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Abstract A new statistical-dynamical model is developed for estimating the long-term hazard of rare,

high impact tropical cyclones events globally. There are three components representing the complete

storm lifetime: an environmental index-based genesis model, a beta-advection track model, and an autore-

gressive intensity model. All three components depend upon the local environmental conditions, including

potential intensity, relative sea surface temperature, 850 and 250 hPa steering flow, deep-layer mean verti-

cal shear, 850 hPa vorticity, and midlevel relative humidity. The hazard model, using 400 realizations of a 32

year period (approximately 3,000 storms per realization), captures many aspects of tropical cyclone statis-

tics, such as genesis and track density distribution. Of particular note, it simulates the observed number of

rapidly intensifying storms, a challenging issue in tropical cyclone modeling and prediction. Using the

return period curve of landfall intensity as a measure of local tropical cyclone hazard, the model reasonably

simulates the hazard in the western north Pacific (coastal regions of the Philippines, China, Taiwan, and

Japan) and the Caribbean islands. In other regions, the observed return period curve can be captured after

a local landfall frequency adjustment that forces the total number of landfalls to be the same as that

observed while allowing the model to freely simulate the distribution of intensities at landfall.

1. Introduction

From 1963 to 2012, tropical cyclones (TCs) were responsible for more than 50% of all meteorologically

induced financial losses (Geiger et al., 2016). TC hazard assessment is important to government, industry,

financial institutions, NGOs, and even individual households in the context of individual events, seasonal

predictions, and climate adaptation. Accurate risk assessment depends on the hazard—the probability of a

TC of a given magnitude in a given location—in addition to vulnerability factors, such as the growth of

wealth and population (Estrada et al., 2015). We focus on hazard in this study. Because of the limited histori-

cal record, a common approach for estimating TC hazard is to compute statistics from simulated as well as

observed storms (e.g., Emanuel et al., 2008). In this approach, the complete lifetime of each simulated storm,

including its genesis, track, intensity, and landfall, are simulated. Alternatively, one can statistically model

the landfall rate alone (Tolwinski-Ward, 2015). Most industry catastrophe models (models which represent

TC hazard as well as vulnerability and financial losses to insured assets) use statistical methods to generate

synthetic storms that are similar to those in historical data (e.g., AIR WORLDWIDE, 2015). Some of them

include the dependence of storm activity on a few environmental parameters, such as basin sea surface

temperature (SST) or measures of the El Ni~no-Southern Oscillation (ENSO) (e.g., Hall & Jewson, 2007; Yone-

kura & Hall, 2011, 2014). These models, while they generally perform well in the current climate, are strongly

constrained to the historical record and are not designed to consider the effects of climate change. To

understand the impact of climate change on TC hazard, global climate models or dynamical downscaling

methods are the most straightforward approaches. Dynamical models calculate individual TC evolution

based on the laws of physics, and can provide information globally (whereas many statistical models are

developed for individual basins). However, at the high spatial resolutions necessary for TC simulation, it is

computationally expensive to generate a sufficient number of synthetic storms for hazard assessment,

where one is particularly interested in very rare and extreme events. Thus, Emanuel et al. (2006) proposed a

novel statistical-dynamical downscaling method. In this method, each TC’s evolution is calculated using a

combination of statistical and simplified dynamical models that are forced by environmental conditions

taken from global models. The model of Emanuel et al. (2008) randomly seeds storms globally, moves them

Key Points:

� The description and assessment of a

tropical cyclone (TC) hazard model

� A tool for understanding changes in

the global climate to the regional TC

hazard

� TC climatology, including the

statistics of rapid intensification, and

regional TC hazard are well simulated

Correspondence to:

C.-Y. Lee,

clee@iri.columbia.edu

Citation:

Lee, C.-Y., Tippett, M. K., Sobel, A. H., &

Camargo, S. J. (2018). An

environmentally forced tropical

cyclone hazard model. Journal of

Advances in Modeling Earth Systems,

https://doi.org/10.1002/

2017MS001186

Received 3 OCT 2017

Accepted 2 JAN 2018

Accepted article online 5 JAN 2018

VC 2018. The Authors.

This is an open access article under the

terms of the Creative Commons

Attribution-NonCommercial-NoDerivs

License, which permits use and

distribution in any medium, provided

the original work is properly cited, the

use is non-commercial and no

modifications or adaptations are

made.

LEE ET AL.

