
D. Fensel et al. (Eds.): ISWC 2003, LNCS 2870, pp. 453–468, 2003.
© Springer-Verlag Berlin Heidelberg 2003

An Environment for Distributed Ontology Development
Based on Dependency Management

Eiichi Sunagawa, Kouji Kozaki, Yoshinobu Kitamura, and Riichiro Mizoguchi

The Institute of Scientific and Industrial Research, Osaka University
8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 Japan
Tel: +81-6-6879-8416, Fax: +81-6-6879-2123

{sunagawa,kozaki,kita,miz}@ei.sanken.osaka-u.ac.jp
http://www.ei.sanken.osaka-u.ac.jp/

Abstract. This paper describes a system for supporting development of
ontology in a distributed manner. By a distributed manner, we mean ontology is
divided into several component ontologies, which are developed by different
developers in a distributed environment. The target ontology is obtained by
compiling the component ontologies. These component ontologies are
identified according to their conceptual level or domain characteristics. The
distributed development of ontologies applies to many situations such as
cooperative development, reusing ontologies and so on. To support such a way
of ontology development, we investigate the dependency between component
ontologies and design some functions for management of these ontologies
based on their dependencies. We next consider the influence of a change of one
ontology to others through its dependencies and design a function to suggest a
few candidate modifications of the influenced ontology for keeping the
consistency. We also present some examples of how the system works.

1 Introduction

The more Semantic Web attracts attention, the more importance of ontology
increases. In the Semantic Web, ontologies are developed by different developers in a
distributed environment. So, Distribute Ontology Development is one of the most
significant issues.

In general, ontology can be divided into several component ontologies. Building
ontology means occasionally building portions and compiling them. These component
ontologies are identified according to their conceptual level or domains.

For example, Fig.1 shows “Plant Ontology”, which was built in the Human Media
Project sponsored by the former Ministry of International Trade and Industry [1]. This
ontology is separated into three parts: Top Level Ontology, Task Ontology and
Domain Ontology. Furthermore, the domain ontology is divided into two ontologies:
physical attribute and equipment. Equipment Ontology is further divided into
ontologies of objects, plant parts and function. In Fig.1, arrows express the relation
between an upper ontology and a lower ontology. This is named “Super-sub Relation”
(discussed in section 2.1).

454 E. Sunagawa et al.

Development of ontology as a whole is achieved by editing and modification of its
component ontologies individually. We call development of ontology in this manner
“Distributed Ontology Development”, and we aim to develop a system supporting it
through our research. To support such a way of ontology development, we have been
investigating the dependency management between component ontologies. We
consider how a change of one ontology influences on others through its dependencies
and what countermeasures are effective for the change in order to keep the
consistency of them [2].

In this paper, we discuss more details of distributed ontology development. Section
2 discusses its basic philosophy and summarizes our work to date. Section 3 describes
implementation of the proposed methods in Hozo [3, 4] followed by concluding
remarks. In section 4, we discuss the future work.

Fig. 1. Plant Ontology. It can be divided into several ontologies according to their conceptual
levels or domains

2 Distributed Ontology Development

The purpose of our research is to realize a distributed ontology development. We
assume a situation where target ontology is divided into several component ontologies
and to construct each ontology individually (perhaps in parallel) by different
developers in a distributed environment.

The distributed development of ontologies applies to many situations such as
cooperative development, understanding the total picture of conceptual hierarchy,
reusing ontologies and so on. For example, a developer would divide one ontology by
categorizing concepts roughly, and then he/she builds each component ontologies in
cooperation with other developers. He/she can divide in such a manner before and
during the course of construction. In another case, he/she would carve out a
constructed ontology for reusing it as a part of another one. In these cases, we can
assume that such component ontologies are valuable on every phase of ontology
development.

In this section, we argue requirements on developing ontology in such a distributed
manner. We especially note how to keep the consistency of component ontologies
which are constructed individually and we define the dependency between ontologies.

Top Level
Ontology

Task
Ontology

Equipment
Ontology

Physical Attribute
Ontology

Function
Ontology

Plant Part
Ontology

Object
Ontology

Domain Ontology

An Environment for Distributed Ontology Development 455

2.1 Dependencies between Ontologies and Their Management

In this paper, we treat basic concepts mainly syntactically or formally while we have
argued a part of heavy weight ontology such as the role concept in [3]. The
dependency this paper discusses is based on is-a relation and class constraint. As
these relations can be treated in RDF(S) or OWL, our research will contribute to the
development of ontologies for the Semantic Web.

