodynamics has repercussions on a broad spectrum of physical phe-

nomena including phase transitions, black holes and information theory. In the context of

hydrodynamics, a local version of the second law tightly constrains the transport properties

of fluids.

Relativistic hydrodynamics can be thought of as a low-energy effective description

of a many-body system. In the absence of stochastic noise the degrees of freedom of the

hydrodynamic theory can be parameterized by a local temperature, T , a local velocity field

uµ and local chemical potential µ. The conserved currents of the theory are local functions

of the hydrodynamic variables as long as the latter vary slowly in space and time. For

instance, in the absence of conserved charges, the energy-momentum tensor satisfies Tµν =

ǫ(T )uµuν + P (T ) (ηµν + uµuν) +O(∂) where O(∂) are corrections involving derivatives of

the hydrodynamic variables which are presumably suppressed by powers of the mean free

path ℓmfp. The parameters ǫ and P are the thermodynamic energy density and pressure,

with ǫ determined by ǫ = Ts− P , with s the entropy density given by s = ∂P/∂T .

One way to obtain the aforementioned Gibbs-Duhem relation between energy density,

pressure and entropy density is to posit the existence of an entropy current Sµ with non-

negative divergence

DµS
µ ≥ 0 , (1.1)

such that

Sµ = suµ +O(∂) . (1.2)

These two defining features of the entropy current are sufficient to obtain the Gibbs-Duhem

relation, and many other properties of the fluid: positivity of the conductivity and shear

viscosity [1], absence of response to thermal gradients [2–4], and the interrelation between

anomalies and hydrodynamics [5] come to mind.
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While the role of a local version of the second law, as given in (1.1), is intuitively clear,

its appearance in any effective theory is unanticipated. Noether’s theorem guarantees that

for each symmetry we will have a conserved current whose divergence equals zero and a

corresponding Ward identity, but it is difficult to conceive of a mechanism which will lead

to an inequality rather than an equality.

In recent years several proposals were made to identify a symmetry which generates

a conserved entropy current in the absence of dissipation, see e.g. [6–10]. More recently,

the authors of [11, 12] have maintained that a positive divergence entropy current can be

constructed by appealing to a positivity constraint on the imaginary part of the Schwinger-

Keldysh effective action. In more detail, the formalism developed in [11–20] allows one

to construct for a low-energy Wilsonian effective action Seff for the Schwinger-Keldysh

effective theory. Integrating the exponentiated effective action leads to the low-energy

Schwinger-Keldysh partition function

Z =

∫
Dξ eiSeff , (1.3)

with ξ the low energy dynamical degrees of freedom. One difference between ordinary

and Schwinger-Keldysh effective field theory is that, here, unitarity does not require Seff

to be real. Convergence of the functional integral constrains the imaginary part of Seff

to be bounded below. The authors of [11, 12] further showed that unitarity implies that

Im(Seff) ≥ 0 and then used this constraint to construct an entropy current with proper-

ties (1.1) and (1.2).

In this work, motivated by [15], we take a somewhat different path and obtain an

entropy current by coupling it to an external source. This procedure allows one to obtain

a “consistent” super entropy current S′ I by varying Z with respect to a source AI . Here I

runs over spacetime indices µ and two superspace indices θ and θ̄ which may be thought

of as a useful bookkeeping device which captures the special symmetries associated with

the effective action [12–19]. The boldface font for S′ I and AI emphasizes that these are

functions of both the spacetime coordinates and the superspace coordinates. The consistent

entropy current will be conserved in superspace

DIS
I = 0 (1.4)

but the spacetime components of its bottom component, Sµ = S′µ(x) +O(θ, θ̄) will satisfy

the on-shell relation

DµS
′µ = −Sθ

ḡ − S θ̄
g , (1.5)

where Sθ
ḡ and S θ̄

g are associated with the θ and θ̄ components of the super entropy current.

We will refer to S′µ as the consistent entropy current.

We show that in a saddle point approximation, S′µ = suµ +O(∂), and that the right-

hand side of (1.5) is constrained to be positive semidefinite up to a total derivative, which

may be made to appear at least at 4th order in the derivative expansion. This feature of

S′µ allows one to extract the “hydrodynamic” entropy current, Sµ = S′µ + O(∂) whose

divergence is positive semidefinite.
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The external field AI which naturally couples to S′I bears remarkable similarities to a

recently proposed (dynamical) gauge field associated with the thermodynamic free energy

current [6, 7, 13, 15] (see also the precursor [21]). Indeed, inspired by [6, 7, 13, 15],1 we show

that the entropy current satisfies a conservation equation in superspace (1.4) and that the

positivity of the entropy production follows in the hydrodynamic limit from the unitarity

constraints on the effective action. Moreover, we note that in our setup the superfield AI is

an external source rather than a dynamical variable. Thus, S′I may be derived by varying

the Schwinger-Keldysh partition function Z[A] and so one may use our effective action to

easily compute correlation functions of the entropy current.

Note: shortly after this work appeared on the arXiv, a similar note by the above au-

thors [22] was posted which has significant overlap with our work.

The remainder of this work is organized as follows. In section 2 we remind the reader of

the formalism of [18] used to construct Seff . We focus on a probe limit which only includes

the dynamics of U(1) currents at low chemical potential. While this might seem like a

limited setting, we point out that working in the probe limit allows us to keep ~/T finite.

In section 3 we construct an entropy current in superspace and show that the right-hand

side of (1.5) is positive definite in a gradient expansion up to a total derivative, leading

to an exact definition for Sµ. In section 4 we demonstrate the second law for the total

entropy independently of a derivative expansion.

2 The hydrodynamic effective action

Let us begin by recalling the basic ingredients needed to construct the Schwinger-Keldysh

hydrodynamic effective action Seff .
2 As is the case for any effective theory, Seff is the most

general action one can construct which is compatible with the symmetries of the problem.

