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Abstract 
 

The use of product lines is recognized as beneficial in 
promoting and structuring both component and architec-
ture reuse throughout an organization. While the business 
practices of using product lines are well-understood and 
representations for specifying and capturing the underly-
ing architecture of a product line are coming of age, sup-
port environments for managing the evolution of a prod-
uct line architecture are still lacking. In this paper, we 
present Ménage, an environment specifically designed to 
alleviate this problem. Key features of Ménage are its 
support for: (1) specifying variation points in a product 
line architecture as optional and/or variant elements, (2) 
tracking the evolution of a product line architecture and 
its constituent elements through explicit versioning tech-
niques, and (3) selecting one or more product architec-
tures out of an overall product line architecture by apply-
ing user-specified criteria. In this paper, we introduce the 
approach underlying Ménage, discuss its detailed func-
tionality, and demonstrate its use with a product line ar-
chitecture for entertainment systems. 
 

1. Introduction 
 

The use of product lines in industrial software devel-
opment is steadily gaining acceptance, especially since it 
has been shown that their disciplined use, as backed by 
strong organizational commitment, can lead to significant 
advantages in terms of reduced development cost and time 
[2,4,6]. Organizations such as Nokia [18], Alcatel [22], 
and Philips [12] have already reported on successfully 
introducing product lines for some of the software they are 
developing. Other organizations are not far behind [23]. 

Instead of focusing on developing a single product at a 
time (or, at best, multiple, relatively independent products 
in parallel), the use of a product line carefully coordinates 
the design, development, and evolution of a set of inti-
mately related products. As compared to component-
based software development [15], this entails a paradigm 
shift from component reuse to architecture reuse. Compo-
nent-based software development focuses on the creation 
of reusable component implementations that are subse-
quently integrated and adapted to form entirely new, often 

unrelated applications. The use of a product line, on the 
other hand, is firmly rooted in the development of a stan-
dard product line architecture that, along with a standard 
set of components implementing the core of the architec-
ture, forms a reusable basis for the development of new, 
closely related members in the product line. 

The issues involved in creating a development process 
and business environment tailored to the use of a product 
line architecture are relatively well understood [4]. Addi-
tionally, representations for specifying and storing product 
line architectures have already been developed 
[3,10,14,34]. Effective use of a particular product line 
architecture, however, also requires a support environment 
to manage its evolving structure—an area of research that 
has largely been ignored to date. 

This paper introduces Ménage, an environment that is 
specifically designed to fill this void. Ménage builds upon 
our existing representation for product line architectures, 
xADL 2.0 [9,10], to provide a software architect with 
three capabilities that are explicitly geared towards man-
aging an evolving product line architecture. First, Ménage 
supports the specification of a product line architecture as 
a set of core architectural elements that is augmented with 
variation points. These variation points are optional, vari-
ant, or optional variant elements, and precisely define the 
dimensions along which individual product architectures 
structurally differ from each other. 

Second, Ménage uses explicit versioning techniques to 
track the evolution of all parts of a product line architec-
ture. Every element, ranging from an individual interface 
type to the overall product line architecture (which poten-
tially can be very large), is explicitly versioned and must 
be checked out before it can be modified and checked in 
after the modifications are complete. 

Finally, Ménage allows an architect to select one or 
more product architectures out of an overall product line 
architecture. Using a user-specified set of criteria (which 
are expressed as name-value pairs), Ménage creates a re-
duced version of the original product line architecture. If 
all variation points are completely resolved, the result is a 
single product architecture; if one or more variation points 
remain (partially) unresolved, the result is a smaller prod-
uct line architecture containing fewer product architec-
tures. Additional selections may be performed to further 



reduce the size of the product line architecture and its 
number of available product architectures. 

The remainder of this paper is organized as follows. 
First, in Section 2, we discuss relevant background mate-
rial in the field of product line architectures. We detail the 
problem of managing the evolution of product line archi-
tectures in Section 3, and introduce the approach underly-
ing Ménage in Section 4. We describe Ménage in detail in 
Section 5, and show its application on an entertainment 
system product line architecture in Section 6. We discuss 
related work in Section 7 and conclude in Section 8 with 
an outlook at our future work. 
 

