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ABSTRACT - The complexity of a Boolean function 
can be expressed in terms of computational work. We 
present experimental data in support of the entropy 
definition of computational work based upon the Input- 
output description of a Boolean function. Our data show a 
linear relationship between the computational work and the 
average number of literals in a multi-level implementation. 
The Investigation includes single-output and multi-output 
function with and without don't care states. The experi- 
ments, conducted on a large number of randomly generated 
functions, showed that the effect of don't cares Is to reduce 
the computational work. For several finite state machine 
benchmarks, the computational work gave a good estimate 
of the size of the circuit. Finally, circuit delay is shown to 
have a non-linear relationship to the computational work. 

1. INTRODUCTION 
In information theory, the statistical behavior of a digital 

signal is characterized by its entropy. A digital circuit 
transforms its input signal into the output signal. In general, the 
entropy (or information) may not be preserved in such a 
transformation. In a thermodynamical sense, the transformation 
performed by a circuit is analogous to computational work. A 
computing element or Boolean gate possesses some computing 
power. To perform a given amount of work over some given 
time we need certain number of gates. Of course, tradeoffs 
between power and time may be possible. In this paper, our 
motivation is to examine the entropy measures in view of the 
current logic synthesis methodology. We believe, the statistical 
formulation may have applications to the problems of high-level 
synthesis, Boolean function specification, state assignment, logic 
minimization, timing optimization, and testability. 

In 1972, Hellerman [l] proposed a definition of computa- 
tional work based on entropy. About the same time, Cook and 
Flynn [2] also made a similar proposal showing that the entropy 
formulation did, in fact, explain the cost behavior of Boolean 
functions that was reported in an earlier paper by Kellerman [3]. 
Among these, Hellerman's paper gives a more complete 
analysis. Although the effect of don't care states on the com- 
plexity of a Boolean function was observed in the experimental 
work of Kellerman, a specific relation for computational work 
involving don't cares appeared only in a paper by Pippenger 
[4]. Most of the reported work deals with single output func- 
tions. 

Among applications, the use of information theory for 
generating tests was proposed by Agrawal [5] .  The state 
assignment problem was discussed by Lala [6] and others [7]. 

In this paper, we generalize the entropy formulation to 
multi-output functions. The relationship between entropy and 
the average amount of logic required for implementing a combi- 
national network is investigated through a series of experiments. 
For single output functions, the relationship between the delay 
of the network and the entropy is also studied. 

2. ENTROPY OF A MULTIPLE-OUTPUT FUNCTION 
Fully Specified Functions. For a multiple-output, fully 

specified Boolean function f with n input and m output signals, 
there are 2" possible input vectors and 2" output vectors. For 
each output vector 0;. the probability that f = Oi is: 

(1) 

where no, is the number of times 0; appears in the truth table 
of f. The entropy H of f is a function of 
P = { P l ,  Pz ,  .... , P r }  and is defined as: 

"0. 

2" 
p r ( f =  Oi) = p i  = 2 

( 2 )  
1 r 

H (P) = C Pi . log2 - 
i=l Pi 

The value of H ( P )  is always between 0 and m. When 
P l = P 2 =  ...... = P p = 2 - " ,  H ( P ) = m .  When P i = l  and 
Pi = 0 for all jzi, H (P) = 0. 

The entropy of a single output function is given by 

where P ,  is the fraction of 1's in the output column of the truth 
table. 

Partially Specijied Functions. Suppose a partially 
specified function fd has n, don't cares in its truth table. The 
probability that fd = Oi is then modified as: 

(4) 

The formula for entropy of fd will be the same as that for a 
fully specified function, i.e., Eqn. (2). 

3. COMPUTATIONAL WORK AND CIRCUIT AREA 

is defined as [ l ] :  
Computational work in an n-input combinational function 

Computational Work = 2".H (P) 
It is presumed that the circuit area, which is proportional to the 
number of gates or logic devices, will be proportional to the 
computational work. In the following, we will use the literal 
count, denoted by L. in a multi-level minimized form as a meas- 
ure of the circuit area. 

Sing& Output Functions. The average amount of logic 
required for implementing an n-input Boolean function can be 
expressed as [4]: 

L = (1 - d ) . K ( n ) . H ( P , )  (5) 
where d is the fraction of don't cares and K (n) is a function of 
the number of inputs and is independent of P 1 .  We provide 
experimental results using the multi-level logic synthesis system 
MIS [8] to verify this formula. We use the number of literals 
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in the multi-level implementation as a measure of the amount of 
required logic. 