Dependency between Ontologies. When constructing ontology, concepts are usually
defined with reference to the definitions of other concepts. In collaborative
construction, those referred concepts might exist in another ontology developed by
another person. That means some concepts in ontology depend on other concepts in
another ontology. This section discusses the dependency between ontologies which is
defined as in terms of the dependency between concepts defined in respective
ontologies. The kinds of them are:

1) Super-sub Relation (is-a relation): Two ontologies are said to be in “super-sub
relation”, if and only if there are at least two concepts in is-a relation and each of
the two concepts belongs to a different ontology of the two. We named these
ontologies “upper ontology” and “lower ontology” respectively. The lower
ontology depends on the upper one at the point of inheriting definition. In the
“Plant Ontology”(Fig.1), we can find this relation between “Top Level Ontology”
and “Equipment Ontology”, between “Equipment Ontology” and ”Plant Parts
Ontology”, etc.

2) Referring-to Relation (class constraint): We define “referring-to relation” as the
relation that a concept in one ontology refers to a concept in another as a class
constraint. We named the ontology containing the slot being constrained
“referring ontology” and the other “referred-to ontology”. In the “Plant
Ontology” (Fig.1), we can find this relation between “Plant Parts Ontology” and
“Physical Attribute Ontology”, etc.

These 4 types of component ontology based on dependencies, “lower”, “upper”,
“referring” and “referred”, are determined on the basis of conceptual dependency with
each other. So, an ontology does not have its won type intrinsically. If there are
several concept pairs making dependency between two ontologies, we can define
several numbers (and kinds) of dependencies and each ontology takes multiple
positions. In such a case, ontologies and their dependencies form a graph (rather than
a tree) as a whole.

Management of Dependency between Ontologies. When editing ontology, we
should pay attention to the change influencing on other ontologies. In some cases, that
change may destroy the consistency between ontologies. We investigated two
approaches to keep consistency of the dependency. One is to restrict the change which
influences on others. The proactive restriction helps developers to avoid
inconsistency. The other approach is to modify the influenced ontology according to
the type of the change. This paper is mainly concerned with the latter approach, and
the former is argued in section 4 as remaining work. 5 kinds of countermeasures taken
in the influenced ontology are:

456 E. Sunagawa et al.

• 1-1) To modify influenced ontology for accepting the change; The user makes
agreement on the change of the ontology and tries to modify his/her ontology
depending on it. The influenced ontology needs to be modified to adapt to the
changed ontology. The way to reflect the change of the influencing ontology is
mentioned later.

• 1-2) To leave the depending ontology influenced by the change; In some cases, the
influenced ontology is not need to be modified, as the changed ontology doesn’t
contradict it.

• 2-1) To modify influenced ontology for rejecting the change; As far as keeping the
consistency of the dependency, the user tries to modify his/her ontology against the
change and reduce the influence. The way to negate the influence of the change is
mentioned later.

• 2-2) To stay compliant with the last version of the changed (depending) ontology;
Under controlling the version of ontologies, the dependency is kept in this way. If
influencing ontology would be changed again, influenced one could adapt to the
change and the consistency would be recovered. However, this should be a
temporal method to keep the dependency. Its problem is argued in section 4.

• 3) To break the dependency; In order to make the influenced ontology independent
of the others, concepts whose change influences on it are imported in it and cut the
link of the dependency between the two.

1-1) and 1-2) are selected when the author agrees on the change and accept its
influence on his/her ontology. 2-1), 2-2) and 3) are to reject the change. Then, he/she
is able to deny the change influencing his/her ontology at least in itself. All but 3) of
these countermeasures are selected in order to keep the dependency.

In either case of accepting or not accepting, modification of the influenced
ontology should be supported because of its complexity. So, we began with
conceiving the patterns of the change. And, for the influence of each pattern, we
investigated the possible way of modification to keep the dependency. The influenced
ontology is modified based on this framework.