The relevant symmetries involve

1. A doubling of the symmetries associated with the doubled external sources.

2. A reality condition on Seff .

3. A topological symmetry associated with the vanishing correlation functions of “dif-

ference operators.” (We refer to this as the Schwinger-Keldysh symmetry.)

4. A non-local Z2 symmetry which we refer to as the full KMS symmetry.

1We note that the authors of [6, 7, 13, 15] consider a high-temperature limit and impose somewhat

different symmetries than we do. They too find that the current conjugate to their AI contains the entropy

current. The crucial new ingredients in our analysis are that we impose a Z2 KMS symmetry following [14],

and work in a probe limit that allows us to treat fluctuations at finite ~.
2This action accounts for the low-energy physics of the Schwinger-Keldysh partition function

Z[A1, A2] = Tr
(

U [A1]e
−βH

U
†
2
[A2]

)

, (2.1)

where U [A] is the time evolution operator from the infinite past to the infinite future in the presence of a

source A and e−βH is the thermal density matrix of the initial state.
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The dynamical degrees of freedom of the theory may be thought of as doubled embedding

functions of a Lagrangian description of the fluid. The reader is referred to [12–19] for an

extensive discussion.

In this work we will closely follow [18]. There, following previous work, three of us

argued for the following construction for a Schwinger-Keldysh effective action for hydro-

dynamics. The topological symmetry is enforced by adding ghost degrees of freedom and

then imposing two BRST-like symmetries Q and Q (which are exchanged by the full KMS

symmetry). The degrees of freedom are embedding functions Xµ
1 , X

µ
2 which serve as dy-

namical mappings from a “worldvolume” with coordinates σi to two “target spaces,” and

their associated ghosts Xµ
g and Xµ

ḡ . For charged matter one has, in addition, phases C1,

C2 and ghost fields Cg and Cḡ. Apart from the dynamical fields the action depends on

external metrics g1µν and g2µν , as well as external flavor fields B1µ and B2µ. The action

also depends on the thermodynamic parameters of the initial state. These are characterized

by a timelike vector βi and a flavor gauge transformation parameter Λβ .
3

Further following [18], we will restrict ourselves to a probe limit wherein we are consid-

ering the dynamics of a sufficiently weak conserved charge propagating in a fixed thermally

equilibrated background. Working in a flat target space, this implies that g1µν = g2µν =

ηµν and that the X’s are no longer dynamical and take on their value at equilibrium,

Xµ
1 = Xµ

2 = Xµ
eq ≡ σiδµi . (2.2)

The only remaining dynamical degrees of freedom in our setup are the C’s and their ghost

partners whose dynamical equations relate to charge conservation

DµJ
µ
1 = 0 , DµJ

µ
2 = 0 , (2.3)

and we consider configurations where the currents are perturbatively small. In this limit

the two stress tensors approximately coincide,

Tµν
1 = Tµν

2 = Tµν
eq , (2.4)

and are conserved,

DµT
µν
eq = 0 . (2.5)

At this point we emphasize that even though there is a nonzero current, by assumption it

is sufficiently weak so that the Joule heating term in the Ward identity can be neglected.

That is, (2.5) is satisfied instead of DµT
µν = GνµJµ with G the external field strength and

Jµ the physical U(1) current.

As we already mentioned, there are nilpotent supercharges Q and Q satisfying Q2 =

Q
2
= 0. They satisfy the algebra

{Q, Q} = iδβ (2.6)

3Note that we can always pick a “static gauge” for the worldvolume coordinates and flavor gauge such

that βi∂i = β∂0 and Λβ = 0, with β the inverse temperature of the thermal state in the infinite past. In

this gauge our expressions are closely related to those in [12, 14].
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where δβ acts as a combination of a Lie derivative in the β direction and, in addition, as

a flavor gauge transformation with parameter Λβ when acting on connections, or objects

which are charged under the flavor symmetry. For example,

δβφ = βi∂iφ (2.7)

where φ is a neutral scalar.4 In order to implement these symmetries we add fictitious

superspace coordinates to the spacetime which we denote by θ and θ̄.

The dynamical fields can be collected into superfields

C = RCr + θCḡ + θ̄Cg + θ̄θACa , (2.8)

where Cr = (C1+C2)/2, Ca = C1−C2, and A/R = coth(iδβ/2)iδβ/2.
5 For every multiplet

of the type (2.8) there exists a tilded multiplet

C̃ = RC̃r + θC̃ḡ + θ̄C̃g + θ̄θAC̃a , (2.10)

with

C̃r =
1

2

(
1 + e−iδβ

)
Cr +

1

4

(
1− e−iδβ

)
Ca , C̃g =

2

1 + eiδβ
Cg ,

C̃a =
1

2

(
1 + e−iδβ

)
Ca +

(
1− e−iδβ

)
Cr , C̃ḡ =

e−iδβ + 1

2
Cḡ .

(2.11)

With these definitions the action of the supercharges on the above superfields is given

by

δQC =
∂

∂θ
C , δQC =

(
∂

∂θ̄
+ iδβθ

)
C ,

δQC̃ =

(
∂

∂θ
+ iδβ θ̄

)
C̃ , δQC̃ =

∂

∂θ̄
C̃ .

(2.12)

The associated superderivatives which anticommute with Q and Q are given by

DθC =

(
∂

∂θ
− iδβ θ̄

)
C , Dθ̄C =

∂

∂θ̄
C ,

D̃θC̃ =
∂

∂θ
C̃ , D̃θ̄C̃ =

(
∂

∂θ̄
− iδβθ

)
C̃ .