Fully specified function: For a given PI (probability of 
f =  1) .  we randomly generated 100 functions. The tn~th table 
description of these functions was minimized by the MIS pro- 
gram for a multi-level implementation. Figure 1 shows the rela- 
tionship between the n u m k  of literals and P l  for 6-input 
single-output functions. The points on the three solid curves are 
the maximum, average and mini" number of literals each 
obtained from 100 functions. The doaed curve is the entropy 
function normalized to fit the measured average literal count. 

Don't cares n =6 
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Fig. 1: 6-input, single-output functions. 

Figure 2 shows the average literal count versus entropy 
data for 6, 7, 8 and 9-input functions. Each point represents an 
average over 200 randomly generated functions. A near-linear 
relationship between L and H ( P l )  is evident. Since these func- 
tions are fully specified, d = 0. and according to Eq. (5), the 
slope should be K(n).  The measured slope for each n is given 
in Table 1 .  Also, we notice that K ( n ) / K ( n - 1 )  is close to 2. 
This confirms the previous observations [9]: 

K(n)  = k.2" (6) 

for some constant k. 

Number 

Literals 
100 

0 .2 .4 .6 .8 1 

Entmpy H (P 1 1 

Fig. 2: fully specified n-input functions. 

47.59 
I 7 I 93.05 I 1.96 I 

Partially specified function: Don't cares in a combina- 
tional network specification are known to reduce the amount of 
logic. Figure 3 gives the results for 6-input single-output func- 
tions. The five sets of data correspond to the functions with 

0%, 20%. 402, 60% and 80% don't cares in the truth table. 
Each point is an average of 100 random functions. Figure 4 
gives similar data for 7-input functions. The average ratio of 
the literal count (15) to entropy (H) for various fractions (d) of 
don't cares is listed in Table 2. The closeness of the normal- 
ized value of (M) to 1-d provides a confirmation of Eq. (5) .  

Number ,,$ 
Literals 20 

of 

0 
lo 

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 

Entropy H (P I 1 

Fig. 3: 6-input single-output functions with don't cares. 

of 
Literals 

20 

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 

Entropy H ( P  1 ) 

Fig. 4: 7-input single-output functions with don't cares. 

Table 2 - Ratio of literal count to entrow (L/H) 1 

Multioutput Functwns. We again consider two cases. In the 
lirst case, we assume that the functions are fully specified and 
in the second case, the outputs are specified only for a subset of 
the input vectors. 

Fully specifred function: Figure 5 shows the relationship 
between the literal count and the entropy as obtained from 
1.200 randomly generated 7-input 2-output fully specified func- 
tions. The entropy, H (P), for the functions was computed from 
Eq. (2). The functions were minimized by MIS using a stan- 
dard script. Figure 6 shows similar data obtained from 1,500 
randomly generated 7-input 3-output functions. Figures 7 and 8 
summarize the data obtained from randomly generated %input, 
4-output functions and g-input, 7-output functions, respectively. 

An interesting inference from these results is that, 
irrespective of the number of inputs and outputs, the average 
amount of hardware (literal count) is always given by the com- 
putational work formula. For multi-output functions, from Eqs. 
(5)  and (6). we get 

L ( 4 d . P )  = (l-d).k'2".H(P) (7) 
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observe about 640 literals in Fig. 8. 
A closer examination of these results shows that the 

number of literals to entropy relation slightly deviates from 
linearity. That is, the L/IH ratio decreases slightly when the 
entropy H increases. The average L 4  ratio for diffemt ranges 
of H is listed in Table 3. Since the average LM ratio on the 
range of H between 0 and 1 (third column) is very close to the 
values of K(n)  for single output function shown in Table 1, we 
conclude that K(n)  is independent of the number of outputs and 
is simply a function of the number of inputs. The reduced 
slope for higher entropy may be due to greater sharing between 
the multiple output functions. 

Table 3 - Average UH Ratio for Multioutput Functions 
I Average UH 

I I I I I I I I I  
0 .2 .4 .6 .8 1 1.2 1.4 1.6 1.8 2 

Entropy H (PI 

Fig. 5: 7-input 2-output random functions (1200 samples). 

