
An Environment for Managing Evolving Product Line Architectures

Akash Garg, Matt Critchlow, Ping Chen, Christopher Van der Westhuizen, André van der Hoek
School of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425 USA

{agarg,critchlm,pchen,cvanderw,andre}@ics.uci.edu

Abstract

The use of product lines is recognized as beneficial in
promoting and structuring both component and architec-
ture reuse throughout an organization. While the business
practices of using product lines are well-understood and
representations for specifying and capturing the underly-
ing architecture of a product line are coming of age, sup-
port environments for managing the evolution of a prod-
uct line architecture are still lacking. In this paper, we
present Ménage, an environment specifically designed to
alleviate this problem. Key features of Ménage are its
support for: (1) specifying variation points in a product
line architecture as optional and/or variant elements, (2)
tracking the evolution of a product line architecture and
its constituent elements through explicit versioning tech-
niques, and (3) selecting one or more product architec-
tures out of an overall product line architecture by apply-
ing user-specified criteria. In this paper, we introduce the
approach underlying Ménage, discuss its detailed func-
tionality, and demonstrate its use with a product line ar-
chitecture for entertainment systems.

1. Introduction

The use of product lines in industrial software devel-
opment is steadily gaining acceptance, especially since it
has been shown that their disciplined use, as backed by
strong organizational commitment, can lead to significant
advantages in terms of reduced development cost and time
[2,4,6]. Organizations such as Nokia [18], Alcatel [22],
and Philips [12] have already reported on successfully
introducing product lines for some of the software they are
developing. Other organizations are not far behind [23].

Instead of focusing on developing a single product at a
time (or, at best, multiple, relatively independent products
in parallel), the use of a product line carefully coordinates
the design, development, and evolution of a set of inti-
mately related products. As compared to component-
based software development [15], this entails a paradigm
shift from component reuse to architecture reuse. Compo-
nent-based software development focuses on the creation
of reusable component implementations that are subse-
quently integrated and adapted to form entirely new, often

unrelated applications. The use of a product line, on the
other hand, is firmly rooted in the development of a stan-
dard product line architecture that, along with a standard
set of components implementing the core of the architec-
ture, forms a reusable basis for the development of new,
closely related members in the product line.

The issues involved in creating a development process
and business environment tailored to the use of a product
line architecture are relatively well understood [4]. Addi-
tionally, representations for specifying and storing product
line architectures have already been developed
[3,10,14,34]. Effective use of a particular product line
architecture, however, also requires a support environment
to manage its evolving structure—an area of research that
has largely been ignored to date.

This paper introduces Ménage, an environment that is
specifically designed to fill this void. Ménage builds upon
our existing representation for product line architectures,
xADL 2.0 [9,10], to provide a software architect with
three capabilities that are explicitly geared towards man-
aging an evolving product line architecture. First, Ménage
supports the specification of a product line architecture as
a set of core architectural elements that is augmented with
variation points. These variation points are optional, vari-
ant, or optional variant elements, and precisely define the
dimensions along which individual product architectures
structurally differ from each other.

Second, Ménage uses explicit versioning techniques to
track the evolution of all parts of a product line architec-
ture. Every element, ranging from an individual interface
type to the overall product line architecture (which poten-
tially can be very large), is explicitly versioned and must
be checked out before it can be modified and checked in
after the modifications are complete.

Finally, Ménage allows an architect to select one or
more product architectures out of an overall product line
architecture. Using a user-specified set of criteria (which
are expressed as name-value pairs), Ménage creates a re-
duced version of the original product line architecture. If
all variation points are completely resolved, the result is a
single product architecture; if one or more variation points
remain (partially) unresolved, the result is a smaller prod-
uct line architecture containing fewer product architec-
tures. Additional selections may be performed to further

reduce the size of the product line architecture and its
number of available product architectures.

The remainder of this paper is organized as follows.
First, in Section 2, we discuss relevant background mate-
rial in the field of product line architectures. We detail the
problem of managing the evolution of product line archi-
tectures in Section 3, and introduce the approach underly-
ing Ménage in Section 4. We describe Ménage in detail in
Section 5, and show its application on an entertainment
system product line architecture in Section 6. We discuss
related work in Section 7 and conclude in Section 8 with
an outlook at our future work.

2. Background

Software architectures provide high-level abstractions
for representing the structure, behavior, and key properties
of a software system [21]. These abstractions typically
involve: (1) descriptions of the elements from which sys-
tems are built, (2) interactions among those elements, (3)
patterns that guide their composition, and (4) constraints
on those patterns. In general, a software architecture is
defined as a set of components, a set of interconnections
among those components (connectors), and the overall
organization of the components and connectors into a sin-
gle system (configuration).