We have two major kinds of patterns of the change: operation on the concept itself
and changing its definition. The former includes the cases where a concept has been
deleted or a sub concept has been added. The latter does the cases where the label has
been changed, a slot such as a part of or an attribute of a concept has been deleted,
added or a class constraint has been changed. In all, we have 17 types of the change of
the concept according to the kind of dependency. And, as the countermeasures for the
change, we have 67 ways of modification. Table.1 shows what type of the change are
supported and how many countermeasures for each type are supported. We cannot
always take all kinds of countermeasures. Some types of the change influence
strongly and restrict the choices of authors.

Examples of Modifying ontology to Keep the Consistency of Its Dependency. In
this section, we show two examples of the dependency management in “Plant
Ontology” (described in section 1).

Ex.1: Fig.2 shows a portion of “Plant Ontology”. “Heat Exchanging Device” is sub-
concept of (is-a) “Device”. are so, too. Then, we can define super-sub relation
between “Equipment Ontology” and “Plant part ontology”. Assume that the slot

An Environment for Distributed Ontology Development 457

“Input Thing” has been deleted from the concept “Device” in “Equipment Ontology”.
That change influences “Plant Part Ontology”.

Table 1. The patterns of the change and countermeasure for them

countermeasures for the change

accept the change reject the change
keep the dependency

modify leave modify
last

version

break the
dependency

patterns
of the change

1-1 1-2 2-1 2-1 3
super-sub relation
operation of a concept
 deletion of a concept 1 - 1 1 1

addition of a sub
concept

2 1 - 1 1

change of the definition
 change of the label 1 1 - 1 1
 deletion of a slot 1 - 1 1 1
 addition of a slot 2 1 - 1 1
 change of the class constraint (inheriting)
 generalizing 1 1 - 1 1
 specializing - 1 - 1 1
 different concept - 1 - 1 1
 change of the class constraint (overridden)
 generalizing - 1 - 1 1
 specializing 2 - - 1 1
 different concept 2 - - 1 1
referring-to relation
operation of a concept
 deletion of a concept 1 - 1 1 1

addition of a sub
concept

1 1 - 1 1

change of the definition
 change of the label 1 1 - 1 1

deletion of a slot
(referred by a role
concept)

1 - 1 1 1

deletion of a slot (not
referred by a role
concept)

- 1 - 1 1

 addition of a slot 2 1 - 1 1

According to Table.1, four ways are supported to cope with the change of
“Deletion of a slot in Super-sub Relation”. The developer of “Plant Part Ontology”
can select a countermeasure out the followings:

458 E. Sunagawa et al.

Fig. 2. An example of super-sub relation

• 1-2) To delete the slot in all influenced concepts (to accept the change):
Deletion of “Input Thing” is applied to all influenced concepts in “Plant Part
Ontology”. (In the case of this example, it is thought that manual change is needed
because of importance of the deleted definition.)

• 2-1) To add the same as deleted slot to a depending concept in the lower
ontology (to reject the change): To reject the deletion of “Input Thing” in “Plant
Part Ontology”, the slot should be added to appropriate concepts which are
inheriting it. (In this example, the slot “Input thing” is inherited by “Heat
Exchanging Device”, “Driving Device” and “Info Device”. Then, we should add
the slot to them.)

• 2-2) To stay compliant with the last version of the modified ontology (to reject
the change): The old version of “Equipment Ontology” has been saved in the
ontology server (described in section 3.1). “Plant Part Ontology” can keep
dependence on it under the version control.

• 3) To break the dependency (to reject the change): Re-define “Device” with
“Input Thing” in “Plant Part Ontology” and break the dependency between the
ontologies. “Plant Part Ontology” is then changed to be independent of
“Equipment Ontology”.

Ex.2: Fig.4 shows part of “Plant Ontology” (in Fig.1). “Liquid Thermometer” in
“Plant Part Ontology” is referring to “Liquid” in “Object Ontology” as a class
constraint of “M_Object”. Then, we can define referring-to relation between these
ontologies. Assume that the concept “Liquid” has been deleted from “Object
Ontology”. It influences “Plant Part Ontology”.