2. Background 
 

Software architectures provide high-level abstractions 
for representing the structure, behavior, and key properties 
of a software system [21]. These abstractions typically 
involve: (1) descriptions of the elements from which sys-
tems are built, (2) interactions among those elements, (3) 
patterns that guide their composition, and (4) constraints 
on those patterns. In general, a software architecture is 
defined as a set of components, a set of interconnections 
among those components (connectors), and the overall 
organization of the components and connectors into a sin-
gle system (configuration). 

Whereas a “regular” software architecture only defines 
the structure of a single software system, a product line 
architecture defines the architectural structure for a set of 
related products [4,6]. As such, a product line architecture 
consists of a set of closely related product architectures, 
each product architecture defining the software architec-
ture of one, unique product in the product line. To maxi-
mize reuse and understanding, a product line architecture 
distinguishes core elements that are present in all product 
architectures from variation points that capture differ-
ences among specific product architectures. Three kinds 
of variation points are used to distinguish different prod-
uct architectures from each other: (1) optional elements, 
which describe architectural elements that may or may not 
be present in a particular product architecture, (2) variant 
elements, which define elements that are always present, 
but can be configured to be one of many alternatives, and 
(3) optional variant elements, which specify variant ele-
ments that may or may not exist. A particular product ar-
chitecture is selected out of a product line architecture by 
determining, for each optional element, whether or not it 
is included, and, for each variant element, which variant is 
incorporated. 

Figure 1 introduces a simple example in the form of a 
hypothetical product line architecture for a set of related 
word processors. Solid boxes indicate core components, 
dashed boxes indicate variation points consisting of op-
tional components, and stacks indicate variation points 

consisting of variant components. In this case, a product 
architecture for one particular word processor always in-
corporates its three core components (USER INTERFACE, 
LAYOUT ENGINE, and STORAGE), may or may not include 
the optional component PRINT, and always includes a 
variant of the spell checking component (ENGLISH SPELL 

CHECKER, DUTCH SPELL CHECKER, or FRENCH SPELL 

CHECKER). While the example presents a trivial product 
line architecture that consists of only a small set of com-
ponents, one can easily imagine more complicated product 
line architectures consisting of many components and 
connectors with many complex and interrelated variation 
points. The product line architecture for Philips televi-
sions is one example of a real-life product line that exhib-
its many of these characteristics [12]. 

Perry [24] outlined the space of possibilities for model-
ing product line architectures and observed that a product 
line architecture modeling technique must be both generic 
enough to encompass all members of the product line ar-
chitecture and specific enough to provide developers with 
adequate support for instantiating and implementing indi-
vidual product architectures. While it is technically possi-
ble to reuse architectural styles for this purpose [28], 
experience with product line architectures has shown a 
need for higher-level support in terms of explicit facilities 
for modeling variation points [10,34].  
 

 
Figure 1. Example Product Line Architecture. 

 
Architecture description languages support architec-

ture-based development [21] by providing formal nota-
tions to describe the architecture of a software system. An 
architecture description language is usually accompanied 
by various tools for parsing, analysis, simulation, and 
code generation of a modeled system. Examples of archi-
tecture description languages include C2SADEL [20], 
Darwin [19], Rapide [17], UniCon [27], and Wright [1]. A 
number of these languages also provide extensive support 
for modeling behaviors and constraints on the properties 
of components and connectors [21]. However, with the 
exception of xADL 2.0 [10], Koala [34], GenVoca [3] and 
to some extent Acme [14], existing architecture descrip-
tion languages do not directly support the specification of 
product line architectures. Given the importance of prod-



uct lines in today’s world of software development, we 
expect this situation to change rapidly. 
 