Whereas a “regular” software architecture only defines
the structure of a single software system, a product line
architecture defines the architectural structure for a set of
related products [4,6]. As such, a product line architecture
consists of a set of closely related product architectures,
each product architecture defining the software architec-
ture of one, unique product in the product line. To maxi-
mize reuse and understanding, a product line architecture
distinguishes core elements that are present in all product
architectures from variation points that capture differ-
ences among specific product architectures. Three kinds
of variation points are used to distinguish different prod-
uct architectures from each other: (1) optional elements,
which describe architectural elements that may or may not
be present in a particular product architecture, (2) variant
elements, which define elements that are always present,
but can be configured to be one of many alternatives, and
(3) optional variant elements, which specify variant ele-
ments that may or may not exist. A particular product ar-
chitecture is selected out of a product line architecture by
determining, for each optional element, whether or not it
is included, and, for each variant element, which variant is
incorporated.

Figure 1 introduces a simple example in the form of a
hypothetical product line architecture for a set of related
word processors. Solid boxes indicate core components,
dashed boxes indicate variation points consisting of op-
tional components, and stacks indicate variation points

consisting of variant components. In this case, a product
architecture for one particular word processor always in-
corporates its three core components (USER INTERFACE,
LAYOUT ENGINE, and STORAGE), may or may not include
the optional component PRINT, and always includes a
variant of the spell checking component (ENGLISH SPELL

CHECKER, DUTCH SPELL CHECKER, or FRENCH SPELL

CHECKER). While the example presents a trivial product
line architecture that consists of only a small set of com-
ponents, one can easily imagine more complicated product
line architectures consisting of many components and
connectors with many complex and interrelated variation
points. The product line architecture for Philips televi-
sions is one example of a real-life product line that exhib-
its many of these characteristics [12].

Perry [24] outlined the space of possibilities for model-
ing product line architectures and observed that a product
line architecture modeling technique must be both generic
enough to encompass all members of the product line ar-
chitecture and specific enough to provide developers with
adequate support for instantiating and implementing indi-
vidual product architectures. While it is technically possi-
ble to reuse architectural styles for this purpose [28],
experience with product line architectures has shown a
need for higher-level support in terms of explicit facilities
for modeling variation points [10,34].

Figure 1. Example Product Line Architecture.

Architecture description languages support architec-

ture-based development [21] by providing formal nota-
tions to describe the architecture of a software system. An
architecture description language is usually accompanied
by various tools for parsing, analysis, simulation, and
code generation of a modeled system. Examples of archi-
tecture description languages include C2SADEL [20],
Darwin [19], Rapide [17], UniCon [27], and Wright [1]. A
number of these languages also provide extensive support
for modeling behaviors and constraints on the properties
of components and connectors [21]. However, with the
exception of xADL 2.0 [10], Koala [34], GenVoca [3] and
to some extent Acme [14], existing architecture descrip-
tion languages do not directly support the specification of
product line architectures. Given the importance of prod-

uct lines in today’s world of software development, we
expect this situation to change rapidly.

3. Problem

It is well known that even a simple software architec-
ture typically evolves at least somewhat over its lifetime.
By the very nature of a product line architecture, it is no
surprise that its overall structure changes far more fre-
quently [5,7]: new product architectures are added, exist-
ing product architectures must be modified in response to
changing functionality requirements, and defunct product
architectures may have to be retired. As a result, a product
line architecture finds itself in constant flux as significant
parts of the product line architecture change. For instance,
optional elements may turn into core elements (and vice
versa), new variants may be added to a variation point, a
component may be further broken down into subcompo-
nents, wholly new product architectures may be added; or
sets of existing product architectures may need to be re-
factored.

Two fundamental concerns for using a product line ar-
chitecture, then, are how to: (1) represent and capture the
evolution of a product line architecture, and (2) support an
architect in managing such evolution. A number of differ-
ent solutions to the first concern have been proposed, in-
cluding using a generic configuration management system
[34], creating a new architecture description language that
explicitly integrates facilities for modeling evolving prod-
uct line architectures (e.g., variation points, versions) [10],
and using feature-oriented domain models [16]. Techni-
cally, most of these solutions are able to provide more-or-
less equivalent kinds of functionality.

The focus of this paper is on the second concern: how
to help an architect in managing the evolution of a product
line architecture. Existing environments for architectural
design (e.g., ArchStudio 2.0 [20], AcmeStudio [14]) pro-
vide little-to-no support for this activity. They, for exam-
ple, are not equipped to handle different versions of com-
ponents or connectors, provide no explicit change process,
and are focused on the development of a single software
architecture rather than a set of related product architec-
tures organized in a product line architecture. The goal of
the research presented in this paper is to ameliorate this
problem and provide architects with a comprehensive de-
sign environment that explicitly supports them in manag-
ing evolving product line architectures.