Journal of Advances in Modeling Earth Systems

PUBLICATIONS

Published online A 201820 J N

10, – .223 24

223

1

http://dx.doi.org/10.1002/2017MS001186
http://orcid.org/0000-0002-1644-375X
http://orcid.org/0000-0002-7790-5364
http://orcid.org/0000-0003-3602-0567
http://orcid.org/0000-0002-0802-5160
https://doi.org/10.1002/2017MS001186
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1942-2466/
http://publications.agu.org/
https://doi.org/10.1002/2017MS001186


using a beta-advection model (Marks, 1992), and calculates intensity evolution using a simple coupled

ocean-atmosphere tropical cyclone model (CHIPS, Emanuel et al., 2004). Emanuel’s model has been broadly

used for understanding the impact of a changing climate on TC climatology (Emanuel, 2013, 2015), storm

surge hazard (Lin et al., 2012), and TC-induced economic losses (Geiger et al., 2016).

In previous work, we focused on developing a model for TC intensity, which is a challenging issue even for

short-term forecasting. Lee et al. (2015, 2016a) describe a global autoregressive (AR) TC intensity model. The

AR model contains a deterministic component, derived empirically, which advances the TC intensity in time

and accounts for the surrounding large-scale environment. The stochastic forcing of the AR model repre-

sents the component of TC intensification that is not linearly related to the storm’s ambient conditions. Sim-

ulating the intensity evolution along the observed tracks, the AR model captures the observed TC intensity

climatology well, except for the bimodal distribution in the lifetime maximum intensity (LMI). This bimodal-

ity, which is important for simulating the frequency of the most intense storms, might be associated with a

combination of two factors. The first one is physical, namely the distinction between those storms that

undergo rapid intensification (RI) and those that do not (Lee et al., 2016b), while the other one is arguably

an artifact associated with a weakness of the Dvorak technique (Kossin et al., 2013; Landsea & Franklin,

2013). In this study, we will show that the AR intensity model is capable of simulating the observed LMI dis-

tribution when the simulated storm lifetime is determined consistently with the intensity model, rather

than by the lifetime of the prescribed tracks. The consistency between AR and the simulated lifetime

improves the model’s ability to simulate RI, providing further evidence on the physical cause of the bimo-

dality in the LMI distribution. Other intensification models include that of Lin et al. (2017), who used a multi-

ple linear regression model, found that the dependence of TC intensification to environment is

nonhomogeneous, and suggested a mixture modeling approach as a solution. Recently, Emanuel (2017)

reduced the complexity of his intensity model to a set of two prognostic equations for storm intensity and

innercore moisture and further increased the efficiency of his hazard model.

In the present study, we develop and assess a complete statistical-dynamical downscaling TC hazard model.

We develop genesis and track components and couple them to the existing AR intensity model described

in detail in Lee et al. (2015, 2016a). Both the genesis and track components depend on the local environ-

ment. Thus, the whole system is environmentally forced with no explicit spatially dependent component.

(Spatial dependence is captured implicitly, through the dependence on environmental variables which

themselves have spatial structure.) The model is developed for the current climate with all the environmen-

tal parameters downscaled from European Centre for Medium-Range Weather Forecasts interim reanalysis

(ERA-Interim). The data and methods used for the model development and evaluation are described in sec-

tion 2. We introduce the individual model components (genesis, track, and intensity), respectively, in section

3. The TC hazard model performance is first evaluated by its ability to capture the observed TC climatology,

including frequency, intensity, landfall, and interannual variability (section 4). Next, we compare the

observed and simulated hazard in various places across the globe (section 5). Throughout this study, we

define ‘‘hazard’’ as the probability (or equivalently the return period) of the storm intensity at landfall

exceeding a given threshold at a particular location. The summary and discussion are given in section 6.

2. Data and Methods

2.1. Observational and Reanalysis Data Sets

The best-track data set, HURDAT2, produced by the National Hurricane Center (NHC) is used for the North

Atlantic (ATL) and Eastern North Pacific (ENP) (Landsea & Franklin, 2013). For TCs in the Western North

Pacific (WNP), Indian Ocean (IO), and Southern Hemisphere Ocean (SH), we use the best-track data from

Joint Typhoon Warning Center (JTWC, Chu et al., 2002). Both data sets include 1 min maximum sustained

wind, minimum sea level pressure, and storm location every 6 h. Large-scale environmental variables are

calculated from the European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim,