300 7 

0 .5 1 1.5 2 2.5 3 

Entropy H ( P )  

Fig. 6: 7-input 3-output random functions (1500 samples). 

0 1 '  I I I I I I I  
0 .5 1 1.5 2 2 5  3 3.5 4 

Entropy H (PI 

Fig. 7: 8-input I-output random functions (750 samples). 

0 1  I I I I I I  
0 1 2 3 4 5 6 7  

EnvopY H(P) 

Fig. 8: 9-input 7-output random functions (100 samples). 

where n is the number of inputs and the entropy H (P) is given 
by Eq. (2). The fraction d of don't cares is 0 in the fully 
specified case. The constant k depends on the units of L 
(literals, gates. etc.). As an example, consider H(Pk1.8 for 
which Fig. 5 gives an approximate value L=160. This is also 
the value of L in Fig. 6 for H(P)=1.8. Both cases correspond 
to 7-input functions. For 8-input functions, Fig. 7 gives approx- 
imately 320 literals. Similarly, for 9-input functions, we 

96.5 93.116 

p q T 7 . 2  4 1 1  93.4 89.4 84.3 - I 
I 2, I 161.8 186.4 169.8 161.0 152.2 I 

243.1 342.6 320.2 254.4 241.2 9-in, 
7-out 

Partially specified function: Figure 9 illustrates the effect 
of don't cares on 7-input 3-output functions. Five sets of data 
are shown in this figure. These correspond to fully specified 
functions (shown by . in Fig. 9), and the functions having 20% 
(m), 40% (A), 60% (0) and 80% (+) don't cares. Each set con- 
sists of 650 random samples. All functions were minimized by 
MIS. The average L& ratios are listed in Table 4. These 
results justify that the L/IH ratio is proportional to 1-d where d 
is the fraction of don't cares (Eq. (7)). 

of 150 
Literals 

50 

0 .5 1 1.5 2 2.5 3 

Entropy H (P) 

Fig. 9: 7-input 3-output functions with don't cares d = 0 (.), 0.2 
(w). 0.4 (A), 0.6 (0) and 0.8 (+). 

Table 4 - L/H Ratio for functions with don't cares 
Don't cares(%) 

20% 72.6 0.83 
40% 54.6 0.62 
60% 36.4 0.41 
80% 17.2 0.20 

Computational Work in Finite State Machine Benchmark Cir- 
cuits. A finite state machine is usually specified by its state 
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in- Don’t Entropy L i te ra lmt  

puts/ cam(%) L(n,4P)I  
out- lOOx K ( n )  H ( P )  Random/ 

400/383/307 
89/83/84 
33t29R9 
93/82/84 
51/35/36 
88/56/50 
60/60/65 
62/42/43 

120/193/181 
3ODUn 
62/49t22 

4. TIMING 
Figure 10 shows the relationship between the delay of the 

implemented singleanput Boolean functions and entropy. The 
delay is estimated using the unit-fanout delay model in MIS, 
i.e.. each gate is assumed to have one unit of delay and each 
fanout adds 0.2 unit. Every point in Fig. 10 represents an aver- 
age of 30 random samples. The observed linear relationship 
between the square of delay ( D 2 )  and entropy (H) can be 
expressed as follows: 

D2 = R (n)-H 

Table 6 summarized the slopes of the straight lines fitted to the 
data of Fig. 10. Since R(n)Zt(n-1) is approximately 2, we 
assume that R (n)  is proportional to 2”. Thus 

where kD is a constant of proportionality. 

5. CONCLUSION 
We have presented a statistical measure of the complex- 

ity of Boolean functions. We measure computational work 
based on the information theoretic entropy of the output signals. 
Computational work is shown to have a direct relation to the 
hardware needed to implement the function. Circuit delay is 
also related to the computational work. The computational 
work is reduced in direct proportion of don’t cares in the 
specification of a function. Partially specified functions are 
known to require less hardware compared to the fully-specified 
functions with the same number of input variables. Thus, it is 

f n=9 

0 .1 .2 .3 .4 .5 .6 .I .8 .9 1 

H 

Fig. 1 0  Delay and entropy of single output functions. 

72.0 
130.2 I I i::; 1 1 I 1 242.5 1.86 0.95 

possible to estimate the area and delay of a circuit from its 
functional description. Statistical measures have not been used 
in the modem logic synthesis. We believe, there are relevant 
applications. 
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