4. Approach

The cornerstone of our approach lies in the observation

that a design environment for evolving product line archi-
tectures must provide an architect with integrated architec-
tural and configuration management functionality. Con-

sider, for instance, an architect who wants to quickly ex-
amine a previous version of their product line architecture.
The architect should not have to go to their configuration
management system, check out the previous version, and
then open it in their design environment. Rather, a support
environment for managing evolving product line architec-
tures must allow an architect to simply choose a version to
view, with the environment itself taking care of accessing
the underlying store to obtain any necessary data (regard-
less of whether that store is, for example, a configuration
management system [34] or an architecture description
language that has specific features for modeling product
line architectures [10]). Numerous other examples exist of
situations in which architects must simultaneously access
or manipulate information that is related to both the struc-
ture and evolution of a product line architecture. Without
an integrated approach, architects will not be able to ef-
fectively perform their work.

Despite the need for an integrated approach, the pri-
mary focus of any environment for product line architec-
tures should remain on design. The primary task of archi-
tects, after all, is to design, precisely specify, and maintain
product line architectures.

Overall, then, our approach is rooted in the following
overarching objectives:

• An architect should be able to design a product line
architecture much like they design a “regular” archi-
tecture. In particular, the familiar approach of simply
combining components and connectors must be pre-
served.

• Variation points should be explicit within a product
line architecture, yet seamlessly integrated in the de-
sign process. For instance, the difference between
adding a core component and an optional component
should be minimal.

• Evolution should be managed with an explicit change
management process. In particular, it is important that
a meaningful history of changes is created when an
architect modifies a product line architecture. The
change management process should be non-obtrusive
to allow an architect to focus on their task at hand.

• The environment should automate as much support as
possible. For instance, selection of a particular prod-
uct architecture or subset of product architectures (a
“smaller” product line architecture) should not re-
quire manual interpretation of variation points.

Together, these objectives create an environment for man-
aging evolving product line architectures that is familiar
and easy to use, and that provides an architect with auto-
mated and extensive support in all aspects of managing a
product line architecture—ranging from initial inception,
throughout many changes, to eventual selection of indi-
vidual product architectures.

5. Implementation

Figure 2 presents the overall architecture of Ménage, as
consisting of three components. At the lowest level, Mé-
nage uses the xADL 2.0 libraries, which provide a pro-
grammatic interface to load and store (parts of) particular
product line architectures [10]. Two components use those
libraries: a design environment and a selector. The design
environment component provides an architect with facili-
ties to graphically create, inspect, and modify product line
architectures. The selector component complements the
design environment by providing an architect the ability to
select a subset of one or more product architectures out of
a product line architecture. Architecturally, we separated
the design environment from the selector, since the selec-
tor by itself provides functionality that can be employed at
times when the full design environment is not needed (for
instance, during product selection at a customer site). Be-
low, we discuss the details of each of the components.

Figure 2. Ménage Architecture.

5.1 xADL 2.0 Libraries

The xADL 2.0 libraries [10] provide a programmatic
interface to xADL 2.0 documents containing descriptions
of product line architectures. Specifically, the libraries
provide facilities to create, load, store, and modify xADL
2.0 documents. While xADL 2.0 is built as a set of exten-
sible XML schemas, the libraries hide all XML details
and allow other components (e.g., the design environment
and selector) to manipulate xADL 2.0 documents in terms
of architectural elements such as components, connectors,
and interfaces.

The full functionality and the degree of extensibility
offered by xADL 2.0, as well as its benefits as compared
to other languages such as Acme [14] or Koala [34], are
beyond the scope of this paper and described elsewhere
[10]. Of importance here, however, are the features that it
provides for modeling product line architectures. We de-
scribe these features briefly.

The core of xADL 2.0 is formed by its STRUCTURE

AND TYPES schema, which defines modeling constructs
for capturing a product architecture at design-time. Spe-
cifically, the schema allows the definition of the structure
of one particular product architecture in terms of a set of
components and connectors. Both components and con-

nectors exhibit interfaces, which are the elements that are
linked together to form the overall structure of the product
architecture (e.g., two components can be “hooked up” via
a connector by placing links in between interfaces on the
components and interfaces on the connector). All elements
are typed, and the STRUCTURE AND TYPES schema sup-
ports the specification of subarchitectures to address scal-
ability in architectural specification.

The xADL 2.0 OPTIONS and VARIANTS schemas extend
the STRUCTURE AND TYPES schema with variation points,
thereby enhancing modeling support in xADL 2.0 from
individual product architectures to multiple product archi-
tectures as related in a product line architecture. The OP-

TIONS schema allows for the definition of architectural
elements that are optional in a product line architecture.
Optionality is governed by a Boolean guard that deter-
mines the conditions under which the optional element
should be included in a particular product architecture.