Dee et al., 2011. We use monthly data for all three TC hazard model components—the genesis, track, and

intensity models. In the track model, daily 250 and 850 hPa steering flow winds are used as well. In this

study, data from 1981 to 2012 are used for evaluation. Data from 1981 to 1999 are used as training data for

the intensity model. (The training of the intensity model was done in previous study (Lee et al., 2016a), and

therefore was using data from different period.)
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Throughout this study, the Saffir-Simpson scale is used to categorize storm strength in all basins. The ranges

used are 64–82 kt for category 1 (Cat 1) storms, and 83–95, 96–112, 113–136, >137 kt for categories 2–5

(Cat 2–5) storms, respectively. The threshold for tropical storm (TS) is 34 kt. Storm lifetime maximum inten-

sity (LMI) is defined as the maximum sustained wind speed during the storm’s life cycle.

2.2. Identifying Landfall Locations

For risk assessment, it is important to calculate the landfall probability at a given location, and thus to iden-

tify landfall. We first linearly interpolate track data (for both observations and simulations) to a 15 min reso-

lution. Surface type (land or ocean) is assigned to each interpolated point using 0.58 resolution topography

data from NASA (https://neo.sci.gsfc.nasa.gov/view.php?datasetId5SRTM_RAMP2_TOPO). Then, landfall is

defined when a storm center moves from a ocean point to a land point. To avoid counting landfalls multiple

times in the situation when a storm moves over archipelago regions, such as the Philippines, landfalls need

to be at least 100 km and 6 h apart to be considered as independent landfalls.

2.3. Experimental Design

Simulations from the TC hazard model will be called GTI here, in which ‘‘G,’’ ‘‘T,’’ and ‘‘I’’ stand for Genesis,

Track, and Intensity models, respectively. In order to isolate the influence of the individual components on

the estimated TC statistics and hazard, we design two additional experiments: ĜT̂I uses only the intensity

model while the genesis and tracks, represented as (̂ ), are taken directly from the best-track data set; ĜTI

uses both track and intensity models, but observed genesis locations and times. As we will discuss in the

next section, each of three components in the TC hazard model contains a stochastic parameter. Thus, the

hazard model is a stochastic system. We construct 400 realizations of a 32 year period (1981–2012) in every

experiment. In ĜT̂I, the 400 realizations differ in only in the component due to the intensity model. In ĜTI,

there are 10 sets of tracks (with the same observed genesis locations) and each set has 40 intensity realiza-

tions. Realizations with the same underlying tracks but different intensities can still differ in their lifetimes

(due to the different realizations of the intensity model solution), and thus in how much of each track is

actually covered by a storm. A similar design is used for GTI but the genesis locations in each set are calcu-

lated from the genesis model separately.

2.4. Evaluation Measures

To evaluate a stochastic model performance, we use two statistical measures:

The t statistic of a variable is defined as the simulated ensemble mean ( �m) minus the observed mean (�o)

divided by a weighted standard deviation (rweighted):

t statistic5
�m2�o

rweighted
; (1)

rweighted5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðno21Þr2o1ðnm21Þr2m
no1nm22

s

(2)

where no and nm are the number of samples for observations and simulations (i.e., number of years) while

ro and rm are the respective standard deviations. The t statistic shows the difference between simulations

and observations compared to the natural variability, defined in equation (2). A caveat is that the natural

variability defined here tilts toward the simulated variability, because nm is significantly larger than no.

However, the real natural variability is likely to be under-sampled in the observations. Since there is no

obviously good choice, we choose to use rweighted and treat observation as one of the realizations. The

distribution of t statistic also tells us whether the differences between observations and simulations are

systematic (i.e., has a pattern) or nonsystematic (the positive and negative values are randomly

distributed).

The Rank histogram of a variable is defined as the distribution of the rank (in percentage) of the observa-

tions with respect to the simulations. If the ensemble members and the observations are drawn from the

same probability distribution, the rank of observations with respect to the simulations will be uniformly dis-

tributed. When the simulation is biased, under-dispersed or over-dispersed, the shape of the rank histogram

will be tilted, bimodal with peaks at two ends, or monomodal.
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3. Development of Individual Model Components

The key hypothesis of our model is that storm properties can be represented using model components that

are functions of small numbers of key local environmental variables. First, the genesis model determines

the rate at which weak vortices are formed throughout the domain, which are then passed to the intensity

and track models to determine the rest of the storms’ life cycles.