(2.13)

In order to construct a gauge invariant action we join the dynamical fields with the

sources so that the resulting object is invariant under target space gauge transformations

(see, e.g., [13–15, 18]). We denote the resulting supermultiplet by

Bi = RBr i + θ̄θABa i + ∂iC , (2.14)

4In the static gauge we would have, δβφ = β∂0φ.
5More generally, there is some freedom in the ghost terms of the dynamical fields which one can param-

eterize in the following way:

C = RCr + θGCḡ + θ̄GCg + θ̄θACa , (2.9)

and there is a somewhat involved expression for G and G. As discussed in [18] we may set G = G = 1 which

is what we have done in (2.8). The exact values of G and G will not play a role in what follows.
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where

Br i =
1

2
(∂iX

µ
1B1µ(X1) + ∂iX

µ
2B2µ(X2))

Ba i = (∂iX
µ
1B1µ(X1)− ∂iX

µ
2B2µ(X2)) ,

(2.15)

and the Xµ
1 and Xµ

2 are given by their equilibrium value (2.2). Had we not been working

in the probe limit, we would have been compelled to construct a worldvolume supermetric

gij which contains the embedding functions and the metrics of the target-space. In our

probe limit we have gij = ηµνδ
µ
i δ

ν
j .

The most general effective action, Seff , constructed out of these fields and which satisfies

the required symmetries is

Seff =
1

2

∫
ddσdθdθ̄

√−gL(Bi, gij , Di, iDθ, Dθ̄; β, Λβ)

+
1

2

√
−g̃L(ηBB̃i, ηggij , η∂D̃i, −iD̃θ̄, D̃θ; ηββ, −Λβ) . (2.16)

Here tilded superfields are related to untilded ones as in (2.11) (and we have used g̃ij = gij .

Also, Di denotes the covariant derivative constructed from the metric gij , ηB and ηg are

the CPT eigenvalues of B and g, η∂D̃i is a CPT transformation of Di and ηβ is the CPT

eigenvalue of β. We refer to the second term on the right-hand side of (2.16) as the KMS

partner of the first.6

Note that the action (2.16) is invariant under an emergent symmetry. Recall that δβ is

the combination of a worldvolume Lie derivative along βi and an infinitesimal worldvolume

flavor transformation with parameter Λβ . As it acts on the worldvolume, the target space

sources gs µν and Bs µ are inert under it, as are the thermal data (βi,Λβ). Thus all of the

external fields appearing in the action are invariant under δβ , and it generates a symmetry

of the effective action.

Often, it is convenient to decompose L such that

L = L0(B,Di) +
∑

n=0

in+1Lj1j2k1...kn(B,Di)DθBj1Dθ̄Bj2DBk1 . . . DBkn + ghost terms (2.17)

where,

D = Dθ̄Dθ , (2.18)

and by “ghost terms” we mean terms which vanish when ghosts are set to zero. We have

omitted the explicit dependence on β, Λβ and gij for brevity. The capitalized Roman

indices specify spacetime indices. We refer to L0 as the scalar contribution to L and to the

n-th term in the sum on the right-hand side of (2.17) as the n+ 2-th tensor term in L.

6The observant reader will note that the KMS partner term is non-local relative to the first resulting in

an atypical action. The addition of the KMS partner term was necessary in order for the action to satisfy

the non local Z2 symmetry of the generating functional. Had we been working in a small ~/T limit, then

adding the KMS partner would have reduced to complete removal of various resulting transport coefficients

or the imposition of certain CPT constraints on transport coefficients. A full fledged discussion of the KMS

partner terms and their neccessity can be found in section 2.4 of [18]. The implications of the KMS partner

term on transport in the small ~/T limit can be found in [23].

– 6 –
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Let us pause to explain what precisely we mean by the probe limit. First, recall that

the conserved current of the theory may be computed by varying the Schwinger-Keldysh

generating functional W = −i lnZ with respect to the gauge field Ba i = B1 i − B2 i and

then setting B1 i = B2 i ≡ Bi:

〈J i〉 = 1√−g

δW

δBa i

∣∣∣∣∣
Ba=0

. (2.19)

Had we turned on external metrics we would have been able to similarly obtain the expecta-

tion value of the stress tensor. The equations of motion for the C’s and Xµ’s ensure current

conservation DµJ
µ = 0 and energy-momentum conservation DµT

µν = GνµJµ where the

right-hand side of the latter equation is referred to as a Joule heating term.

In the probe limit we introduce a formal expansion parameter ǫ and take the external

fields B1µ and B2 ν , as well as the superfield C to be O(ǫ). In this limit the current is also

O(ǫ). Invariance under charge conjugation, C, is enough to guarantee the validity of the

probe limit. It implies that the external fields and C’s backreact on the X’s at O(ǫ2), i.e.

the solution to the equations of motion for the X’s has the form Xµ
s = σiδµi +ǫ2δXµ

s +O(ǫ4)

with s = 1, 2. The stress tensors are similarly given by Tµν
s = Tµν

eq + ǫ2δTµν
s +O(ǫ4).

In this note we work with the effective action to O(ǫ2), and so neglect terms which are

cubic in B in (2.17) (which implies neglecting terms which are quadratic in the components

of B in the equations of motion). Thus, (2.17) truncates to

L = L0(B,Di) + iLij(Di)DθBiDθ̄Bj + ghost terms . (2.20)

In what follows we will assume that there exists a parameter which allows us to take a

saddle point approximation. For instance, in largeN gauge theories 1/N is just such a small

parameter. Another saddle point can be obtained in a statistical mechanical limit where

quantum fluctuations are suppressed relative to thermal ones. Such an approximation

was carried out in [14]. We will show how to incorporate such a statistical mechanical

approximation into our formalism in a future publication [23]. After taking the saddle-

point approximation one may obtain the constitutive hydrodynamic relations by varying

the effective action with respect to the sources Ba i and pushing forward these relations

to the target-space. Since the pushforward will not alter the algebraic structure of these

relations we can read them off directly from their worldvolume counterparts. We refer the

reader to [18] for details.