According to Table.1, four ways are supported to cope with the change such as
“Deletion of a concept in Referring-to Relation”. The developer of “Plant Part
Ontology” can select a countermeasure out the followings:

super-sub relation

(Equipment Ontology) (Plant Part Ontology)

delete

An Environment for Distributed Ontology Development 459

Fig. 3. An example of referring-to relation

• 1-1) To refer a super concept of the deleted concept (to accept the change): As
the class constraint of “Liquid Thermometer”, we can refer “Object” which is the
super concept of “Liquid”. This means the class constraint to “Measurement
Attribute” become looser a little.

• 2-1) To add the same as the deleted concept to the referring ontology (to reject
the change): This way means the deletion of “Liquid” is denied in “Plant Part
Ontology”. The author redefines “Liquid” in “Plant Part Ontology”, and
establishes newly super-sub relation between “Plant Part Ontology” and “Object
Ontology” through is-a relation between “Liquid” and “Object”. (However, this
method should be temporary adjustment. Because it is not desirable that only one
concept, which is a “Object”, is defined in the different ontology from “Object
Ontology”, in which the other concepts of “Object” are defined.)

• 2-2) To stay compliant with the last version of the modified ontology (to reject
the change): It is the same as Ex.1.

• 3) To break the dependency (to reject the change): It is the same as Ex.1.

2.2 Other Contentions

The management of dependencies between ontologies is not enough for realizing
distributed ontology development smoothly because dependency is one of the aspects
which appear particularly in the consistency management of conceptual hierarchy. So,
we have to consider more general functions for supporting distributed development.
In this section, we discuss the management of ontology from the point of version
control, updating and reusing. Next, the management of developers is discussed
together with cooperative development. Here, we need to note that component
ontologies are managed together with their developers by each target ontology as a
whole.

(Object Ontology)

referring-to relation

(Plant Part Ontology)

delete

460 E. Sunagawa et al.

Management of Ontologies

Version Control of Ontologies. In distributed ontology development, each component
ontology is updated independently. To manage the dependency between them with
our method described in section 2.1, the system have to preserve old versions of
ontologies.

When under construction, it is not hard to control the version of ontologies. An old
version of ontology needs to be preserved in the system only if it has dependencies
with some component ontologies. So, our system manages dependencies with
information about the version of ontology which has the dependency. And, we can
manage them more easily if ontology avoids having dependency with an old version
of other ontology unnecessarily.

However, it is very hard to manage dependencies if many versions of the same
ontology have dependencies with other ontologies individually. It causes a problem
especially in a stage of compiling component ontologies to the target ontology. This is
discussed in section 4.

Update of Ontologies. In our distributed ontology development system, its user
constructs his/her own component ontologies on a local computer. And when he/she
decides to publish them, the ontology is updated on a shared space of server computer.
At the same time, the user can access to other published ontologies which other
developers have developed, whenever he/she needs to check the dependency of his/her
ontology. If it is needed to be refined, he/she modifies his/her ontology to cope with
the change of ontologies it depends on. Then, he/she updates the modified ontology
again.

Reuse of Ontologies. In our system published component ontologies are reused as
some part of other ontologies. We support 3 types of reusing ontologies as follows

1) reusing ontology which is under construction
2) using a particular version of ontology
3) importing some version of ontology, and arranging it

In general, ontology reused should be of the final version because it is hard to
develop ontology with keeping its consistency in several different target ontologies.
For this reason 1) is not good way to reuse ontologies. On the other hands, if the
developer uses a particular version of ontology, as 2), and ignores its evolution later
on, the reuse of ontology becomes easier. 3) is an evolved case of 2) , and it is
supposed the most practical way. In this case, arranged ontologies should be regarded
not as the updated version of the imported ontology. To simplify the management of
ontologies, it is regarded as a newly developed ontology rather than a new version of
the original ontology. And its versions should be managed separately.

At any types, to reuse ontologies we should consider not only computer processing
(e.g. management of consistency of the conceptual hierarchy) but also communication
and agreement among the developers. To support reuse of ontology in the distributed
ontology development, we will investigate more these topics.

Cooperative Development and User Management. It is very hard to manage the
consistency of dependencies if several developers construct the same part of ontology

An Environment for Distributed Ontology Development 461

at the same time. For this reason, our system does not allow multiple accesses to a
concept by different developers at the same time.