3.1. Genesis—Tropical Cyclone Genesis Index (TCGI)

An essential element in the genesis model is the seeding rate. Previ-

ous studies have shown that with only a few crucial environmental

parameters, various TC genesis (potential) indices can capture the

location, frequency, and the seasonality of TC formation, including

ENSO-induced variability (Bruyère et al., 2012; Camargo et al., 2007a,

2007b; Emanuel, 2010; Emanuel & Nolan, 2004; McGauley & Nolan,

2011; Tippett et al., 2011). Menkes et al. (2012) compared the existing

indices, and found that all have similar performance in genesis clima-

tology. The Tropical Cyclone Genesis Index (TCGI, developed by Tip-

pett et al., 2011), however, has the least bias and the best simulated

seasonality. Thus, we calculate the seeding rate based on TCGI:

TCGI5exp ðb1bgg8501bRHRH6001bSSTSSTr1bSHRDSHRD1log ðcos/ÞÞ:

(3)

The TCGI is the expected number of genesis events. g850, RH600, SSTr,

SHRD are the absolute vorticity at 850 hPa, the relative humidity at

600 hPa, relative SST (SST relative to tropical mean SST), and vertical

shear between the 850 and 200 hPa levels. b is the intercept term and

bx is the coefficient corresponding to variable x. After fitting equation

(3) with 32 years of interannually varying data, we obtain a climatolog-

ical relationship (b, and bx) between observed genesis rate and the

predictors. We then apply the same relationship to monthly data from

1981 to 2012 at spatial resolution of 200 km to obtain monthly TCGI.

For each seed, a genesis location and date are then chosen randomly

on a 1 km resolution within the selected month. This seeding method

allows the hazard model to form more than one vortex on the same

day at the same location, but this situation never occurs in our simula-

tions. By construction, the TCGI is always positive, and thus predicts a

nonzero (though hopefully very small) probability of storm formation

even in locations where no TC genesis events have been observed.

To evaluate the genesis model, we construct 40 (32 years) simulations

for the period from 1981 to 2012. Globally, there are on average 95

storms per year and 11, 29, 23, 26, and 5 are in the ATL, WNP, ENP, SH,

and IO, respectively. In the simulations, on average there are 94

storms per year with 8, 33, 18, 32, and 4 in each basin. The TCGI sys-

tematically underestimates the genesis frequency in the ENP and ATL,

and overestimates it in the WNP and SH.

The spatial distributions of genesis counts in observations (Figure 1a)

and in the simulations based on the TCGI (Figure 1b) are in a good

agreement. The TCGI has local maxima in approximately the right

locations, but with lower peak values and a smoother distribution. The

observed highest TC formation rate occurs in the ENP in observations,

but in the WNP in the TCGI. The simulated distribution spreads further

equatorward in the WNP and IO than in the observations. The simu-

lated formation rate in the central Pacific is higher than observed.

These differences are shown quantitatively in Figure 1c using t

Figure 1. Number of TC genesis per 58 3 58 box from 1981 to 2012 (a) from

observations, and (b) averaged from 40 TCGI simulations. (c) t statistic of TCGI

simulations. Note that the scales in Figures 1a and 1b are logarithmic, while the

scale is linear in Figure 1c.
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statistic (section 2). The negative genesis bias in the ENP is comparable to the natural variability with t statis-

tic around 1. The biases in the tropical Atlantic and southern Indian Ocean (negative) and in the southern

Pacific and subtropical WNP (positive) are both small compared to the natural variability. With the t statistic

close to zero, the Central Pacific bias and those at the Equator are not significant, either. Additionally, Figure

1c suggests that the TCGI errors are systematic, i.e., could be

corrected.

3.2. Track—Beta-Advection Model (BAM)

After genesis, the track model moves the storm forward with an

hourly time step. Following Emanuel et al. (2006), we use a Beta

Advection Model (BAM, Marks, 1992). The BAM combines ‘‘beta drift’’

(Li & Wang, 1994) with mean advection based on a linear combination

of the large-scale low-level (850 hPa) and upper-level (250 hPa) winds:

V5aV8501ð12aÞV2501Vb; (4)

V is the vector of zonal (u) and meridional (v) wind time series at 850

and 200 hPa. a is a scalar weighting the winds at these two levels, and

is set to 0.8 here. Vb is the beta drift vector. The wind components are:

u250ðx; y; s; tÞ5�u250ðx; y; sÞ1A11F1ðtÞ

v250ðx; y; s; tÞ5�v250ðx; y; sÞ1A21F1ðtÞ1A22F2ðtÞ

u850ðx; y; s; tÞ5�u850ðx; y; sÞ1A31F1ðtÞ1A32F2ðtÞ1A33F3ðtÞ

v850ðx; y; s; tÞ5�v850ðx; y; sÞ1A41F1ðtÞ1A42F2ðtÞ1A43F3ðtÞ1A44F4ðtÞ;

