
AN ENTROPY MEASURE FOR THE COMPLEXITY

Kwang-Ting Cheng and Visbwani D. Agrawal
AT&T Bell Laboratories,
Murray Hill. NJ 07974

OF MULTI-OUTPUT BOOLEAN FUNCTIONS

ABSTRACT - The complexity of a Boolean function
can be expressed in terms of computational work. We
present experimental data in support of the entropy
definition of computational work based upon the Input-
output description of a Boolean function. Our data show a
linear relationship between the computational work and the
average number of literals in a multi-level implementation.
The Investigation includes single-output and multi-output
function with and without don't care states. The experi-
ments, conducted on a large number of randomly generated
functions, showed that the effect of don't cares Is to reduce
the computational work. For several finite state machine
benchmarks, the computational work gave a good estimate
of the size of the circuit. Finally, circuit delay is shown to
have a non-linear relationship to the computational work.

1. INTRODUCTION
In information theory, the statistical behavior of a digital

signal is characterized by its entropy. A digital circuit
transforms its input signal into the output signal. In general, the
entropy (or information) may not be preserved in such a
transformation. In a thermodynamical sense, the transformation
performed by a circuit is analogous to computational work. A
computing element or Boolean gate possesses some computing
power. To perform a given amount of work over some given
time we need certain number of gates. Of course, tradeoffs
between power and time may be possible. In this paper, our
motivation is to examine the entropy measures in view of the
current logic synthesis methodology. We believe, the statistical
formulation may have applications to the problems of high-level
synthesis, Boolean function specification, state assignment, logic
minimization, timing optimization, and testability.

In 1972, Hellerman [l] proposed a definition of computa-
tional work based on entropy. About the same time, Cook and
Flynn [2] also made a similar proposal showing that the entropy
formulation did, in fact, explain the cost behavior of Boolean
functions that was reported in an earlier paper by Kellerman [3].
Among these, Hellerman's paper gives a more complete
analysis. Although the effect of don't care states on the com-
plexity of a Boolean function was observed in the experimental
work of Kellerman, a specific relation for computational work
involving don't cares appeared only in a paper by Pippenger
[4]. Most of the reported work deals with single output func-
tions.

Among applications, the use of information theory for
generating tests was proposed by Agrawal [5] . The state
assignment problem was discussed by Lala [6] and others [7].

In this paper, we generalize the entropy formulation to
multi-output functions. The relationship between entropy and
the average amount of logic required for implementing a combi-
national network is investigated through a series of experiments.
For single output functions, the relationship between the delay
of the network and the entropy is also studied.

2. ENTROPY OF A MULTIPLE-OUTPUT FUNCTION
Fully Specified Functions. For a multiple-output, fully

specified Boolean function f with n input and m output signals,
there are 2" possible input vectors and 2" output vectors. For
each output vector 0;. the probability that f = Oi is:

(1)

where no, is the number of times 0; appears in the truth table
of f. The entropy H of f is a function of
P = { P l , Pz , , P r } and is defined as:

"0.

2"
p r (f = Oi) = p i = 2

(2)
1 r

H (P) = C Pi . log2 -
i=l Pi

The value of H (P) is always between 0 and m. When
P l = P 2 = = P p = 2 - " , H (P) = m . When P i = l and
Pi = 0 for all jzi, H (P) = 0.

The entropy of a single output function is given by

where P , is the fraction of 1's in the output column of the truth
table.

Partially Specijied Functions. Suppose a partially
specified function fd has n, don't cares in its truth table. The
probability that fd = Oi is then modified as:

(4)

The formula for entropy of fd will be the same as that for a
fully specified function, i.e., Eqn. (2).

3. COMPUTATIONAL WORK AND CIRCUIT AREA

is defined as [l] :
Computational work in an n-input combinational function

Computational Work = 2".H (P)
It is presumed that the circuit area, which is proportional to the
number of gates or logic devices, will be proportional to the
computational work. In the following, we will use the literal
count, denoted by L. in a multi-level minimized form as a meas-
ure of the circuit area.