When developers edit their ontology, the system manages and shows the
information they need. For example, which ontologies are related it, how their
relations are, the developer of related ontologies, and so on. Because the methodology
of ontology development is still argued and outside of this paper, we do not describe
detail of how this information support developers in cooperative development. But, at
least, we can say that the information will be used in order to support communication
between developers because it is difficult for them to make agreement about target
ontology in a distributed manner.

However, we still have some issues to consider. Firstly, our approach might
become unnecessarily complex when many developers divide a large ontology into
many component ontologies and construct them in parallel. One solution to this
problem is to control the access of developers at a conceptual level in ontologies. We
will investigate it in the future work. Secondly, we can take some cases in which
several developers would like to construct the same component ontology of target
ontology. This issue is mentioned together with the construction of component
ontologies in section 4.

3 Distributed Ontology Development with “Hozo”

On the basis of our consideration described in the above section, we designed two
tools for supporting to practice distributed ontology development. First, we
summarize our system “Hozo” developed as an environment for building ontologies.
Next, we describe how distributed ontology development is realized in “Hozo” and
how two tools works for supporting developers.

3.1 “Hozo”, an Environment for Building Ontologies

We have developed an environment, named “Hozo” [3, 4], for building ontologies
based on fundamental ontological theories. Hozo is composed of “Ontology Editor”,
“Onto-Studio” and “Ontology Server” (in Fig.4). Ontology Editor provides users with
a graphical interface, through which they can browse and modify ontologies. This
system manages properties between concepts in the is-a hierarchy. Onto-Studio is
based on a method of building ontologies, named AFM (Activity-First Method) [5],
and it helps users design ontology from technical documents. Ontology Server
manages the built ontologies and models.

Because the architecture is implemented in Java and the Ontology Editor is an
applet, it can work as a client through Internet. Hozo manages ontologies and models
considering who its developer is. Models are built by choosing and instantiating
concepts in the ontology and by connecting the instances. Hozo also checks the
consistency of the model using the axioms defined in the ontology. The ontology and
the resulting model are available in different formats (Lisp, Text, and XML/DTD)
that make it portable and reusable.

462 E. Sunagawa et al.

Fig. 4. Hozo, an Environment for Building Ontologies

3.2 Practice of Distributed Ontology Development

Flow of Distributed Ontology Development. Distributed ontology development is
performed as described in section 2.2. The development has been done by the
repetition of the following steps; 1) a developer logins Hozo and runs Ontology
Manager (described in section 3.3). Then, he/she can get a total picture of the target
ontology and information of dependencies between component ontologies. One of the
important information is which ontology has been changed. 2) he/she selects ontology
to edit and open it by Ontology Editor. At the same time, Ontology Editor accesses
other component ontologies it depends on and compiles them temporarily. At this
phase, a concept hierarchy is built up as one ontology (e.g. inheritance of the
definition). Then, its dependencies are checked automatically and he/she knows their
conditions. If their consistencies may be broken, he/she can select countermeasures
listed on Tracking Panel (described in section 3.4) to cope with the change. 3) he/she
starts editing his/her ontology. In addition, dependency is checked whenever he/she
needs it is under editing. 4) After editing, he/she updates his/her ontology on
Ontology Server and publishes it to others.

Data Structure and Its Use. To manage the dependencies, the system manages the
information about each component ontology as follows:

• its name, its version, its developer and the last update time of itself
• the name and the version of ontologies it depends on
• a copy data of the definition of the concept it depends on in other ontology

A copy data of the definition is used to check the consistency of dependency and to
identify the type of change of ontology (in Fig. 5). The copy data is mounted in
ontology when its developer makes or rebuilds a dependency. Our system checks the
change of influencing ontology by comparing the definition of depended concepts
with its copy data the influenced ontology has. If the consistency of dependency may
be broken, the system lists the kind of detected changes and countermeasures to keep
consistency of the dependency based on the patterns in Table.1.