(5)

in which �u and �v are daily resolution (s) winds linearly interpolated

from monthly mean fields in a x and y grid. F1, a Fourier series variable

with a random phase, represents the variability in winds for timescales

smaller than monthly (Emanuel et al., 2006):

F1ðtÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

X

N

n51

n23

v

u

u

u

u

t

X

N

n51

n23=2sin½2pðnt=T1XnÞ�: (6)

In F1, T is the lowest frequency (15 days) in the time series (highest fre-

quency is 1 day), N (15) is the total number of waves retained, and Xn

is, for each n, a random number between 0 and 1. F2, F3, and F4 have

the same form as equation (6), but with different random phases, Xn.

Ai;j is the ith and jth coefficient in a lower triangular matrix A that

satisfies

ATA5COV; (7)

where COV is the covariance matrix of the flow components. A is func-

tion of x, y, and s.

The coefficient n23=2 in equation (6) is chosen to mimic the observed

spectrum of geostrophic turbulence. The power spectrum of the kinetic

energy of the synthetic winds from equation (6) falls close to the inverse

cube of the frequency, and is steeper than that of the steering flow based

on daily winds from reanalysis data (not shown). In short, equations (5)

and (6) provide synthetic winds at 850 and 250 hPa whose monthly

means, variances, and covariances match those in the reanalysis data.

The observed track density is roughly in phase with the observed gen-

esis distribution (comparing Figure 2a to Figure 1a). In order to

Figure 2. Track counts in every 58 3 58 box from 1981 to 2012 from (a)

observations, (b) averaged from 20 BAM simulations with zero zonal beta

component (Ubeta0), and (c) averaged from 20 BAM simulations with latitude-

dependent beta drift (betaLat). The color scale is logarithmic. In Figures 2b and

2c, the storms’ genesis locations and lifetimes are from observations.
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separate the BAM’s performance from the genesis bias, we conduct 20 track realizations using the 32 years’

observed genesis locations, using the simulated tracks with the same lifetimes as the best-track data.

Two experiments are conducted with different values for Vb . In the first experiment, we set Vb 5 (0.0, 2.5)

following Emanuel et al. (2006), that is, zero beta drift in the zonal direction and 2.5 m s21 in the meridional

direction. This setting is called ‘‘Ubeta0.’’ A recent study by Nakamura et al. (2017) shows a systematical

north-northeast-ward track bias in Emanuel’s data set in the WPC. Such bias might be related to the zero

beta drift, which prevents westward moving tracks. Therefore, in the second experiment we choose Vb as a

function of the cosine of latitude (/), with maxima of 1.0 and 2.5 m s21 in zonal and meridional directions,

i.e., Vb 5 (2.5 cos/, 1.0 cos/). The cosine function is used because the b-drift changes with Coriolis force

(Zhao et al., 2009). We call this second experiment ‘‘betaLat.’’

The spatial distributions of the observed tracks and both experiments are in good agreement. This is primar-

ily because they have the same initial locations. The spatial correlations between observations and both

Ubeta0 and betaLat are very high (above 0.9). While there is no clear reason, based on these results alone,

to view one as the better than the other, the fact that betaLat is more physics-based makes it more attrac-

tive, and we choose it here.

3.3. Intensity—Autoregressive (AR) Model

The AR intensity model:

Vt112h2Vt5LðVt; Vt212h; Xt; Xt112hÞ1�t112h (8)

was described in our previous studies, Lee et al. (2015, 2016a). We refer readers to these two studies for

details of the intensity model. Here we describe its general structure. Vt is the storm intensity at time t and

X are environmental variables related to TC intensification. The deterministic component,

LðVt; Vt212h; Xt; Xt112hÞ, has the form of a second-order vector autoregressive linear model with environmen-

tal variables as exogenous inputs. To predict intensity at t1 12h, L includes storm information, Vt,

Vt2Vt212h; V
2
t , and the storm translation speed. Three essential environmental variables, potential intensity

(PI, Bister & Emanuel, 2002; Camargo et al., 2007a), 800–200 hPa deep-layer mean vertical wind shear (SHR,

Chen et al., 2006), 500–300 hPa midlevel relative humidity (midRH), are sufficient to reasonably simulate the

storm intensity statistics (Lee et al., 2015). PI enters L in the form of the difference between PI and initial

storm intensity (PI2Vt), and its square and cubic forms: ðPI2VtÞ
2
and ðPI2VtÞ

3
.