Sing& Output Functions. The average amount of logic
required for implementing an n-input Boolean function can be
expressed as [4]:

L = (1 - d) . K (n) . H (P ,) (5)
where d is the fraction of don't cares and K (n) is a function of
the number of inputs and is independent of P 1 . We provide
experimental results using the multi-level logic synthesis system
MIS [8] to verify this formula. We use the number of literals

Paper 17.4
302

27th ACMllEEE Design Automation Conference@

0 1990 IEEE 0738-1 00>(/90/0006/0302 $1 .OO

in the multi-level implementation as a measure of the amount of
required logic.

Fully specified function: For a given PI (probability of
f = 1) . we randomly generated 100 functions. The tn~th table
description of these functions was minimized by the MIS pro-
gram for a multi-level implementation. Figure 1 shows the rela-
tionship between the n u m k of literals and P l for 6-input
single-output functions. The points on the three solid curves are
the maximum, average and mini" number of literals each
obtained from 100 functions. The doaed curve is the entropy
function normalized to fit the measured average literal count.

Don't cares n =6

100xd % LM Normalized L a
0% 47.6 1 .00

Number
of

Literals

n =7
LM Normalized

LM
93.1 1 .oo

30 q

20%
40%
60%
80%

: Average
+ : Minimum . : 47.6 - H (P l)

38.1 0.80 73.6 0.79
27 .O 0.57 53.0 0.57
16.8 0.35 35.5 0.38
7.7 0.16 15.8 0.17

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

PI

Fig. 1: 6-input, single-output functions.

Figure 2 shows the average literal count versus entropy
data for 6, 7, 8 and 9-input functions. Each point represents an
average over 200 randomly generated functions. A near-linear
relationship between L and H (P l) is evident. Since these func-
tions are fully specified, d = 0. and according to Eq. (5), the
slope should be K(n). The measured slope for each n is given
in Table 1 . Also, we notice that K (n) / K (n - 1) is close to 2.
This confirms the previous observations [9]:

K(n) = k.2" (6)

for some constant k.

Number

Literals
100

0 .2 .4 .6 .8 1

Entmpy H (P 1 1

Fig. 2: fully specified n-input functions.

47.59
I 7 I 93.05 I 1.96 I

Partially specified function: Don't cares in a combina-
tional network specification are known to reduce the amount of
logic. Figure 3 gives the results for 6-input single-output func-
tions. The five sets of data correspond to the functions with

0%, 20%. 402, 60% and 80% don't cares in the truth table.
Each point is an average of 100 random functions. Figure 4
gives similar data for 7-input functions. The average ratio of
the literal count (15) to entropy (H) for various fractions (d) of
don't cares is listed in Table 2. The closeness of the normal-
ized value of (M) to 1-d provides a confirmation of Eq. (5) .

Number ,,$
Literals 20

of

0
lo

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

Entropy H (P I 1

Fig. 3: 6-input single-output functions with don't cares.

of
Literals

20

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

Entropy H (P 1)

Fig. 4: 7-input single-output functions with don't cares.

Table 2 - Ratio of literal count to entrow (L/H) 1

Multioutput Functwns. We again consider two cases. In the
lirst case, we assume that the functions are fully specified and
in the second case, the outputs are specified only for a subset of
the input vectors.

Fully specifred function: Figure 5 shows the relationship
between the literal count and the entropy as obtained from
1.200 randomly generated 7-input 2-output fully specified func-
tions. The entropy, H (P), for the functions was computed from
Eq. (2). The functions were minimized by MIS using a stan-
dard script. Figure 6 shows similar data obtained from 1,500
randomly generated 7-input 3-output functions. Figures 7 and 8
summarize the data obtained from randomly generated %input,
4-output functions and g-input, 7-output functions, respectively.