3. Problem 
 

It is well known that even a simple software architec-
ture typically evolves at least somewhat over its lifetime. 
By the very nature of a product line architecture, it is no 
surprise that its overall structure changes far more fre-
quently [5,7]: new product architectures are added, exist-
ing product architectures must be modified in response to 
changing functionality requirements, and defunct product 
architectures may have to be retired. As a result, a product 
line architecture finds itself in constant flux as significant 
parts of the product line architecture change. For instance, 
optional elements may turn into core elements (and vice 
versa), new variants may be added to a variation point, a 
component may be further broken down into subcompo-
nents, wholly new product architectures may be added; or 
sets of existing product architectures may need to be re-
factored.  

Two fundamental concerns for using a product line ar-
chitecture, then, are how to: (1) represent and capture the 
evolution of a product line architecture, and (2) support an 
architect in managing such evolution. A number of differ-
ent solutions to the first concern have been proposed, in-
cluding using a generic configuration management system 
[34], creating a new architecture description language that 
explicitly integrates facilities for modeling evolving prod-
uct line architectures (e.g., variation points, versions) [10], 
and using feature-oriented domain models [16]. Techni-
cally, most of these solutions are able to provide more-or-
less equivalent kinds of functionality. 

The focus of this paper is on the second concern: how 
to help an architect in managing the evolution of a product 
line architecture. Existing environments for architectural 
design (e.g., ArchStudio 2.0 [20], AcmeStudio [14]) pro-
vide little-to-no support for this activity. They, for exam-
ple, are not equipped to handle different versions of com-
ponents or connectors, provide no explicit change process, 
and are focused on the development of a single software 
architecture rather than a set of related product architec-
tures organized in a product line architecture. The goal of 
the research presented in this paper is to ameliorate this 
problem and provide architects with a comprehensive de-
sign environment that explicitly supports them in manag-
ing evolving product line architectures. 
 

4. Approach 
 
The cornerstone of our approach lies in the observation 

that a design environment for evolving product line archi-
tectures must provide an architect with integrated architec-
tural and configuration management functionality. Con-

sider, for instance, an architect who wants to quickly ex-
amine a previous version of their product line architecture. 
The architect should not have to go to their configuration 
management system, check out the previous version, and 
then open it in their design environment. Rather, a support 
environment for managing evolving product line architec-
tures must allow an architect to simply choose a version to 
view, with the environment itself taking care of accessing 
the underlying store to obtain any necessary data (regard-
less of whether that store is, for example, a configuration 
management system [34] or an architecture description 
language that has specific features for modeling product 
line architectures [10]). Numerous other examples exist of 
situations in which architects must simultaneously access 
or manipulate information that is related to both the struc-
ture and evolution of a product line architecture. Without 
an integrated approach, architects will not be able to ef-
fectively perform their work. 

Despite the need for an integrated approach, the pri-
mary focus of any environment for product line architec-
tures should remain on design. The primary task of archi-
tects, after all, is to design, precisely specify, and maintain 
product line architectures.  

Overall, then, our approach is rooted in the following 
overarching objectives: 

• An architect should be able to design a product line 
architecture much like they design a “regular” archi-
tecture. In particular, the familiar approach of simply 
combining components and connectors must be pre-
served. 

• Variation points should be explicit within a product 
line architecture, yet seamlessly integrated in the de-
sign process. For instance, the difference between 
adding a core component and an optional component 
should be minimal. 

• Evolution should be managed with an explicit change 
management process. In particular, it is important that 
a meaningful history of changes is created when an 
architect modifies a product line architecture. The 
change management process should be non-obtrusive 
to allow an architect to focus on their task at hand. 

• The environment should automate as much support as 
possible. For instance, selection of a particular prod-
uct architecture or subset of product architectures (a 
“smaller” product line architecture) should not re-
quire manual interpretation of variation points. 

Together, these objectives create an environment for man-
aging evolving product line architectures that is familiar 
and easy to use, and that provides an architect with auto-
mated and extensive support in all aspects of managing a 
product line architecture—ranging from initial inception, 
throughout many changes, to eventual selection of indi-
vidual product architectures. 