The stochastic forcing component (�) accounts, in a statistically representative sense, for the internal storm

dynamics or other physical processes that do not depend explicitly on the environment. In other words, � is

the forecast error resulting from the linear assumption and the limited variables included in L. Assuming

that the forecast error is uncorrelated in time but in conditioned on the initial intensity Vt, we randomly

draw � from the training period errors. Lee et al. (2016a) showed that including the white-noise stochastic

term improves the simulated LMI distribution as well as the spatial distribution of Cat 3–5 storms. When a

storm is close to land or when it makes landfall, we switch the intensity model to the one that is fitted with

an additional parameter representing the surface type in L. Gray lines in Figure 3a are the AR simulated,

Figure 3. (a) LMI from 1981 to 2012 from observations (black), ĜT̂I (gray), ĜTI (cyan), GTI (red). (b) Similar to (a) but for

landfall intensity distributions. Each of the experiments contains 400 realizations.
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global LMI distributions using the observed tracks and those in Figure 3b are the global landfall intensity

distributions. For LMI, the AR model captures the observed (black line) first peak but not the shoulder fea-

ture at the tail part of the distribution, which we will discuss more in section 4.3. In the case of the landfall

intensity, there is a small leftward shift representing a low bias in the simulations.

4. A TC Hazard Model

The next step is to integrate all three components together to form a TC hazard model and to evaluate

model performance by comparing model output to observations. When all three components are fully inter-

active, we refer to the solutions with the label, GTI, where ‘‘G,’’ ‘‘T,’’ and ‘‘I’’ represent the genesis, track, and

intensity, respectively. For each synthetic storm, the initial intensity is taken from the observed global distri-

bution, not taking into account the basin-dependent values of initial storm intensity (15–35 kt for the ATL

and ENP, 15–30 for the other basins). Dissipation is defined to occur when the intensity drops below 10 kt.

We examine the storms’ evolution and only keep those which intensify and reach at least tropical storm

(TS) strength (LMI larger than 34 kt).

In GTI, only 706 1% of seeds become TS. This is because TCGI gives a nonnegative chance for storm forma-

tion globally, which can result in some initial seeds starting very close to the Equator or in very unfavorable

environments. BAM can also move the storm to an unfavorable environment since it only knows the steer-

ing flow. Both situations lead to a low bias in global TC frequency because TCGI is trained to match the gen-

esis of tropical storms (whose lifetime maximum intensities are at least 35 kt), not the formation of the

tropical disturbances that can potentially become tropical cyclones. In order to maintain a realistic global

mean storm number, we revise the GTI simulations by seeding more storms than what the TCGI suggests.

The adjustment factor is the multiplicative inverse of the survival rate. Because the hazard model is trained

globally, it might not be able to adequately capture some regional physical relationship. As a result, the sur-

vival rate varies by basin. Nevertheless, we do not use a basin-dependent seeding rate. We apply an adjust-

ment factor of 1.4 globally instead. We will, however, apply a local frequency adjustment when conducting

hazard assessment (in section 5). Another restriction applied on the TCGI is that we do not allow storms to

form within 28 from the Equator, globally.

GTI, with the adjustment factor, generates synthetic storms whose climatology is generally good agreement

in most areas with the observed one (Figure 4). They both have more intense storms in the WNP and less in

the ATL, a westward followed by a north-eastward movement in the northern hemisphere, and almost no

Figure 4. (a) 2000–2012 historical tracks color-coded by intensity. (b) Similar to (a) but from a randomly selected member

(out of 400 realizations) from GTI.
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storms in the southeastern Pacific and southern Atlantic. There are some differences as well, such as more

central Pacific storms and a less pronounced equatorial gap in the simulations. In addition to GTI, we

designed two more experiments to isolate the influence of individual components on the total estimated

TC statistics: ĜTI, and ĜT̂I. When (̂ ) is used above these letters, observational data are used instead of simu-

lations. We construct 400 realizations of 32 year global simulations

(1981–2012) in each experiment (see section 2 for details). In ĜTI and

ĜT̂I, the observed initial intensities are used for the corresponding for-

mation locations.