An interesting inference from these results is that,
irrespective of the number of inputs and outputs, the average
amount of hardware (literal count) is always given by the com-
putational work formula. For multi-output functions, from Eqs.
(5) and (6). we get

L (4 d . P) = (l-d).k'2".H(P) (7)

Paper 17.4
303

observe about 640 literals in Fig. 8.
A closer examination of these results shows that the

number of literals to entropy relation slightly deviates from
linearity. That is, the L/IH ratio decreases slightly when the
entropy H increases. The average L 4 ratio for diffemt ranges
of H is listed in Table 3. Since the average LM ratio on the
range of H between 0 and 1 (third column) is very close to the
values of K(n) for single output function shown in Table 1, we
conclude that K(n) is independent of the number of outputs and
is simply a function of the number of inputs. The reduced
slope for higher entropy may be due to greater sharing between
the multiple output functions.

Table 3 - Average UH Ratio for Multioutput Functions
I Average UH

I I I I I I I I I
0 .2 .4 .6 .8 1 1.2 1.4 1.6 1.8 2

Entropy H (PI

Fig. 5: 7-input 2-output random functions (1200 samples).

300 7

0 .5 1 1.5 2 2.5 3

Entropy H (P)

Fig. 6: 7-input 3-output random functions (1500 samples).

0 1 ' I I I I I I I
0 .5 1 1.5 2 2 5 3 3.5 4

Entropy H (PI

Fig. 7: 8-input I-output random functions (750 samples).

0 1 I I I I I I
0 1 2 3 4 5 6 7

EnvopY H(P)

Fig. 8: 9-input 7-output random functions (100 samples).

where n is the number of inputs and the entropy H (P) is given
by Eq. (2). The fraction d of don't cares is 0 in the fully
specified case. The constant k depends on the units of L
(literals, gates. etc.). As an example, consider H(Pk1.8 for
which Fig. 5 gives an approximate value L=160. This is also
the value of L in Fig. 6 for H(P)=1.8. Both cases correspond
to 7-input functions. For 8-input functions, Fig. 7 gives approx-
imately 320 literals. Similarly, for 9-input functions, we

96.5 93.116

p q T 7 . 2 4 1 1 93.4 89.4 84.3 - I
I 2, I 161.8 186.4 169.8 161.0 152.2 I

243.1 342.6 320.2 254.4 241.2 9-in,
7-out

Partially specified function: Figure 9 illustrates the effect
of don't cares on 7-input 3-output functions. Five sets of data
are shown in this figure. These correspond to fully specified
functions (shown by . in Fig. 9), and the functions having 20%
(m), 40% (A), 60% (0) and 80% (+) don't cares. Each set con-
sists of 650 random samples. All functions were minimized by
MIS. The average L& ratios are listed in Table 4. These
results justify that the L/IH ratio is proportional to 1-d where d
is the fraction of don't cares (Eq. (7)).

of 150
Literals

50

0 .5 1 1.5 2 2.5 3

Entropy H (P)

Fig. 9: 7-input 3-output functions with don't cares d = 0 (.), 0.2
(w). 0.4 (A), 0.6 (0) and 0.8 (+).

Table 4 - L/H Ratio for functions with don't cares
Don't cares(%)

20% 72.6 0.83
40% 54.6 0.62
60% 36.4 0.41
80% 17.2 0.20

Computational Work in Finite State Machine Benchmark Cir-
cuits. A finite state machine is usually specified by its state