Boolean guards also form the core of the VARIANTS
schema. In particular, a component (connector) type may
be a “variant type”, which means that it is a placeholder
for a set of other component (connector) types. Mutually
exclusive Boolean guards determine which type is eventu-
ally used in a selected product architecture. Of note is that
optionality is dealt with at the structural level (e.g., an
element may or may not be part of the structure of a prod-
uct line architecture) and variability at the type level (e.g.,
the type of a component or connector is one of many
available types). Therefore, combined optional variant
elements are naturally supported by xADL 2.0.

Finally, the VERSIONS schema allows the modeling of
the evolution of a product line architecture. Each type is
versioned and different versions of a type are organized in
a version graph. An architect, thus, can keep track of the
evolution of both individual elements and the structure of
the overall product line architecture.

5.2 Design Environment

The design environment is the component that an ar-

chitect uses to initially specify and then maintain an evolv-
ing product line architecture. Shown in Figure 3, the
graphical user interface is partitioned into three separate
panels. The panel on the left side lists component types,
connector types, and interface types that have been previ-
ously defined. Instances of these types can be used to con-
struct other types. The top panel shows the version graph
of the type that is currently displayed in the main panel.
Simply clicking on one of the version nodes brings up the
structure for that version. Finally, the main panel is where
actual design of a product line architecture takes place.
Ménage provides a large number of different edit opera-
tions in support of this activity, ranging from adding com-
ponents and connectors, to connecting two components
via their interfaces, to creating and using subarchitectures,

and many other kinds of useful functionalities that are
customary in architectural design environments.

An important aspect of Ménage is that, during editing,
it always displays the type of every architectural element,
both in terms of its type name and type version. Rather
than relying on a default versioning model such as always
using a latest version, use of specific versions of architec-
tural elements allows an architect to precisely control the
evolution of a product line architecture in terms of which
versions are used, where those versions are used, and
when the versions are changed. In the example of Figure
3, for instance, one can quickly discern that the architect is
currently editing WORDPROCESSOR component type ver-
sion 4, and that it in turn consists of instances of versions
of other component and connector types (e.g., a USER

INTERFACE component of type VISUALBASIC version 1, a
STORAGE COMPONENT of type FILESYSTEMSTORAGE ver-
sion 2, etc.). Because connectors and interfaces are visu-
ally too small to contain the same level of information,
tool tips are used to provide their relevant data (as shown
for the interface PRINT of interface type TOP version 1).

5.2.1 Change Process

Before any changes can be made, Ménage requires an
architect to check out the set of architectural elements they
will be modifying. After that, the architect is free to ma-
nipulate those elements in order to change the product line
architecture. Once all desired changes have been made,
the architect checks in the modified parts of the product
line architecture. In response, Ménage automatically cre-

ates a new version of each element and, in the process,
creates a history of changes that can be revisited over
time. This history is critical in managing the evolution of a
product line architecture: it captures all the changes over
time, relates those changes to each other, and allows an
architect to revisit previous versions to understand the
nature of past changes.

During the change process, it may happen that an ar-
chitect loses track of which elements they currently have
checked out. Ménage, therefore, provides a mode in which
it highlights those elements in a different color. Moreover,
it supports an architect in checking in either a single ele-
ment, an element and the hierarchically contained ele-
ments that are currently checked out, or all checked out
elements. The latter two options allow an architect to
check in related changes as a group.

Once a version has been checked in, that version be-
comes immutable. It can no longer be modified in order to
protect any other parts of the product line architecture that
depend on the immutable element. This guarantees incre-
mental stability as a product line architecture is designed,
and during maintenance guarantees the integrity of the old
versions of the product line architecture.

If an old version must be changed nonetheless, proper
procedure requires that it is checked out again, thereby
creating a branch. Version 2.1 of the WORDPROCESSOR
component type is an example of such a branch. Cur-
rently, Ménage provides no support for merging branches,
but we are in the process of adapting our architectural
differencing and merging algorithms [32] to be able to
operate on product line architectures.

Figure 3. Specifying a New Version of a Component Type in Ménage.