4.1. Genesis Density and Interannual Variability

ĜT̂I and ĜTI genesis climatologies (not shown) are similar to the

observed one because best-track genesis locations were used in these

simulations. Similarly, the spatial distribution of genesis location in GTI

(Figure 5a) is close to TCGI (Figure 1b) in section 3. This is because,

while the track and intensity models determine the survival of initial

vortices, they do not largely alter the genesis climatology. They do,

however, slightly enhance the positive bias in the central Pacific (com-

paring Figure 1c and Figure 5b), which might be due to too many

storms surviving in the central Pacific in GTI. On the other hand, GTI

has larger negative biases in the IO than TCGI does, perhaps because

many seeded storms die too quickly there. Another noticeable differ-

ence between Figure 1c and Figure 5b is the large negative bias in

the equatorial region (especially over the Pacific and Indian Oceans)

where, by design, no simulated storms are allowed to form. Thus, the

simulated standard deviation (i.e., rm in equation (2)) is very small

here, and the small negative biases between observations and simula-

tions are enhanced in the t statistic.

The interannual correlation of total storm number in GTI with that in

observations is shown in Figure 6. The correlation coefficient for ATL

hurricanes in GTI is 0.48, similar to Emanuel et al. (2008) while with the

new intensity model, it increases to 0.7 in Emanuel (2017). The correla-

tion coefficient for WNP, ENP, SH, and IO in GTI are 0.30, 0.36, 0.46,

and20.27, respectively. Menkes et al. (2012) found that existing gene-

sis indices, including the TCGI, do not capture the full spectrum of

interannual variability in storm frequency well, although they are all

able to simulate the impact of ENSO. This deficiency is inherited in our

model.

Figure 5. (a) Number of TC genesis per 58 3 58 box averaged over 400 GTI simulations. (b) t statistic of GTI simulations. The color scale is logarithmic in Figure 5a

and linear in Figure 5b.

Figure 6. Interannual variability of storm genesis in ATL (red), WNP (blue), ENP

(green), SH (purple), IO (yellow). The observed time series are in thick solid lines

while the GTI simulated ones are in thin solid lines with the thick dashed lines

representing the ensemble mean. Data are normalized by the corresponding

mean and standard deviation and the black lines are the reference lines (i.e.,

zero). The interval between two black horizontal lines is four standard devia-

tions. The correlation coefficient between observations and ensemble means in

individual basins are given at the top of the figure.
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4.2. Track and Landfall Frequency

The track density plots from observations, ĜTI and GTI are shown in Figures 2a, 7a, and 7c. The ĜT̂I track density

is the same as in observations and is not shown here. In both observations and simulations, the highest value of

the track density are in the WNP and ENP, followed by the southern Indian Ocean and the western South Pacific.

Both simulations show the typical observed recurvature track pattern in the ATL. The relatively high track densi-

ties over northwestern Australia and the Bay of Bengal, however, are missing in the simulations. A comparison

between t statistic from ĜTI (Figure 7b) and GTI (Figure 7d) suggests that the negative frequency bias in the

ENP is partially due to the TCGI, consistent with the results from section 3.1. The positive frequency bias in the

central Pacific, which is also seen in the genesis t statistic in Figure 5b, extends further northward in Figure 7d.

The large negative values of t-statistic over land in Figures 7b and 7d are from very small simulated standard

due to the design of the hazard model—the AR intensity model stops right after storms making landfall and

thus leads to almost no variability over land. Similarly to the negative t statistic in the equatorial region in Figure

5b discussed in the previous section, very small rm in equation (2) leads to large t statistic.

The regional landfall frequency in observations and in the GTI simulation are shown in Figures 8 and 9.

There are low biases in the coastal regions of the northern Indian Ocean and the north Atlantic from Mexico

to New England, where the observed (black) frequency is constantly above the simulated spread (red

patches). The rank histograms (section 2) also tilt toward high ranks in these regions (Figure 10). In these

regions, we also see negative biases in the track density (Figure 7d). In Taiwan and the Philippines, there are

positive landfall frequency biases and the rank histogram distributions tilt toward low ranks. The track den-

sity plot, however, shows a negative bias near Taiwan. This inconsistency between biases in track density

and landfall frequency occurs because the landfall frequency is calculated at much finer spatial resolution

(50 km) than is the track density (about 500 km). Thus, Taiwan covers only part of a large grid box in the

track density plot. Another possible reason is that landfall is related to the direction in which a storm is

Figure 7. (a) Simulated 1981–2012 TC track counts per 58 3 58 box from 400 ensemble mean from ĜTI. (b) t statistic of the ĜTI simulations. (c) Similar to (a) but

from GTI. (d) t statistic of the GTI simulations. The scales are logarithmic in Figures 7a and 7c and linear in Figures 7b and 7d.
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moving. A low track frequency does not necessarily result in a low landfall occurrence if the number of

westward moving tracks is higher. The simulated landfall frequency is unbiased in the coastal regions from

Vietnam to China.