L
anguage

m
anagem

ent system

Ontology Server

Clients
(other agents)

building /
brow

sing

�
�
��
��
�
�

�
�
	��

Ontology/
model authors

Models

OntologiesOntologies reference
/ install

management of
ontologies and models

Onto-Studio
(a guide system for

ontology design)

supportsupport

An Environment for Distributed Ontology Development 463

Fig. 5. Data Structure of dependency. When ontology B depends on concept A in ontology A,
the system make the copy of definition of concept A in ontology B. This copy is used for
detecting and identifying of the change of concept A

Operations for Distributed Ontology Development. Ontology Manager provides
four operations for distributed ontology development; to create new component
ontology, to divide a component ontology, to compile ontologies and to reuse
ontology as a component. These are available mainly in the case where a developer
specifies component ontologies and their dependencies before constructing every
component ontology and then participants start development according to the
specification. On the other hand, we can assume a case where a developer constructs
each component ontology before its borderline and dependency is defined. In such a
case, he/she has to make a dependency on occasions. Ontology Editor provides the
functions to find a concept in other ontologies and make a dependency with it.

3.3 Ontology Manager

We have designed a tool, named “Ontology Manager”. Fig.6 shows its interface.
Ontology Manager consists of 4 panels:
• Ontology List shows a list of ontologies which is registered in Ontology Server.

Users can select ontology, and then the information about it is shown in other
panels.

• Ontology Viewer shows dependencies between ontologies graphically by using
nodes and links each of which represents ontology and super-sub relation,
respectively.

• Ontology Information Panel shows the name, file name, developer, version, last
update of the selected ontology.

• Dependency Panel shows the list of ontologies which have a dependency with the
selected ontology. They are classified in 4 types (described in section 2.1): upper,

“Concept A” has been changed

Concept A Concept

Ontology A Ontology B

Concept A

Ontology A’

Concept A’

is-a relation
or

class

Concept A Concept

Ontology B

is-a relation
or

class

 make the copy of definition of the concept it depends
on

compare for detect the change of Concept A
on

464 E. Sunagawa et al.

lower, referring-to and referred-to. Users can select shown type by tabs. The table
informs users the names of ontologies, concepts which constitute the dependency,
version of ontologies and whether that concept is changed or not.

Fig. 6. Ontology Manager. It consists of 4 panels: Ontology List, Ontology Viewer, Ontology
Information Panel and Dependency Panel

These panels are to show users a series of information about ontologies built by
Hozo. Besides, Ontology Manager acts as a bridge between ontologies edited in local
and ones open to the public (Fig.7). Furthermore, Ontology Manager carries out 3
functions as follows.
• Management of Dependency. In both local and public cases, only component

ontologies exist and developers edit them individually. Ontology Manager
compiles them virtually to form target ontology and shows its configuration on
Ontology Viewer. It enables developers to grasp easily the outline of dependencies.
And, if developers need to get details about dependencies, they can use
Dependency Panel. In addition, this function is used as a first step for supporting
modification to cope with changes as described in section 2.1. More details are
described in section 3.4.

• Version Control. To manage dependency between ontologies, Ontology Manager
treats their versions also. If some ontology depends on an old version of another,
the caution is given graphically on Ontology Viewer. These old versions of
ontologies are preserved in Ontology Server, if they have been open to the public.
Ontology Manager searches Ontology Server and find necessary version of the
ontology.

• Management of Developers and Their Access. Ontology Server has information
about every target ontology together with its developer. The system manages the
developer’s access to ontologies by considering which target ontology he/she joins
to construct and which component ontologies he/she may edit. A developer cannot
edit every component ontology. As described in section 2.2, we assume that one
component ontology is built by one developer. However, if a developer gives

Ontology
List

Ontology Viewer

Ontology
Information

Panel

Dependency
Panel Component

Ontology Changed Ontology
(Its color is changed.)

Old version
of ontology

An Environment for Distributed Ontology Development 465

permission, the system allows another to edit his/her ontology. In this case, unless
he/she admit, the edited ontology cannot be updated.

Fig. 7. Roles of Ontology Manager. It acts as a bridge between Ontology Editor and Ontology
Server. Its roles are to: (1) download component ontologies of a target ontology from Ontology
Server, (2) propagate the influences of the change to the ontology which is edited with
Ontology Editor (3) upload the component ontology, which is edited in local, to Ontology
Server

3.4 Tracking Panel: The Function to Keep the Consistency of the Dependency

Ontology Manager shows developers which ontology has been changed and might
destroy the consistency of its dependency. To keep the consistency of dependency,
the developer should get more information that how the influencing ontology has
been changed and what countermeasures are supported. These are shown in Tracking
Panel. The panel lists the change of the influencing ontology and the possible
countermeasures for coping with each change. He/she selects the change of the
ontology and the countermeasure form the list. Then his/her ontology is modified
semi automatically and the dependency is kept its consistency. This function is
available whenever he/she requests the change information of other ontologies.