3 The entropy current

There are a few equivalent versions of the second Law of hydrodynamics used in the litera-

ture. The most common one, appearing in e.g. Landau and Lifshitz [1], is that there ought

to exist a current Sµ = suµ + O(∂) with s the entropy density which satisfies DµS
µ ≥ 0

for fluid configurations which solve the hydrodynamic equations. In the context of effec-

tive field theory for hydrodynamics, this is an “on-shell” second Law. There is also an

– 7 –
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“off-shell” second law [24], and elaborated on in [6, 7], which is the assertion of a current

Sµ = suµ +O(∂) which satisfies

DµS
µ + βµ (DνT

µν −Gµ
νJ

ν) +
µ

T
DµJ

µ = S ≥ 0 , (3.1)

for any fluid configuration, including those that do not solve the hydrodynamic equations.

This off-shell version can be rewritten in terms of a free energy current Nµ/T = Sµ −
Tµνβν − µ

T J
µ, which satisfies

Dµ

(
Nµ

T

)
− 1

2
Tµνδβgµν − JµδβBµ = S ≥ 0 , (3.2)

for any fluid configuration.

As a prelude to our construction of the entropy current, let us take a step back and

consider an action S =
∫
ddσ

√−g L with a dynamical variable φ and external metric gij .

Under a general variation of the quantum and external fields the action varies by

δS =

∫
ddσ

√−g

(
Eδφ+

1

2
T ijδgij

)
, (3.3)

with E the equation of motion for φ and T ij the stress tensor. Now fix a vector field βi

and define a transformation δβ which acts as a Lie derivative on gij and φ.

Let us now consider a “gauged” version of the transformation δβ, δT , which satisfies

δTφ = ΛT δβφ , δT gij = ΛT δβgij , (3.4)

with ΛT a spacetime dependent parameter. In order for (3.4) to be a symmetry of the action

we need that the Lagrangian transforms as a total derivative under it. To ensure this is the

case we require that the Lagrangian L transform in the same way as φ and gij under δT and

then modify the measure so that the combined variation is a total derivative. Clearly, the

problematic terms in the Lagrangian are those which include derivatives of φ and gij . To

resolve these problems we use the standard method of minimally coupling the theory to an

external field Ai whose transformation properties under δT compensate for the inhomoge-

nous transformation laws of derivatives of φ and gij . Indeed if we make the replacement

Di → D(A) i +Aiδβ , (3.5)

with D(A) i a covariant derivative with connection

(Γ(A))
i
jk =

1

2
gil ((∂j +Ajδβ)gkl + (∂k +Akδβ)gjl − (∂l +Alδβ)gjk) , (3.6)

then requiring that covariant derivatives of fields transform in the same way as fields them-

selves, e.g.

δT
(
D(A) iφ

)
= ΛT δβ

(
D(A) iφ

)
, (3.7)

implies that Ai varies under δT as

δTAi = ΛT δβAi −AiδβΛT − ∂iΛT . (3.8)

– 8 –
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The Lagrangian density L, defined through S =
∫
ddσ

√−g L, then satisfies

δTL = ΛT δβL . (3.9)

To ensure that the Lagrangian transforms as a total derivative we modify the measure so

that
√−g →

√−g

βiAi + 1
. (3.10)

Then the resulting action

S =

∫
ddσ

√−g

βiAi + 1
L , (3.11)

is invariant under δT

δTS = 0 . (3.12)

Thus, if we define the current Si conjugate to Ai via

δS =

∫
ddσ

√−g

βiAi + 1

(
Eδφ+

1

2
T ijδgij − SiδAi

)
, (3.13)

then when Ai = 0 we obtain the on-shell relation

DiS
i
∣∣
Ai=0

=
1

2
T ijδβgij . (3.14)

Note that this resembles the Gibbsian version of the second Law (3.2). As one may have

expected, Si will be conserved on-shell if β is a Killing vector, δβgij = 0. It will coin-

cide with the conserved current associated with the Killing symmetry. We note that the

mechanics of our construction are similar to that presented in [6, 7, 13, 15] though our

motivation and starting point are somewhat different.

Let us now take a step forward and consider a bosonic sigma model with dynamical

degrees of freedom Xµ and C, and sources Bµ and gµν which appear in the action only

through their pullbacks

Bi = Bµ(X)∂iX
µ + ∂iC , gij = gµν(X)∂iX

µ∂jX
ν , (3.15)

and derivatives thereof. This is not quite the setup we wish to consider, but taking this

sidetrack will allow us to motivate our main construction more clearly. We can now define

a transformation δβ which generates a worldvolume translation parameterized by a vector

βi and gauge transformation parameterized by Λβ ,

δβX
µ = βi∂iX

µ , δβC = βi∂iC + Λβ . (3.16)

Note that gµν and Bµ being functions of the target space are, in this setup, inert under δβ.
7

7As a result an effective action constructed from these fields, the sigma model fields, and the worldvolume

thermal data (βi,Λβ) is automatically invariant under δβ . We may then promote δβ to be a local, spurionic,

symmetry, by introducing an external field AI .
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Using the lessons learnt from gauging the δβ symmetry in (3.3) we now require

δTX
µ = ΛT δβX

µ ,

δTC = ΛT δβC ,
(3.17)

and take the external fields gµν and Bµ to be invariant under δT . The partial derivatives

of Xµ and C, which are used to pullback gµν and Bµ, do not transform in the same way

as Xµ and C. We modify them as

∂i → ∂i +Aiδβ , (3.18)

so that the pullbacks of gµν and Bµ become

g
(A)
ij = gµν(X) (∂i +Aiδβ)X

µ (∂j +Ajδβ)X
ν

= gij + βiAj + βjAi + β2AiAj ,

B
(A)
i = Bµ(X) (∂i +Aiδβ)X

µ + (∂i +Aiδβ)C

= Bi +Aiν ,

(3.19)

where gij and Bi are the ordinary pullbacks of gµν and Bµ, indices are lowered with gij
and ν = βiBi + Λβ. So defined, these pullbacks transform in the same way as Xµ and C,

δT g
(A)
ij = ΛT δβg

(A)
ij ,

δTB
(A)
i = ΛT δβB

(A)
i .