5. Implementation 
 

Figure 2 presents the overall architecture of Ménage, as 
consisting of three components. At the lowest level, Mé-
nage uses the xADL 2.0 libraries, which provide a pro-
grammatic interface to load and store (parts of) particular 
product line architectures [10]. Two components use those 
libraries: a design environment and a selector. The design 
environment component provides an architect with facili-
ties to graphically create, inspect, and modify product line 
architectures. The selector component complements the 
design environment by providing an architect the ability to 
select a subset of one or more product architectures out of 
a product line architecture. Architecturally, we separated 
the design environment from the selector, since the selec-
tor by itself provides functionality that can be employed at 
times when the full design environment is not needed (for 
instance, during product selection at a customer site). Be-
low, we discuss the details of each of the components. 

 

 
Figure 2. Ménage Architecture. 

 
5.1 xADL 2.0 Libraries 
 

The xADL 2.0 libraries [10] provide a programmatic 
interface to xADL 2.0 documents containing descriptions 
of product line architectures. Specifically, the libraries 
provide facilities to create, load, store, and modify xADL 
2.0 documents. While xADL 2.0 is built as a set of exten-
sible XML schemas, the libraries hide all XML details 
and allow other components (e.g., the design environment 
and selector) to manipulate xADL 2.0 documents in terms 
of architectural elements such as components, connectors, 
and interfaces. 

The full functionality and the degree of extensibility 
offered by xADL 2.0, as well as its benefits as compared 
to other languages such as Acme [14] or Koala [34], are 
beyond the scope of this paper and described elsewhere 
[10]. Of importance here, however, are the features that it 
provides for modeling product line architectures. We de-
scribe these features briefly. 

The core of xADL 2.0 is formed by its STRUCTURE 

AND TYPES schema, which defines modeling constructs 
for capturing a product architecture at design-time. Spe-
cifically, the schema allows the definition of the structure 
of one particular product architecture in terms of a set of 
components and connectors. Both components and con-

nectors exhibit interfaces, which are the elements that are 
linked together to form the overall structure of the product 
architecture (e.g., two components can be “hooked up” via 
a connector by placing links in between interfaces on the 
components and interfaces on the connector). All elements 
are typed, and the STRUCTURE AND TYPES schema sup-
ports the specification of subarchitectures to address scal-
ability in architectural specification. 

The xADL 2.0 OPTIONS and VARIANTS schemas extend 
the STRUCTURE AND TYPES schema with variation points, 
thereby enhancing modeling support in xADL 2.0 from 
individual product architectures to multiple product archi-
tectures as related in a product line architecture. The OP-

TIONS schema allows for the definition of architectural 
elements that are optional in a product line architecture. 
Optionality is governed by a Boolean guard that deter-
mines the conditions under which the optional element 
should be included in a particular product architecture. 

Boolean guards also form the core of the VARIANTS 
schema. In particular, a component (connector) type may 
be a “variant type”, which means that it is a placeholder 
for a set of other component (connector) types. Mutually 
exclusive Boolean guards determine which type is eventu-
ally used in a selected product architecture. Of note is that 
optionality is dealt with at the structural level (e.g., an 
element may or may not be part of the structure of a prod-
uct line architecture) and variability at the type level (e.g., 
the type of a component or connector is one of many 
available types). Therefore, combined optional variant 
elements are naturally supported by xADL 2.0. 

Finally, the VERSIONS schema allows the modeling of 
the evolution of a product line architecture. Each type is 
versioned and different versions of a type are organized in 
a version graph. An architect, thus, can keep track of the 
evolution of both individual elements and the structure of 
the overall product line architecture. 
 
5.2 Design Environment 

 
The design environment is the component that an ar-

chitect uses to initially specify and then maintain an evolv-
ing product line architecture. Shown in Figure 3, the 
graphical user interface is partitioned into three separate 
panels. The panel on the left side lists component types, 
connector types, and interface types that have been previ-
ously defined. Instances of these types can be used to con-
struct other types. The top panel shows the version graph 
of the type that is currently displayed in the main panel. 
Simply clicking on one of the version nodes brings up the 
structure for that version. Finally, the main panel is where 
actual design of a product line architecture takes place. 
Ménage provides a large number of different edit opera-
tions in support of this activity, ranging from adding com-
ponents and connectors, to connecting two components 
via their interfaces, to creating and using subarchitectures, 



and many other kinds of useful functionalities that are 
customary in architectural design environments. 