4 Remaining Work

To advance distributed ontology development further, we have some issues to discuss.
In this paper, we have already mentioned them a little. Here, we describe them in
more details.

• Keeping the Consistency from the Influencing Ontology;
In this paper we took an approach to keep the consistency from the depending
ontologies. On the other hand, we can consider the approach to keep the consistency
of the dependency from the influencing ontology. We plan two stages to realize this.
In the first stage, a developer is informed of the influence of the operation on other
ontologies by the system. It is exceedingly helpful for developers to know the effect
of their operation to other ontologies and take a low-risk approach. This function is

Ontology Server Ontology Manager Ontology Editor

Client (a developer) Server

466 E. Sunagawa et al.

like to be realized easily by using the information our system has. In the next stage,
the system constrains user’s changing operation on their own ontology so that
consistency between the current ontology and other ontology may not be broken. This
will be hard to realize because it may disturb developers operations to evolve
ontology unless the levels of prohibition is discussed full well. However, this topic is
abstruse to discuss.

• Consistency of the Target Ontology and Version Control;
In some situations, we cannot assume the consistency of the target ontology as a
whole obtained by simply compiling these component ontologies. For example, it is a
probable case that multiple component ontologies depend on several different
versions of the same ontology. Then, we need to discuss the construction of
component ontologies again from the view point of versions of ontology. We may
have to construct the last version of ontology as different new ontology by dividing its
several older versions.

• Construction of Component Ontologies;
This topic is concerned with determination of borderlines among component
ontologies. And it connected with so many aspects of distributed ontology
development that we cannot fully comprehend it. Here, we mention just three topics.

One is related to cooperative development. We have already designed the
framework to support several developers to construct the same part of target ontology
(described in section 3.3). However, if they construct in parallel, we have still
problems to argue. We would allow several ontologies to describe the same part of
target ontology when we aim to compare them, switch them, choice the best one and
so on. They may be built in parallel or may be imported from the other target
ontology. They are not regarded as the same, but resemble to ontologies which are
several versions of ontology. So, in constructing phase, we may be able to keep their
consistency in the framework like a version control.

Next is connected with the kind of relations between ontologies. We have dealt
with two types of dependency between ontologies such as “super-sub” relation and
“referring-to” relation. And now, we can see other kinds of relations between
ontologies based on concepts hierarchy they have. For example inclusive relation,
parallel relation and so on. These relations may be available to discuss the
construction of target ontology as a whole. Besides this, we can find more kinds of
relations based on content of ontology; such as a task-domain relation, a role concept-
basic concept relation and so on. It may be useful for supporting the development of
ontology to accommodate developers with a framework to manage content relations.

Last topic is how to determine borderlines among ontologies. In the case of “Plant
Ontology”, we did not explain why it can be divided so. It is true that the component
ontologies are identified according to their conceptual levels or domains, but we
didn’t discuss how to divide and integrate ontology in this paper. Especially in
distributed development, it is related to the working domain each developer has.

An Environment for Distributed Ontology Development 467

5 Related Work

Our basic motivation and design philosophy share a lot with CVS [6]. CVS
(Concurrent Version System) has been often used in system and software
development. CVS manages objects (in general, they are source code files) and
controls their update. To avoid confliction caused by concurrent work done by several
developers, CVS needs them to merge their own object and shared object updated in a
repository. Our system also provides developers with the space for sharing target
ontology. Each developer finds the difference between his/her editing ontology and
shared one and modifies his/her own ontology to avoid conflict. However, in general,
a programmer edits a source code in many ways. So, it is hard to understand the
difference of versions considering variety of coding ways of the same semantics. On
the other hand, ontology description languages are systemized and well-structured.
Then, system can manage developer’s action and offer them possible modifications to
keep the consistency of their own ontology.