5.2.2 Variation Points

Ménage supports the specification of all three kinds of
variation points: optional elements, variant types, and op-
tional variant elements. Optional elements are added just
as regular elements, simply by providing a Boolean guard
at the time of creation of the element. The Boolean guard
has to adhere to the following BNF:

 <BooleanGuard> ::= <BooleanExp>
 <BooleanExp> ::= <And> | <Or> | <Not> | <GreaterThan> |
 <GreaterThanOrEquals> | <LessThan> | <LessThanOrEquals> |
 <Equals> | <NotEquals> | <InSet> | <InRange> | <Bool> | <Paren>
 <And> ::= <BooleanExp> && <BooleanExp>
 <Or> ::= <BooleanExp> || <BooleanExp>
 <Not> ::= !<BooleanExp>
 <GreaterThan> ::= <LeftOperand> > <RightOperand>
 <GreaterThanOrEquals> ::= <LeftOperand> >= <RightOperand>
 <LessThan> ::= <LeftOperand> < <RightOperand>
 <LessThanOrEquals> ::= <LeftOperand> <= <RightOperand>
 <Equals> ::= <LeftOperand> == <RightOperand>
 <NotEquals> ::= <LeftOperand> != <RightOperand>
 <InSet> ::= <LeftOperand> @ { <Set> }
 <InRange> ::= <LeftOperand>
 @ [<RightOperand>, <RightOperand>]
 <Paren> ::= (<BooleanExp>)
 <Set> ::= <RightOperand> | <RightOperand>, <Set>
 <LeftOperand> ::= Variable
 <RightOperand> ::= Variable | Value
 <Bool> ::= true | false
Most Boolean guards will be of a rather trivial nature. The
availability of a rich language, however, allows architects
to establish intricate relationships among variation points.

For instance, one can model that selection of a particular
variant in one variant type should lead to the selection of a
specific other variant in another variant type by carefully
matching the Boolean guards on the variants.

Graphically, optional elements are shown using dashed
lines. The component PRINT in Figure 3, for instance, is an
optional component. Note that, because the PRINT compo-
nent is optional, its link to the connector BUS1 is auto-
matically optional as well. If the PRINT component is in-
cluded in a particular product architecture, the link is in-
cluded as well; otherwise, it is left out.

Ménage treats variant types in a special way. Instead of
containing a subarchitecture of components and connec-
tors, a variant type only contains references to other types.
As shown in Figure 4, references are guarded with mutu-
ally exclusive Boolean expressions to ensure that only one
type can be selected at a time. The guards are used to en-
sure that only a single spelling checker component can be
selected covering one particular language. Of note is that,
in the case of the example, the interfaces on the variants
are exactly the same to the interfaces on the overarching
variant type. The general rule that is followed in Ménage
is that interfaces may differ, but that optionality should be
used to ensure compliance. For instance, suppose that the
Dutch spell checker also has an interface for thesaurus
functionality. Such an interface should be declared as op-
tional at the level of the variant type, since not all variants
provide this interface. This guarantees compatibility
within the remainder of the product line architecture, irre-
spective of which variant is eventually selected.

Figure 4. Viewing a Variant Component Type.

When an instance of a variant component or connector
type is used in a product line architecture, Ménage high-
lights that component or connector with a variant tag. This
makes it easier for an architect to locate variation points
(see, for example, the annotation of the SPELL CHECKER

component in Figure 3).
Of note is that, because optionality is expressed at the

level of the structure of the product line architecture and
because variability is expressed using types, the two seam-
lessly combine to create optional variant elements. To do
so, an architect adds a new instance of a variant type and
annotates it with a Boolean guard that determines its in-
clusion. Given that individual variants may have subarchi-
tectures, an architect should carefully establish the layers
of variation points that are introduced within the product
line architecture—large and highly variable hierarchies of
elements may be established.

5.3 Selector

Once a number of variation points have been intro-
duced in a product line architecture, it becomes necessary
to be able to resolve those variation points in order to se-
lect one or more product architectures out of the overall
product line architecture. Selection by hand can turn into
an arduous task given that a product line architecture may
have many variation points that each may have one or
more complex Boolean expressions as guards. Therefore,

Ménage includes a SELECTOR component to automate the
process.

Given a set of desired properties, which are expressed
as typed name-value pairs, and given a starting point in
the product line architecture (e.g., the “top-level” compo-
nent type from which selection should begin), Ménage
iterates over the product line architecture and attempts to
resolve each of the Boolean guards that it encounters. If it
can fully resolve a Boolean guard to TRUE, the respective
element is included. If it can fully resolve a Boolean guard
to FALSE, the respective element is removed. If a Boolean
guard can only be partially resolved, the element is in-
cluded with the reduced Boolean guard attached. While a
single selection may only result in a smaller product line
architecture, iterative use of the SELECTOR will eventually
result in the selection of a single product architecture.

Shown in Figure 5, the selector can operate in three
different modes. In the first (“Select”), it only attempts to
resolve variation points, but it does not remove any un-
used types or versions. In the second (“Prune”), it re-
moves unused types and versions from a product line ar-
chitecture to clean up the specification. In the third (“Se-
lect+Prune”), it combines the two in one step to minimize
manual involvement. Depending on their purpose, an ar-
chitect would choose a preferred mode of operation.