An important aspect of Ménage is that, during editing, 
it always displays the type of every architectural element, 
both in terms of its type name and type version. Rather 
than relying on a default versioning model such as always 
using a latest version, use of specific versions of architec-
tural elements allows an architect to precisely control the 
evolution of a product line architecture in terms of which 
versions are used, where those versions are used, and 
when the versions are changed. In the example of Figure 
3, for instance, one can quickly discern that the architect is 
currently editing WORDPROCESSOR component type ver-
sion 4, and that it in turn consists of instances of versions 
of other component and connector types (e.g., a USER 

INTERFACE component of type VISUALBASIC version 1, a 
STORAGE COMPONENT of type FILESYSTEMSTORAGE ver-
sion 2, etc.). Because connectors and interfaces are visu-
ally too small to contain the same level of information, 
tool tips are used to provide their relevant data (as shown 
for the interface PRINT of interface type TOP version 1). 
 
5.2.1 Change Process 
 

Before any changes can be made, Ménage requires an 
architect to check out the set of architectural elements they 
will be modifying. After that, the architect is free to ma-
nipulate those elements in order to change the product line 
architecture. Once all desired changes have been made, 
the architect checks in the modified parts of the product 
line architecture. In response, Ménage automatically cre-

ates a new version of each element and, in the process, 
creates a history of changes that can be revisited over 
time. This history is critical in managing the evolution of a 
product line architecture: it captures all the changes over 
time, relates those changes to each other, and allows an 
architect to revisit previous versions to understand the 
nature of past changes. 

During the change process, it may happen that an ar-
chitect loses track of which elements they currently have 
checked out. Ménage, therefore, provides a mode in which 
it highlights those elements in a different color. Moreover, 
it supports an architect in checking in either a single ele-
ment, an element and the hierarchically contained ele-
ments that are currently checked out, or all checked out 
elements. The latter two options allow an architect to 
check in related changes as a group. 

Once a version has been checked in, that version be-
comes immutable. It can no longer be modified in order to 
protect any other parts of the product line architecture that 
depend on the immutable element. This guarantees incre-
mental stability as a product line architecture is designed, 
and during maintenance guarantees the integrity of the old 
versions of the product line architecture. 

If an old version must be changed nonetheless, proper 
procedure requires that it is checked out again, thereby 
creating a branch. Version 2.1 of the WORDPROCESSOR 
component type is an example of such a branch. Cur-
rently, Ménage provides no support for merging branches, 
but we are in the process of adapting our architectural 
differencing and merging algorithms [32] to be able to 
operate on product line architectures. 

Figure 3. Specifying a New Version of a Component Type in Ménage. 



5.2.2 Variation Points 
 

Ménage supports the specification of all three kinds of 
variation points: optional elements, variant types, and op-
tional variant elements. Optional elements are added just 
as regular elements, simply by providing a Boolean guard 
at the time of creation of the element. The Boolean guard 
has to adhere to the following BNF: 

   <BooleanGuard> ::= <BooleanExp> 
   <BooleanExp> ::= <And> | <Or> | <Not> |  <GreaterThan> |  
        <GreaterThanOrEquals> | <LessThan> | <LessThanOrEquals> |  
        <Equals> | <NotEquals> | <InSet> | <InRange> | <Bool> | <Paren> 
   <And> ::= <BooleanExp> && <BooleanExp> 
   <Or> ::= <BooleanExp> || <BooleanExp> 
   <Not> ::= !<BooleanExp> 
   <GreaterThan> ::= <LeftOperand> > <RightOperand> 
   <GreaterThanOrEquals> ::= <LeftOperand> >= <RightOperand> 
   <LessThan> ::= <LeftOperand> < <RightOperand> 
   <LessThanOrEquals> ::= <LeftOperand> <= <RightOperand> 
   <Equals> ::= <LeftOperand> == <RightOperand> 
   <NotEquals> ::= <LeftOperand> != <RightOperand> 
   <InSet> ::= <LeftOperand> @ { <Set> } 
   <InRange> ::= <LeftOperand>  
        @ [ <RightOperand>, <RightOperand> ] 
   <Paren> ::= ( <BooleanExp> ) 
   <Set> ::= <RightOperand> | <RightOperand>, <Set> 
   <LeftOperand> ::= Variable 
   <RightOperand> ::= Variable | Value 
   <Bool> ::= true | false 
Most Boolean guards will be of a rather trivial nature. The 
availability of a rich language, however, allows architects 
to establish intricate relationships among variation points. 