(3.20)

The variation of
√−g =

√
−det(gij) is

δT
√−g =

1

2

√−ggijδT gij = ΛTβ
i∂i

√−g +
√−gδβΛT (3.21)

and so an action of the form

S =

∫
ddσ

√−g L(g(A), B(A)) , (3.22)

is then invariant, δTS = 0.

Defining the various currents by

δS =

∫
ddσ

√−g

(
1

2
T ijδgij + J iδBi − SiδAi

)
, (3.23)

and using (3.15), we can rewrite the variation of S as

δS =

∫
ddσ

√−g

(
1

2
Tµνδgµν + JµδBµ − EµδXµ − EδC − SiδAi

)
, (3.24)

with Tµν = T ij∂iX
µ∂jX

ν and Jµ = J i∂iX
µ as well as

Eµ = DνTµν −GµνJ
ν ,

E = DµJ
µ .

(3.25)
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Now using that under δT both gµν and Bµ are invariant, but Xµ and C vary as (3.17), we

see that when Ai = 0, δTS = 0 implies

DiS
i + βµ (DνT

µν −Gµ
νJ

ν) + νDµJ
µ = 0 . (3.26)

This recalls the entropic second Law (3.1).

We could have defined another version of δT under which the sigma model fields Xµ

and C were invariant, but gµν and Bµ varied. The Ward identity of that transformation

would resemble the Gibbsian second Law (3.2) instead. In what follows, however, it will

be more convenient to supersymmetrize the transformation in which the sources are inert

and the sigma model fields transform.

Let us now consider the probe limit of the bosonic sigma model described above. In

the probe limit we consider a solution where gµν = ηµν and the X’s take on their classical

value Xµ = Xµ
eq = δµi σ

i. Since the Xµ’s take on their classical value we can no longer define

a transformation δT under which the X’s vary as δTX
µ = ΛT δβX

µ. In order to ensure

that the pullback field Bi varies under δT as above, we can compensate for the absence of

dynamical X’s by endowing the target space Bµ with the transformation

δT (δ
µ
i Bµ) = ∂i(ΛTβ

k)δµkBµ + ΛTβ
k∂k(δ

µ
i Bµ) . (3.27)

If we now make the replacements Bi → B
(A)
i as in (3.19) and modify the measure:

√−g →√−g/(βiAi + 1), then a short computation shows that δTS = 0 implies

∂iS
i = βiGijJ

j − ν∂iJ
i. (3.28)

Note that the Ward identity for δT in the probe limit (3.28) is not quite the Ward

identity in the full sigma model (3.26). The identity for the probe limit is missing the term

−βi∂jT
ij , essentially because we lack dynamical X’s. Put differently, in the probe limit

we are computing only the contribution of the Bi’s to Si. The contribution of the thermal

background and the backreaction of the background to Si is not present. Thus, there is

no term in Si which will compensate for the generation of the Joule heating term on the

right-hand side of (3.28). We note that Si will be conserved on-shell if we set the external

field Bµ such that βiGij = 0.

We are now ready to construct the super entropy current. As was the case for the

bosonic sigma model described above, we would like to gauge the δβ transformation de-

scribed in (2.6) so that a conserved super entropy current will emerge. Since we are

currently working in the probe limit where the X’s have been replaced by their classical

on-shell values, we can no longer require that, say, δTX
µ
1 = ΛT δβX

µ
1 . We may only impose

δTC = ΛT δβC , (3.29)

where now the “gauge” parameter may be a superfield. As in our discussion of the probe

limit of the bosonic sigma model we endow the target space gauge field with the following

transformation law

δT (δ
µ
i Bµ) = ∂i(ΛTβ

k)δµkBµ + ΛTβ
k∂k(δ

µ
i Bµ) (3.30)
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where

Bµ = R
(
B1µ(Xeq) +B2µ(Xeq)

2

)
+ θ̄θA (B1µ(Xeq)−B2µ(Xeq)) , (3.31)

and Xµ
eq is given in (2.2). With this transformation, we ensure that

δTB
(A)
i = ΛT δβB

(A)
i , δT ηij = 0 , (3.32)

where

B
(A)
i = Bi + Aiν (3.33)

and we have defined

ν = βiBi + Λβ . (3.34)

The replacements

Bi → B
(A)
i , Di → D(A) i + Aiδβ (3.35)

now almost ensure that the Lagrangian L defined in (2.20) satisfies δTL = ΛT δβL. The

problematic terms are those that contain superderivatives, e.g., DθBi. In order for L to

transform correctly under δT , one needs the additional substitutions

Dθ →
∂

∂θ
− iδβ θ̄ + Aθδβ , Dθ̄ →

∂

∂θ̄
+ Aθ̄δβ , (3.36)

together with the transformation properties

δTAθ = ΛT δβAθ − AθδβΛT −DθΛT (3.37)

and an analogous expression for δTAθ̄. The substitution (3.36) implies that we extend

the connection Ai to a superconnection AI . The authors of [13, 15] have entertained the

possibility that A is a dynamical gauge field which condenses and that the condensate is

associated with the breaking of a worldvolume CPT.

Let us study what changes when we have a super-connection AI rather than an ordinary

connection Ai. To illustrate this as simply as possible, we start with the original action∫
dθdθ̄ L and neglect its KMS partner. We take this action and rescale the measure so that

the integral is invariant under δT . This action becomes S0 =
∫
dθdθ̄ML with

M =

√−g

βiAi + 1
. (3.38)

Define the flavor “supercurrent” ji conjugate to Bi and the “supercurrent” σI conjugate to

AI as

δS0 =

∫
dθdθ̄M

(
jiδBi − σIδAI

)
. (3.39)

Then δTS0 = 0 implies that σI satisfies, when AI = 0,

Diσ
i +Dθσ

θ +Dθ̄σ
θ̄ = −ν(A−1R−1∂ij

i) + (βkGki)(A−1R−1ji) . (3.40)

Expanding σI in components,

σI = σI
b + θσI

ḡ + θ̄σI
g + θ̄θσI

t (3.41)
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then the bottom component of this identity reads

∂iσ
i
b

∣∣
AI=0

= −σθ
ḡ − σθ̄

g − (Rνr)(A−1∂ij
i
r) + (RβkGr ki)(A−1jir) , (3.42)

with ji
∣∣
θ=θ̄=0

= Rjir and Gij

∣∣
θ=θ̄=0

= RGr ij .