Some other ontology building tools also have been developed with functions for
supporting collaborative development. OntoEdit [7] allows multiple users control their
access to the same ontology to develop it collaboratively. We don’t allow such
operation. Instead, we allow users to divide one ontology into several component
ontologies. While developers in OntoEdit treat all parts of their target ontology, each
developer in Hozo can construct his/her own part of the target ontology individually
and in parallel.

The Karlsruhe Ontology and Semantic Web framework (KAON) has developed an
application, which resembles our system [8]. They intend to support evolution of
ontology with its consistency kept. Their approach is very similar to ours. Both of
them investigate the types of the change of ontology and strategies to keep the
consistency. The differences between the two are as follows:
1) While KAON uses those strategies in the case of evolution of an ontology, we

use them in different ontologies from the view point of distributed ontology
development. But, their strategies seem to be also available in distributed
development.

2) We discriminate dependency of “Super-sub Relation” and that of “Referring-to
Relation”.

3) Hozo can treat role concept unlike them.

6 Conclusion

In this paper, we discussed distributed ontology development and described our
system to realize it. In our system, ontologies are managed based on their dependency
among them. This relation is available also to keep the consistency of the dependency
even if the change of ontology influences on another. These two aspects are located
centrally in our research. Beside them, we discussed the framework for practicing
distributed ontology development. Ontologies are managed from three view points;
version control, updating and reusing. And with considering cooperative
development, we argued also the management of developers and their access to
ontologies.

468 E. Sunagawa et al.

Our framework is realized in “Hozo” which is the system we have developed as an
environment for building ontologies. The prototype of this system has been
implemented although some details have not been done yet. And, we still have
remaining works to evolve our framework.

Distributed ontology development can apply to many situations such as
collaborative development, cooperative development, reusing ontologies and so on. In
each of them, it will support developers to construct their target ontology.

References

1. R. Mizoguchi, K. Kozaki, T. Sano, and Y. Kitamura: Construction and Deployment of a
Plant Ontology, Proc. of the 12th International Conference Knowledge Engineering and
Knowledge Management (EKAW2000), pp.113–128, Juan-les-Pins, France, October 2–6,
2000

2. E. Sunagawa, K. Kozaki, T. Kitamura, and R. Mizoguchi: Management of dependency
between two or more ontologies in an environment for distributed development, Proc. of
the International Workshop on Semantic Web Foundations and Application Technologies
(SWFAT2003), pp.35–41, Nara, Japan, March 12, 2003

3. K. Kozaki, Y. Kitamura, M. Ikeda, and R. Mizoguchi: Development of an Environment for
Building Ontologies Which Is Based on a Fundamental Consideration of "Relationship"
and "Role", Proc. of the Sixth Pacific Knowledge Acquisition Workshop (PKAW2000),
pp.205–221, Sydney, Australia, December 11–13, 2000

4. K. Kozaki, Y. Kitamura, M. Ikeda, and R. Mizoguchi: Hozo: An Environment for
Building/Using Ontologies Based on a Fundamental Consideration of Role” and
“Relationship”, Proc. of the 13th International Conference Knowledge Engineering and
Knowledge Management (EKAW2002), pp.213–218, Sigüenza, Spain, October 1–4, 2002

5. R. Mizoguchi, M. Ikeda, K. Seta, and V. Johontology for Modeling the World from
Problem Solving Perspectives, Proc. of IJCAI–95 Workshop on Basic Ontological Issues in
Knowledge Sharing, pp. 1–12, 1995

6. http://www.cvshome.org/
7. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke: OntoEdit:

Collaborative Ontology Development for the Semantic Web, Proc. of the First
International Semantic Web Conference (ISWC2002), Sardinia, Italy, June 9–12, 2002

8. L. Stojanovic, M. Maedche, B. Motik, N. Stojanovic: User-driven Ontology Evolution
Management, Proc. of the 13th International Conference Knowledge Engineering and
Knowledge Management (EKAW2002), pp.213–218, Sigüenza, Spain, October 1–4, 2002

	Introduction
	Distributed Ontology Development
	Dependencies between Ontologies and Their Management
	Other Contentions

	Distributed Ontology Development with “Hozo”
	“Hozo”, an Environment for Building Ontologies
	Practice of Distributed Ontology Development
	Ontology Manager
	Tracking Panel: The Function to Keep the Consistency of the Dependency

	Remaining Work
	Related Work
	Conclusion