For instance, one can model that selection of a particular 
variant in one variant type should lead to the selection of a 
specific other variant in another variant type by carefully 
matching the Boolean guards on the variants. 

Graphically, optional elements are shown using dashed 
lines. The component PRINT in Figure 3, for instance, is an 
optional component. Note that, because the PRINT compo-
nent is optional, its link to the connector BUS1 is auto-
matically optional as well. If the PRINT component is in-
cluded in a particular product architecture, the link is in-
cluded as well; otherwise, it is left out. 

Ménage treats variant types in a special way. Instead of 
containing a subarchitecture of components and connec-
tors, a variant type only contains references to other types. 
As shown in Figure 4, references are guarded with mutu-
ally exclusive Boolean expressions to ensure that only one 
type can be selected at a time. The guards are used to en-
sure that only a single spelling checker component can be 
selected covering one particular language. Of note is that, 
in the case of the example, the interfaces on the variants 
are exactly the same to the interfaces on the overarching 
variant type. The general rule that is followed in Ménage 
is that interfaces may differ, but that optionality should be 
used to ensure compliance. For instance, suppose that the 
Dutch spell checker also has an interface for thesaurus 
functionality. Such an interface should be declared as op-
tional at the level of the variant type, since not all variants 
provide this interface. This guarantees compatibility 
within the remainder of the product line architecture, irre-
spective of which variant is eventually selected. 

Figure 4. Viewing a Variant Component Type. 



When an instance of a variant component or connector 
type is used in a product line architecture, Ménage high-
lights that component or connector with a variant tag. This 
makes it easier for an architect to locate variation points 
(see, for example, the annotation of the SPELL CHECKER 

component in Figure 3). 
Of note is that, because optionality is expressed at the 

level of the structure of the product line architecture and 
because variability is expressed using types, the two seam-
lessly combine to create optional variant elements. To do 
so, an architect adds a new instance of a variant type and 
annotates it with a Boolean guard that determines its in-
clusion. Given that individual variants may have subarchi-
tectures, an architect should carefully establish the layers 
of variation points that are introduced within the product 
line architecture—large and highly variable hierarchies of 
elements may be established. 
 
5.3 Selector 
 

Once a number of variation points have been intro-
duced in a product line architecture, it becomes necessary 
to be able to resolve those variation points in order to se-
lect one or more product architectures out of the overall 
product line architecture. Selection by hand can turn into 
an arduous task given that a product line architecture may 
have many variation points that each may have one or 
more complex Boolean expressions as guards. Therefore, 

Ménage includes a SELECTOR component to automate the 
process. 

Given a set of desired properties, which are expressed 
as typed name-value pairs, and given a starting point in 
the product line architecture (e.g., the “top-level” compo-
nent type from which selection should begin), Ménage 
iterates over the product line architecture and attempts to 
resolve each of the Boolean guards that it encounters. If it 
can fully resolve a Boolean guard to TRUE, the respective 
element is included. If it can fully resolve a Boolean guard 
to FALSE, the respective element is removed. If a Boolean 
guard can only be partially resolved, the element is in-
cluded with the reduced Boolean guard attached. While a 
single selection may only result in a smaller product line 
architecture, iterative use of the SELECTOR will eventually 
result in the selection of a single product architecture. 