6. Evaluation

To evaluate Ménage, we used it to create and evolve an
example product line architecture. Often, actual product
line architectures are considered important organizational
assets that cannot be shared. Based on limited information
available on an existing product line architecture for con-
sumer electronics [33], we attempted to create a represen-
tative but hypothetical example of a software product line
architecture for a highly customizable entertainment sys-
tem. The result of our efforts is shown in Figure 6. The
product line architecture consists of 25 component types,
3 connector types, and 3 interface types, all available in a
number of different versions. The top level element, the
ENTERTAINMENTSYSTEM, is hierarchically constructed out
of many other components, some of which exhibit further
subarchitectures (as indicated by the small triangles in the
lower left corner). Numerous variation points exist in the
product line architecture, guarded by a number of differ-
ent Boolean guards.

Our evaluation focused on how well Ménage achieves
the four objectives listed in Section 4. We first examined
whether we were able to create a product line architecture
much like one creates an architecture in an environment
such as ArchStudio [20] or AcmeStudio [14]. For simple
architectures, Ménage operates exactly like those envi-
ronments. Only when an architect must capture evolution
or specify a variation point, Ménage incurs overhead for

Figure 5. Selecting a Product Architecture.

the architect. Overhead is limited to a few actions, except
in the case of check out: an architect currently must manu-
ally check out, one by one, all the elements they intend to
modify. This clearly is cumbersome, and will be ad-
dressed in an upcoming version of Ménage (see below).

The second objective states that variation points should
be explicit within a product line architecture, yet seam-
lessly integrated in the design process. Based on creating
the ENTERTAINMENTSYSTEM product line architecture, we
believe we have succeeded in achieving this goal: op-
tional, variant, and optional variant elements are clearly
identified in a product line architecture, yet easily incor-
porated in much the same way regular components and
connectors are specified.

The third objective pertains to managing evolution: it
should be governed by an explicit change management
process. Ménage provides such a process with its check
out and check in mechanism. Use of these two simple op-
erations creates a historical archive of all previous ver-
sions of all architectural elements, regardless of whether
the element is a simple interface type or the complete
product line architecture.

The last objective is that Ménage should automate as
much of its support as possible. Our experience in model-
ing the example product line architecture shows that we
have achieved that. The selector component is perhaps the
chief example: based on simple input from an architect, it
automatically selects the desired subset of product archi-
tectures. As mentioned above, the check out operation is
an exception: to reduce the manual effort of checking out
each and every element to be modified, we will develop a

version of Ménage that automatically and saliently checks
out an element when an architect starts changing it. This
should alleviate much of the burden imposed by the cur-
rent change process.

7. Related Work

The work presented in this paper draws from a number
of research areas. Within the domain of software architec-
ture, perhaps the two most closely related technologies are
Koala and Acme. Koala [33,34] is an architecture descrip-
tion language specifically designed for modeling product
line architectures and, as such, shares many of its features
with Ménage. Compared to Ménage, however, Koala does
not include a versioning mechanism to capture the evolu-
tion of a product line architecture. Instead, Koala relies on
an external configuration management system to version
its architectural descriptions. While a viable alternative,
this strategy prevents the incorporation of multiple ver-
sions of a single component in a single product architec-
ture. An additional drawback of Koala is that its variabil-
ity is largely code-based and resolved at compile-time of a
particular product; our Selector component provides this
capability at the level of product line architectures.

Acme [14], as supported by AcmeStudio environment,
is based on a rather different mechanism to capture prod-
uct line architectures. Instead of providing specific lan-
guage features, Acme is based on the use of constraints to
model all sorts of concepts, including styles, component
and connector types, and product lines. While this pro-
vides the advantage of an architect having to know only a

Figure 6. Ménage Applied to the Entertainment System Example.

few language constructs, it has the distinct disadvantage
that it becomes difficult to conceptually separate logically
different parts of an actual product line architecture speci-
fication. Especially when the system to be modeled is
large, this rapidly becomes a serious problem.

UML [26] is a powerful modeling language that some-
times is proposed as a vehicle for modeling software ar-
chitectures. Unfortunately, support for versioning individ-
ual UML elements (or even whole UML diagrams) and
for expressing variant elements are still in their infancy.
These limitations often result in clumsy endeavors relying
on external tools. Perhaps even more problematic is that
UML is a less than optimal solution for modeling software
architectures (and thus product line architectures). Its fea-
tures, even when extended specifically for modeling soft-
ware architectures, have been demonstrated to prevent the
accurate modeling of some architectural concepts [25].

Feature-oriented domain analysis (FODA) is an area of
research that has produced models that are very similar to
product line architectures [16]. Instead of representing
architectural elements, however, FODA models represent
features that may or may not be present in a software sys-
tem. Not surprisingly, FODA models include support for
the various types of variation points. FODA, however, still
seems to be in the phase of finding proper languages to
represent features and the authors are not aware of any
extensive support environment for specifying particular
FODA models, nor are they aware of any FODA-based
approaches that account for the presence of multiple ver-
sions—a key feature underlying Ménage.