On shell, the right-hand side of (3.42) is nonzero due to the Joule heating term as well

as the σθ
ḡ and σθ̄

g terms. The latter two may be computed either from varying the action

with respect to Aθ and Aθ̄, or by the following. If we were to drop Aθ and Aθ̄ by hand from

the tensor terms, thereby making the tensor terms non-invariant under δT , then σθ
ḡ + σθ̄

g is

the variation of the tensor term under δT . Either way, one obtains

− σθ
ḡ − σθ̄

g = −1

2
Lij(Dk)δβ(RBr i) δβ(RBr j) . (3.43)

Let us now turn our attention to the full action (2.16), including the KMS partner

term. Adding a connection Ai to ordinary derivatives and substituting

√−g → M ≡
√−g

βiAi + 1
,

√
−g̃ → M̃ ≡

√
−g̃

βiAi + 1
, (3.44)

we may define

Si ≡ − 1

M

∂Seff

∂Ai
. (3.45)

Setting ghost terms and A to zero, the variation of the action under ΛT = θ̄θAΛT yields

δTSeff =

∫
ddσAΛT

(
−∂iS

′i − Sθ
ḡ − S θ̄

g − (Rνr)(A−1∂iJ
i
r) + (RβkGr ki)(A−1J i

r)
)
,

(3.46)

where S′i = Si
∣∣
θ=0, θ̄=0

and S θ̄
g + Sθ

ḡ specifies the non-invariance of the tensor terms under

δT if we were to drop Aθ and Aθ̄. Thus, the off-shell divergence of S′i is given by

∂iS
′i
∣∣∣
AI=0

= −Sθ
ḡ − S θ̄

g − (Rνr)(A−1∂iJ
i
r) + (RβkGr ki)(A−1J i

r) , (3.47)

The rightmost term in equation (3.47) is associated with the Joule heating term. Observe

the similarity with the off-shell entropic second law (3.1) up to the presence of R and A.

Note that since we have obtained SI from a variational principle, we can now define

it quantum mechanically by taking an appropriate variation of the Schwinger-Keldysh

generating function. Thus, we can treat (3.47) as a Ward identity for the divergence of S′i.

In the remainder of this work we will consider the tree level expression for S′i and

relate it to the hydrodynamic entropy current Si. More precisely, we will relate it to

the contribution of the charge to the entropy current. We first show that S′i − T ij
eqβj =

sui+O(∂), where s is the entropy density. Here T ij
eq is the pullback of the equilibrated stress

tensor. Its appearance is a result of the probe limit we are working in — the effective action

only captures the dynamics of the charge and the T ij
eqβj term provides for the contribution

of the thermal background to the entropy density.

We will then argue that when we set the electric field to zero, βiGij = 0, the right-hand

side of (3.47) is non-negative up to total derivatives, when working perturbatively in the

– 13 –



J
H
E
P
0
1
(
2
0
1
9
)
0
6
1

derivative expansion and placing all fields on-shell. (The total derivative terms come in

at fourth order in the derivative expansion.) As we will show explicitly this implies that

we may add terms to the consistent entropy current S′i to generate a “hydrodynamic”

entropy current Si which must satisfy (1.1) and (1.2). We thereby identify the total entropy

production to be the spacetime integral of −Sθ
ḡ − S θ̄

g .

If a saddle point approximation exists we can evaluate the entropy current by varying

the effective action with respect to the sources to obtain the tree level expression for S′I . Let

us start with the ungauged effective action expanded at zeroth order in derivatives. We find

Seff =

∫
ddσdθdθ̄M

(
1

2
F (T, ν) +

1

2
F (T,−ν)

)
+O(∂) , (3.48)

up to boundary terms, where

T =
(
−βiβjηij

)−1/2
, and ν =

(
βiBi + Λβ

)
. (3.49)

Defining

P (T, ν) ≡ 1

2
F (T, ν) +

1

2
F (T,−ν) (3.50)

the equilibrium constitutive relations take the form

Ji =

(
∂P

∂ν

)

T

βi +O(∂) . (3.51)

Since the bottom component of Ji should be identified with the charge current, we identify

P with the pressure, T with the temperature, βi with a normalized velocity ui = Tβi and

the bottom component of ν with µ/T where µ is the chemical potential.

The version of (3.48) invariant under δT is

Seff =

∫
ddσdθdθ̄

βiAi + 1
P
(
T, ν(A)

)
, (3.52)

where

ν(A) = (1 + βiAi)ν . (3.53)

Varying the action with respect to Ai and taking the bottom component, we find that

S′i − T ij
eqβj =

(
ǫ+ P

T
− ν

T

(
∂P

∂ν

)

T

)
ui +O(∂) = sui +O(∂) (3.54)

where the last equality follows from the constitutive relation for the stress tensor in equi-

librium, T ij
eq = ǫuiuj +P (ηij +uiuj), the first law, dP = sdT + ρdµ, and the Gibbs-Duhem

relation, ǫ+ P = sT + ρµ.

Next consider the right-hand side of (3.47). After a straightforward but somewhat

tedious computation, we find

− Sθ
ḡ − S θ̄

g = −1

2
Lij(Dk)δβ(RBr i) δβ(RBr j)−

1

2
η δβRBr iS−1

(
Lij(η∂Dk)δβ(RSBr i)

)
.