Paper 17.4

304

6 1 35.5

I puts d I Mustang
dk15 I 517 0.0 23 3.97 I 9249692

I 1 . 1 1

dk16
dkll
dk21
dk512
b b t a S

beecount
red

modulo12
malati

SE
lion9

FSM

Name

IIE 15.6 80 6.03
5/6 0.0 23 3.81
4/6 12.5 12 3.18
517 6.3 23 4.34
515 25.0 23 2.99
617 20.3 41 235
116 10.3 84 239
515 25.0 23 3.59
919 91.6 338 4.25
114 84.4 84 226
6/5 60.9 41 3.31

in- Don’t Entropy L i te ra lmt

puts/ cam(%) L(n,4P)I
out- lOOx K (n) H (P) Random/

400/383/307
89/83/84
33t29R9
93/82/84
51/35/36
88/56/50
60/60/65
62/42/43

120/193/181
3ODUn
62/49t22

4. TIMING
Figure 10 shows the relationship between the delay of the

implemented singleanput Boolean functions and entropy. The
delay is estimated using the unit-fanout delay model in MIS,
i.e.. each gate is assumed to have one unit of delay and each
fanout adds 0.2 unit. Every point in Fig. 10 represents an aver-
age of 30 random samples. The observed linear relationship
between the square of delay (D 2) and entropy (H) can be
expressed as follows:

D2 = R (n)-H

Table 6 summarized the slopes of the straight lines fitted to the
data of Fig. 10. Since R(n)Zt(n-1) is approximately 2, we
assume that R (n) is proportional to 2”. Thus

where kD is a constant of proportionality.

5. CONCLUSION
We have presented a statistical measure of the complex-

ity of Boolean functions. We measure computational work
based on the information theoretic entropy of the output signals.
Computational work is shown to have a direct relation to the
hardware needed to implement the function. Circuit delay is
also related to the computational work. The computational
work is reduced in direct proportion of don’t cares in the
specification of a function. Partially specified functions are
known to require less hardware compared to the fully-specified
functions with the same number of input variables. Thus, it is

f n=9

0 .1 .2 .3 .4 .5 .6 .I .8 .9 1

H

Fig. 1 0 Delay and entropy of single output functions.

72.0
130.2 I I i::; 1 1 I 1 242.5 1.86 0.95

possible to estimate the area and delay of a circuit from its
functional description. Statistical measures have not been used
in the modem logic synthesis. We believe, there are relevant
applications.

References

1 .

2.

3.

4.

5 .

6.

7.

8.

9 .

10.

1 1 .

L. Hellerman, “A Measure of Computational Work,”
IEEE Trans. Computers, vol. C-21. pp. 439446. May
1972.
R. W. Cook and M. J. Flynn. “Logical Network Cost
and Entropy,” IEEE Tram. Computers, vol. C-22. pp.
823-826. September 1973.
E. Kellerman, “A Formula for Logical Network Cost,”
IEEE Trans, Computers, vol. C-17. pp. 881-884, Sep-
tember 1968.
N. Pippenger. “Information Theory and the Complexity
of Boolean Functions ,” Moth. Syst. Theory, vol. 10, pp.
129-167, 1977.
V. D. Agrawal. “An Information Theoretic Approach to
Digital Fault Testing,” IEEE Tram. Computers, vol. C-
30, pp. 582-587, August 1981.
P. K. Lala, “An Algorithm for the State Assignment of
Asynchronous Sequential Circuits,” Electronics Letters,

C. R. Edwards and E. Eris. “State Assignment and
Entropy.” Electronics Letters. vol. 14, pp. 390-391,
1978.
R. K. Brayton et al. “MIS: A Multiple Level Logic
Optimization System,” IEEE Tram. CAD, vol. CAD-6,
pp. 1062-1081, November 1987.
K. Mase. “Comments on A Measure of Compu&ational
Work and Logical Network Cost and Entropy,” IEEE
Trans. Comp~ers . vol. C-27, pp. 94-95. January 1978.
R. Lisanke. “Finite state machine benchmark set,” Prel-
iminary benchmark collection. September 1987.
S. Devadas et al, “MUSTANG: State Assignment of Fin-
ite State Machines Targeting Multi-Level Logic Imple-
mentations,” IEEE Truns. CAD, vol. CAD-7, pp. 1290-
1300. December 1988.

vol. 14, pp. 199-201, 1978.

Paper 17.4

305