Finally, our work is related to many contributions in
the field of configuration management [8]. In particular,
configuration management system models such as Adele
[13] and Proteus PCL [29] provide similar mechanisms
for modeling variation points within software configura-
tions. While borrowing concepts from these system mod-
els, our approach is oriented at product line architectures
and, as such, is rooted in architectural concepts that are
not addressed by the field of configuration management.

8. Conclusions

This paper has presented Ménage, an environment for
managing the evolution of product line architectures. Mé-
nage is unique in being a graphical environment that pro-
vides an architect with the ability to specify and evolve a
product line architecture as new product architectures are
added, existing product architectures are modified, and
obsolete product architectures are removed. Key to the
functionality of Ménage is its tight integration of architec-
tural design functionality (to manage the structure of a
product line architecture) with configuration management
functionality (to specify variation points and manage the
evolution of a product line architecture).

We have already embarked on three research directions
in efforts to further enhance the functionality of Ménage.
First, we are examining the role that architectural differ-
encing and merging may play in propagating changes
across multiple product architectures as well as branches.
Currently, an architect has to manually restructure a prod-
uct line architecture to do so, but we intend to adapt our
existing architectural differencing and merging algorithms
(which only operate on single architectures [32]) to be
able to operate on product line architectures.

Our second research effort aims to support an architect
in understanding the structure of a product line architec-
ture. After many changes, the overall structure generally
has disintegrated and the “clean” design picture that once
existed has deteriorated. In addition to exploring how de-
sign critics [11] and analysis techniques help in maintain-
ing a consistent product line architecture [31], we are in-
vestigating how metrics that calculate the utilization of the
functionalities provided by components in a product line
architecture [30] can provide an architect with graphical
visualizations that highlight potential structural problems
in the product line architecture. Typically, these problems
indicate a need for refactoring of elements, for instance
splitting a particular variant in a “smaller” variant and an
optional element containing the rest of the functionality.

Finally, we observe that a realization of the full power
of product line engineering requires a careful mapping
from the product line architecture to actual source code
(components). Maintaining such a mapping is a difficult
endeavor due to architectural erosion. We intend to de-
velop a product line architecture-aware configuration
management system to aid in maintaining such a mapping.

Availability

Ménage can be downloaded from http://www.isr.uci.-
edu/projects/menage/.

Acknowledgements

The authors thank Eric Dashofy for his valuable contribu-
tions to the development of Ménage and Rob Egelink for the
implementation of many concepts in Ménage.

Effort sponsored by the Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Laboratory, Air
Force Materiel Command, USAF, under agreement numbers
F30602-00-2-0599 and F30602-00-2-0608. Effort also partially
funded by the National Science Foundation under grant numbers
CCR-0093489 and IIS-0205724. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of
the Defense Advanced Research Projects Agency (DARPA), the
Air Force Laboratory, or the U.S. Government.

References

[1] R. Allen and D. Garlan, A Formal Basis for Architectural

Connection. ACM Transactions on Software Engineering
and Methodology, 1997. 6(3): p. 213-249.

[2] C. Atkinson, et al., Component-based Product Line Engi-
neering with UML. Addison-Wesley, New York, New
York, 2002.

[3] D. Batory and B.J. Geraci, Composition Validation and
Subjectivity in GenVoca Generators. IEEE Transactions on
Software Engineering, 1997. 23(2): p. 67-82.

[4] J. Bosch, Design and Use of Software Architectures:
Adopting and Evolving a Product-Line Approach. Addi-
son-Wesley, New York, New York, 2000.

[5] J. Bosch, et al. Variability Issues in Software Product
Lines. Proceedings of the Product Family Architecture
Workshop, 2001: p. 13-21.

[6] P. Clements and L.M. Northrop, Software Product Lines:
Practices and Patterns. Addison-Wesley, New York, New
York, 2002.

[7] P.C. Clements and N. Weiderman. Report on the Second
International Workshop on Development and Evolution of
Software Architectures for Product Families. Software En-
gineering Institute, 1998.

[8] R. Conradi and B. Westfechtel, Version Models for Soft-
ware Configuration Management. ACM Computing Sur-
veys, 1998. 30(2): p. 232-282.

[9] E.M. Dashofy, A. van der Hoek, and R.N. Taylor. A
Highly-Extensible, XML-Based Architecture Description
Language. Proceedings of the Working IEEE/IFIP Confer-
ence on Software Architecture, 2001.

[10] E.M. Dashofy, A. van der Hoek, and R.N. Taylor. An In-
frastructure for the Rapid Development of XML-Based Ar-
chitecture Description Languages. Proceedings of the 24th
International Conference on Software Engineering, 2002:
p. 266-276.