Shown in Figure 5, the selector can operate in three 
different modes. In the first (“Select”), it only attempts to 
resolve variation points, but it does not remove any un-
used types or versions. In the second (“Prune”), it re-
moves unused types and versions from a product line ar-
chitecture to clean up the specification. In the third (“Se-
lect+Prune”), it combines the two in one step to minimize 
manual involvement. Depending on their purpose, an ar-
chitect would choose a preferred mode of operation. 

 

6. Evaluation 
 

To evaluate Ménage, we used it to create and evolve an 
example product line architecture. Often, actual product 
line architectures are considered important organizational 
assets that cannot be shared. Based on limited information 
available on an existing product line architecture for con-
sumer electronics [33], we attempted to create a represen-
tative but hypothetical example of a software product line 
architecture for a highly customizable entertainment sys-
tem. The result of our efforts is shown in Figure 6. The 
product line architecture consists of 25 component types, 
3 connector types, and 3 interface types, all available in a 
number of different versions. The top level element, the 
ENTERTAINMENTSYSTEM, is hierarchically constructed out 
of many other components, some of which exhibit further 
subarchitectures (as indicated by the small triangles in the 
lower left corner). Numerous variation points exist in the 
product line architecture, guarded by a number of differ-
ent Boolean guards. 

Our evaluation focused on how well Ménage achieves 
the four objectives listed in Section 4. We first examined 
whether we were able to create a product line architecture 
much like one creates an architecture in an environment 
such as ArchStudio [20] or AcmeStudio [14]. For simple 
architectures, Ménage operates exactly like those envi-
ronments. Only when an architect must capture evolution 
or specify a variation point, Ménage incurs overhead for 

Figure 5. Selecting a Product Architecture. 



the architect. Overhead is limited to a few actions, except 
in the case of check out: an architect currently must manu-
ally check out, one by one, all the elements they intend to 
modify. This clearly is cumbersome, and will be ad-
dressed in an upcoming version of Ménage (see below). 

The second objective states that variation points should 
be explicit within a product line architecture, yet seam-
lessly integrated in the design process. Based on creating 
the ENTERTAINMENTSYSTEM product line architecture, we 
believe we have succeeded in achieving this goal: op-
tional, variant, and optional variant elements are clearly 
identified in a product line architecture, yet easily incor-
porated in much the same way regular components and 
connectors are specified. 

The third objective pertains to managing evolution: it 
should be governed by an explicit change management 
process. Ménage provides such a process with its check 
out and check in mechanism. Use of these two simple op-
erations creates a historical archive of all previous ver-
sions of all architectural elements, regardless of whether 
the element is a simple interface type or the complete 
product line architecture. 

The last objective is that Ménage should automate as 
much of its support as possible. Our experience in model-
ing the example product line architecture shows that we 
have achieved that. The selector component is perhaps the 
chief example: based on simple input from an architect, it 
automatically selects the desired subset of product archi-
tectures. As mentioned above, the check out operation is 
an exception: to reduce the manual effort of checking out 
each and every element to be modified, we will develop a 

version of Ménage that automatically and saliently checks 
out an element when an architect starts changing it. This 
should alleviate much of the burden imposed by the cur-
rent change process. 
 

7. Related Work 
 

The work presented in this paper draws from a number 
of research areas. Within the domain of software architec-
ture, perhaps the two most closely related technologies are 
Koala and Acme. Koala [33,34] is an architecture descrip-
tion language specifically designed for modeling product 
line architectures and, as such, shares many of its features 
with Ménage. Compared to Ménage, however, Koala does 
not include a versioning mechanism to capture the evolu-
tion of a product line architecture. Instead, Koala relies on 
an external configuration management system to version 
its architectural descriptions. While a viable alternative, 
this strategy prevents the incorporation of multiple ver-
sions of a single component in a single product architec-
ture. An additional drawback of Koala is that its variabil-
ity is largely code-based and resolved at compile-time of a 
particular product; our Selector component provides this 
capability at the level of product line architectures. 