(3.55)
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where we have used S = 1
2(1 + e−iδβ ) and η is the CPT eigenvalue of Lij . We have also

set all but the bottom components of B to zero and have omitted the dependence of Lij

on βi, ηij and Λβ .

Recall that unitarity implies

Im(Seff) ≥ 0 (3.56)

(see [11]). As emphasized by [11, 12] it is difficult to constrain a Lagrangian so that (3.56)

is satisfied. In particular, one can add total derivatives to the effective Lagrangian while

keeping Seff unchanged. However, the off-shell constraint (3.56) must be satisfied for any

field configuration. In particular, it should be satisfied for configurations where the dynam-

ical fields and sources are constant. It then follows that the imaginary part of the effective

Lagrangian must be a positive function when neglecting derivatives. See appendix F of [11]

for a detailed discussion. Evaluating the imaginary part of the action in the absence of

derivatives, we find that

ImLeff

∣∣∣
∂=0

= σijBa iBa j +O(B4
a) . (3.57)

where σij = −
(
Lij + ηL̃ij

) ∣∣∣
∂=0

and L̃ refers to the KMS-conjugate Lagrangian. The

expression in (3.57) must be positive for all values of Ba in general, and for small Ba in

particular. Thus, σij must be non negative. In what follows we will assume that it is

strictly positive and therefore invertible.8

Given that
∣∣∣∣σij

∣∣∣∣ > 0, it follows that the right-hand side of (3.55) must also be

positive at leading order in derivatives. Furthermore, at subleading order in derivatives

the right-hand side of (3.55) will always include at least two factors of δβBr or their

derivatives. Thus, a term with n + 1 derivatives on the right-hand side of (3.55) may

always be brought into the form δβBr iQ
i
(n) up to total derivatives, with Q

(i)
(n) a term with

n derivatives [7, 11, 12, 25, 26]. Thus, we may always write

− Sθ
ḡ − S θ̄

g = σ

(
δβBr +

1

2
σ−1

(
Q(2) + . . . Q(n−1)

))2

+ ∂JS (3.58)

where we have omitted flavor and spacetime indices for brevity. Thus, if we define

Si = S′i − J i
S , (3.59)

then Si satisfies both (1.1) and (1.2) and is therefore the (hydrodynamic) entropy current.

4 Entropy production

While we have shown that the hydrodynamic entropy current can be constructed so that

it has non-negative divergence at any order in the derivative expansion, one may inquire

about positivity of entropy production in general. In this section we show that the total

8In practice, we may use a change of fluid frame to modify certain components of σij to vanish. Such

a change of frame may be carried out order by order in the derivative expansion and will not affect the

argument below.
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entropy increases, to quadratic order in fields but independent of a derivative expansion.

This analysis complements that of [11] where a similar statement was made in the statistical

mechanical limit.

Since the entropy current analysis is carried out to quadratic order in the fields it

is convenient for our current purpose to write the full effective action after superspace

integration, in momentum space. Such a construction was carried out in [14]. We rederive

it here for completeness. Let us consider the pulled-back fields Fr i =
1
2 (B1 i +B2 i) and

Fa i = B1 i −B2 i. We define the Fourier transform of these fields as

F (ω,~k) =

∫
dσ0dd−1~σ e−iωt+i~k·~xF (σ0, ~σ) . (4.1)

The most general local effective action quadratic in the fields will contain terms proportional

to F 2
r , FrFa and F 2

a . The Schwinger-Keldysh symmetry ensures that correlation functions

of all a-type fields must vanish. Thus, the effective action must not contain any terms

quadratic in the Fr’s,

Seff =

∫
dωdd−1k

(2π)d

{
G

ij
R(ω,

~k)F r i(ω,~k)F aj(−ω,−~k)+ 1

2
G

ij
S (ω,

~k)F ai(ω,~k)F aj(−ω,−~k)
}
.

(4.2)

If the Fi are external fields, then −iG
ij
R and G

ij
S are, respectively, the Fourier trans-

formed retarded and symmetrized two point functions for the current. While we have

focused on the probe limit in this text we could, as argued in [11], discuss more general

fields if we restrict ourselves to the quadratic part of the action. In this case the Fr i and

Fa j would correspond to r and a-type fields associated with the sources on which the gen-

erating functional depends and i and j would be indices appropriate to that source. In

what follows we will keep the i and j indices but the reader should keep in mind that these

may not necessarily refer to gauge fields.

The reality condition on Seff is given by [14]

(
Seff(Fr i, Fa j)

)
∗

= −Seff(Fr i,−Fa j) , (4.3)

which implies that GR and GS satisfy

(
G

ij
R(ω,

~k)
)
∗

= G
ij
R(−ω,−~k) ,

(
G

ij
S (ω,

~k)
)
∗

= −G
ij
S (−ω,−~k) ,

(4.4)

Because G
ij
S = G

ji
S and F a i(−ω,−~k) =

(
F a i(ω,~k)

)
∗

, then this together with the positivity

condition Im(Seff) ≥ 0 implies that −iG
ij
S is a hermitian, positive semi-definite matrix.

In thermal states there is a second topological symmetry, the KMS topological sym-

metry, which is the statement that correlation functions of the ã-type operators vanish.

Working in the static gauge (see footnote 3) it implies

Re
(
G

ij
R(ω,

~k)
)
= Re

(
G

ji
R(ω,

~k)
)
, (4.5)
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and

G
ij
S (ω,

~k) =
i coth

(
βω
2

)

2
Im

(
G

ij
R(ω,

~k) +G
ji
R(ω,

~k)
)
. (4.6)

Note that (4.6) is consistent with the fact that −iG
ij
S is hermitian.