[11] E.M. Dashofy, A. van der Hoek, and R.N. Taylor. Towards
Architecture-Based Self-Healing Systems. Proceedings of
the First ACM SIGSOFT Workshop on Self-Healing Sys-
tems, 2002: p. 21-26.

[12] F. de Lange and T. Jansen. The Philips-OpenTV Product
Family Architecture for Interactive Set-Top Boxes. Pro-
ceedings of the Product Family Architecture Workshop,
2001: p. 177-190.

[13] J. Estublier and R. Casalles, The Adele Configuration
Manager, in Configuration Management, W.F. Tichy, Edi-
tor. 1994: p. 99-134.

[14] D. Garlan, R. Monroe, and D. Wile, ACME: An Architec-
ture Description Interchange Language, in Proceedings of
CASCON’97. 1997.

[15] G.T. Heineman and W.T. Councill, eds. Component-Based
Software Engineering: Putting the Pieces Together. 2001,
Addison-Wesley: Reading, Massachusetts.

[16] K. Kang, et al. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Software Engineering Institute, 1990.

[17] D.C. Luckham and J. Vera, An Event-Based Architecture
Definition Language. IEEE Transactions on Software En-
gineering, 1995. 21(9): p. 717-734.

[18] A. Maccari and C. Riva. Architectural Evolution of Legacy
Product Families. Proceedings of the Product Family Ar-
chitecture Workshop, 2001.

[19] J. Magee and J. Kramer. Dynamic Structure in Software
Architectures. Proceedings of the Fourth Symposium on
the Foundations of Software Engineering, 1996: p. 3-14.

[20] N. Medvidovic, D.S. Rosenblum, and R.N. Taylor, A Lan-
guage and Environment for Architecture-Based Software
Development and Evolution, in Proceedings of the 1999 In-
ternational Conference on Software Engineering. 1999: p.
44-53.

[21] N. Medvidovic and R.N. Taylor, A Classification and
Comparison Framework for Software Architecture De-
scription Languages. IEEE Transactions on Software En-
gineering, 2000. 26(1): p. 70-93.

[22] J. Mellado and J.C. Duenas. Automated Validation Envi-
ronment for a Product Line of Railway Traffic Control Sys-
tems. Proceedings of the Product Family Architecture
Workshop, 2001: p. 389-397.

[23] L.M. Northrop. Reuse That Pays: ICSE Keynote Presenta-
tion. Proceedings of the 23rd International Conference on
Software Engineering, 2001: p. 667.

[24] D.E. Perry. Generic Descriptions for Product Line Archi-
tectures. Proceedings of the Second International Work-
shop on Development and Evolution of Software Architec-
tures for Product Families, 1998: p. 51-56.

[25] J.E. Robbins, et al. Integrating Architecture Description
Languages with a Standard Design Method. Proceedings
of the 20th International Conference on Software Engineer-
ing, 1998: p. 209-218.

[26] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified
Modeling Language Reference Manual. Addison-Wesley,
1998.

[27] M. Shaw, et al., Abstractions for Software Architecture and
Tools to Support Them. IEEE Transactions on Software
Engineering, 1995. 21(4): p. 314-335.

[28] M. Shaw and D. Garlan, eds. Software Architecture: Per-
spectives on an Emerging Discipline. 1996, Prentice-Hall.

[29] E. Tryggeseth, B. Gulla, and R. Conradi. Modelling Sys-
tems with Variability Using the PROTEUS Configuration
Language. Proceedings of the International Workshop on
Software Configuration Management: ICSE SCM-4 and
SCM-5 Workshops Selected Papers, 1995: p. 216-240.

[30] A. van der Hoek, E. Dincel, and N. Medvidovic. Using
Service Utilization Metrics to Assess the Structure of Prod-
uct Line Architectures. Proceedings of the Ninth Interna-
tional Software Metrics Symposium, 2003 (to appear).

[31] A. van der Hoek, et al. Taming Architectural Evolution.
Proceedings of the Sixth European Software Engineering
Conference and the Ninth ACM SIGSOFT Symposium on
the Foundations of Software Engineering, 2001: p. 1-10.

[32] C. Van der Westhuizen and A. van der Hoek. Understand-
ing and Propagating Architectural Changes. Proceedings
of the Working IFIP Conference on Software Architecture,
2002: p. 95-109.

[33] R. van Ommering. Building Product Populations with
Software Components. Proceedings of the Twenty-fourth
International Conference on Software Engineering, 2002:
p. 255-265.

[34] R. van Ommering, et al., The Koala Component Model for
Consumer Electronics Software. Computer, 2000. 33(3): p.
78-85.