Acme [14], as supported by AcmeStudio environment, 
is based on a rather different mechanism to capture prod-
uct line architectures. Instead of providing specific lan-
guage features, Acme is based on the use of constraints to 
model all sorts of concepts, including styles, component 
and connector types, and product lines. While this pro-
vides the advantage of an architect having to know only a 

Figure 6. Ménage Applied to the Entertainment System Example. 



few language constructs, it has the distinct disadvantage 
that it becomes difficult to conceptually separate logically 
different parts of an actual product line architecture speci-
fication. Especially when the system to be modeled is 
large, this rapidly becomes a serious problem. 

UML [26] is a powerful modeling language that some-
times is proposed as a vehicle for modeling software ar-
chitectures. Unfortunately, support for versioning individ-
ual UML elements (or even whole UML diagrams) and 
for expressing variant elements are still in their infancy. 
These limitations often result in clumsy endeavors relying 
on external tools. Perhaps even more problematic is that 
UML is a less than optimal solution for modeling software 
architectures (and thus product line architectures). Its fea-
tures, even when extended specifically for modeling soft-
ware architectures, have been demonstrated to prevent the 
accurate modeling of some architectural concepts [25]. 

Feature-oriented domain analysis (FODA) is an area of 
research that has produced models that are very similar to 
product line architectures [16]. Instead of representing 
architectural elements, however, FODA models represent 
features that may or may not be present in a software sys-
tem. Not surprisingly, FODA models include support for 
the various types of variation points. FODA, however, still 
seems to be in the phase of finding proper languages to 
represent features and the authors are not aware of any 
extensive support environment for specifying particular 
FODA models, nor are they aware of any FODA-based 
approaches that account for the presence of multiple ver-
sions—a key feature underlying Ménage. 

Finally, our work is related to many contributions in 
the field of configuration management [8]. In particular, 
configuration management system models such as Adele 
[13] and Proteus PCL [29] provide similar mechanisms 
for modeling variation points within software configura-
tions. While borrowing concepts from these system mod-
els, our approach is oriented at product line architectures 
and, as such, is rooted in architectural concepts that are 
not addressed by the field of configuration management. 
 

8. Conclusions 
 

This paper has presented Ménage, an environment for 
managing the evolution of product line architectures. Mé-
nage is unique in being a graphical environment that pro-
vides an architect with the ability to specify and evolve a 
product line architecture as new product architectures are 
added, existing product architectures are modified, and 
obsolete product architectures are removed. Key to the 
functionality of Ménage is its tight integration of architec-
tural design functionality (to manage the structure of a 
product line architecture) with configuration management 
functionality (to specify variation points and manage the 
evolution of a product line architecture).  

We have already embarked on three research directions 
in efforts to further enhance the functionality of Ménage. 
First, we are examining the role that architectural differ-
encing and merging may play in propagating changes 
across multiple product architectures as well as branches. 
Currently, an architect has to manually restructure a prod-
uct line architecture to do so, but we intend to adapt our 
existing architectural differencing and merging algorithms 
(which only operate on single architectures [32]) to be 
able to operate on product line architectures. 

Our second research effort aims to support an architect 
in understanding the structure of a product line architec-
ture. After many changes, the overall structure generally 
has disintegrated and the “clean” design picture that once 
existed has deteriorated. In addition to exploring how de-
sign critics [11] and analysis techniques help in maintain-
ing a consistent product line architecture [31], we are in-
vestigating how metrics that calculate the utilization of the 
functionalities provided by components in a product line 
architecture [30] can provide an architect with graphical 
visualizations that highlight potential structural problems 
in the product line architecture. Typically, these problems 
indicate a need for refactoring of elements, for instance 
splitting a particular variant in a “smaller” variant and an 
optional element containing the rest of the functionality. 

Finally, we observe that a realization of the full power 
of product line engineering requires a careful mapping 
from the product line architecture to actual source code 
(components). Maintaining such a mapping is a difficult 
endeavor due to architectural erosion. We intend to de-
velop a product line architecture-aware configuration 
management system to aid in maintaining such a mapping. 
 

Availability 
 

Ménage can be downloaded from http://www.isr.uci.-
edu/projects/menage/. 
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