Note that (4.6) bears a striking resemblance to the fluctuation dissipation theorem,

whereby the symmetrized Green’s function is determined by the retarded one. This resem-

blance is not accidental. The entirety of our analysis so far may be directly transferred over

the Schwinger-Keldysh generating functional of connected correlators W . Further, in that

case the imaginary part of G
ij
R + G

ji
R is the matrix of spectral functions, which unitarity

implies is also positive semi-definite at positive frequency
∣∣∣
∣∣∣Im

(
G

ij
R +G

ji
R

)∣∣∣
∣∣∣ ≥ 0 , ω ≥ 0 , (4.7)

and negative semi-definite at negative frequency. It follows from (4.6) that −iG
ij
S is positive

semi-definite for all ω as it should be. Finally, having accounted for these properties, the

full KMS symmetry imposes certain discrete transformation laws of the various components

of G
ij
R under CPT.

Putting all of the pieces together, a more useful way to characterize the effective action

is in terms of the real and imaginary parts of GR,

Seff =

∫
dωdd−1k

(2π)d




Re

(
G

ij
R(ω,

~k)
)

2

(
F 1 i(ω,~k)F 1 j(−ω,−~k)− (1 ↔ 2)

)

+
i Im

(
G

ij
R(ω,

~k)
)

1− e−βω
F̃ a i(ω,~k)F a j(−ω,−~k)



 , (4.8)

where F̃ a i is the Fourier-transform of F̃a i, which in terms of the average and difference

combinations is

F̃ a i(ω,~k) = (1− e−βω)

(
F r i(ω,~k) +

1

2
coth

(
βω

2

)
F a i(ω,~k)

)
. (4.9)

Let us demonstrate that (4.8) is equivalent to the original expression (4.2) for Seff .

First, using (4.5) we find that the first term in the effective action equals

∫
dωdd−1k

(2π)d

Re
(
G

ij
R(ω,

~k)
)

2

(
F 1 i(ω,~k)F 1 j(−ω,−~k)− (1 ↔ 2)

)

=

∫
dωdd−1k

(2π)d
Re

(
G

ij
R(ω,

~k)
)
F r i(ω,~k)F a j(−ω,−~k) . (4.10)

One can recover (4.2) from (4.8) by inserting (4.10) as well as the expression (4.9) for F̃ a

into the effective action (4.8) with GS determined as in (4.6).

The virtue of (4.8) is that it more readily manifests the symmetries of the problem.

The first term, being of the form S1 − S2, manifestly respects the Schwinger-Keldysh and
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full KMS symmetries.The second, being linear in the a-type fluctuations, automatically

respects the Schwinger-Keldysh symmetry. It is also invariant under the combination of

CPT and exchanging the a- and ã-fluctuations, and so respects the full KMS symmetry.

It is a little tricky to couple the fields in the effective action to the external field A

and so deduce the conjugate current. However it is straightforward to deduce the entropy

production, which in the previous section was given by the integral of −Sθ
ḡ − S θ̄

g . Without

introducing ghosts, the transformation we studied in the previous section, δT with ΛT =

θ̄θAΛT , is no longer a symmetry of the effective action, and the entropy production is

simply the non-invariance under it

δTFr i = 0 , δT (AFa i) = ΛTRβ∂tFr i , (4.11)

with ΛT a constant. The total entropy production ∆S is given by ∆S = − ∂(δTSeff)
∂ΛT

∣∣∣
Fa=0

.

The variation of the first term in the effective action (4.8) proportional to Re
(
G

ij
R

)
is

δTRe(Seff) = 2iΛT

∫
dωdd−1k

(2π)d
Re

(
G

ij
R(ω,

~k)
)
tanh

(
βω

2

)
F r i(ω,~k)F r j(−ω,−~k) . (4.12)

where we have used that R/A = 2
iβ∂t

tanh
(
iβ∂t
2

)
. This variation vanishes: since

Re
(
G

ij
R(ω,

~k)
)
is symmetric under i ↔ j as well as under (ω,~k) → (−ω,−~k), while the

rest of the integrand is odd under the combination of those two transformations.

The variation of the second term proportional to Im
(
G

ij
R

)
is

δT Im(Seff) = −2ΛT

∫
dωdd−1k

(2π)d
Im

(
G

ij
R(ω,

~k)
)
tanh

(
βω

2

)
F r i(ω,~k)F r j(−ω,−~k) .

(4.13)

Only the symmetric part of Im
(
Gij

R

)
contributes to this variation, and using

F r j(−ω,−~k) = F
∗

r j(ω,
~k) we find

∆S =

∫
dωdd−1k

(2π)d
tanh

(
βω

2

)
Im

(
G

ij
R(ω,

~k) +G
ji
R(ω,

~k)
)
F r i(ω,~k)F

∗

r j(ω,
~k) . (4.14)

Using (4.6) we rewrite this as

∆S = 2

∫
dωdd−1k

(2π)d
tanh2

(
βω

2

)(
−iG

ij
S (ω,

~k)
)
F r i(ω,~k)F

∗

r j(ω,
~k) . (4.15)

The integrand is positive on account of −iG
ij
S being a symmetric, real, positive semi-definite

matrix, so we find

∆S ≥ 0 , (4.16)

as expected.

We wrap up with two brief comments. First, we may take variations of the on-shell

entropy with respect to the external fields and obtain correlation functions of the entropy

production with the currents, giving

〈∆S J
i
a(ω,

~k)J
j
a(−ω,−~k)〉 = 2 tanh

(
βω

2

)
Im

(
G

ij
R(ω,

~k) +G
ji
R(ω,

~k)
)
. (4.17)
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Second, observe that only the symmetric part of Im(G
ij
R) contributes to the entropy produc-

tion. The real part of G
ij
R and the antisymmetric part of Im(Gij

R) do not. This generalizes

a known result in hydrodynamics. For the effective action describing relativistic hydro-

dynamics, the pressure term contributes to Re(GR), while the leading contribution to the

symmetric part of Im(GR) is the ordinary conductivity. Relatedly, in two spatial dimen-

sions the leading contribution to the antisymmetric part of Im(GR) is the anomalous Hall

conductivity, which is also known to be dissipationless [2].
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