4.3. LMI and Landfall Intensity

In Figure 3a, ĜT̂I captures the first peak of the global LMI distribution well, but misses the shoulder feature

due to an insufficient number of simulated RI storms (TCs that intensify, at least once, more than 35 kt

Figure 8. Observed (black line) and GTI simulated (red shading) landfall frequencies in number of occurrences at every

50 km along the coastline of (a) Northern Indian Ocean, (b) Vietnam to China, (c) the Philippines, (d) Taiwan. The simu-

lated landfall frequencies are shown as 0, 25, 75, 100 percentile based on the 400 realizations. X axis in each panel

matches with colors along the corresponding coastline in the map on the right, starting from ‘‘X’’ symbol. The color is

darkker with increasing distance.
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within 24 h in their lifetimes), consistent with the results in Lee et al. (2016a). PDFs of LMI from ĜTI (light

blue lines) and GTI (red lines), however, successfully capture the shoulder feature. This improvement has a

simple explanation, namely the consistency between track and intensity evolution. In ĜT̂I, each synthetic

storm ends when the observed record ends, regardless of the storm’s intensity at that time. As a result,

some die while they are intensifying, or still at or above TS level, and thus are artificially denied future

opportunities to undergo RI. Coupling the intensity model to the track model (in ĜTI and GTI) resolves this

artifact by giving each synthetic storm a self-consistent opportunity to undergo RI when the environment

permits. Thus, GTI and ĜTI generate numbers of RI storms close to those found in observations (comparing

the pink lines to red line in Figure 11) and match the observed LMI distribution. The successful simulation

of RI storms shows that the stochastic forcing in the intensity model, as proposed in Lee et al. (2016a), is an

Figure 9. Continuation of Figure 8. (e) Japan, (f) Eastern Pacific, (g) Mexico to New England, (h) northern Australia.
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effective way to produce RI storms. As we have mentioned in the sec-

tion 1, the shoulder feature of the global LMI distribution (or the

bimodal distribution at individual basins) might be due to a combina-

tion two factors: RI and the artifacts of the Dvorak technique. Given

that the observed number of RI storms is not built into the TC Hazard

model by construction, our results give further evidence that RI and

the LMI distribution are related and that the bimodality is not purely

an artifact of the Dvorak technique.

PDFs of the landfall intensity (Figure 3b) in GTI and ĜTI are almost

indistinguishable from the observed one. Coupling between track and

intensity model improves not only the simulation of peak intensities,

but the intensity evolution throughout storms’ lifetimes as well,

including at landfall.

5. Tropical Cyclone Hazard in the Current Climate

In sections 4.3 and 4.2, we discussed the performance of GTI in pre-

dicting TC landfall frequency and intensity, respectively. When con-

sidering hazard, however, it is essential to use joint measures that

contain information about both of them. Thus, here we define TC

hazard as the probability of the landfall intensity’s exceeding a

given threshold at a particular location. TC hazard will be calculated

based on the historical record, and synthetic storms from the three

simulations, namely ĜT̂I, ĜTI, and GTI. We will discuss TC hazard from both global and regional

perspectives.

5.1. Global Map of Return Period

Figures 12 and 13 show global maps of return period for hurricanes (Cat11 storms) and major hurricanes

(Cat31) in observations and simulations. To maintain consistency in the observations and simulations sample

size, we select only one realization (32 years of data) for each experiment in Figures 12b–12d and 13b–13d.

The features we discuss here, however, are also true for the ensemble mean of our simulations (not shown).

At the coastal regions in the south western WNP (southeastern China, Taiwan, and the Philippines), the

observed return period of hurricanes is less than 10 years; it is close to 2–3 years near Taiwan and the Philip-

pines. Another distinct area with a low return period (high hazard) is the ENP. In the southern hemisphere,

the 10 year return period contours reach eastern Madagascar. In the Northern Australia, Bay of Bengal and

most US coastal regions, the return period for Cat11 storms is on the order of decades. Because TCs are

rare events, the ‘‘observed hazard’’ does not actually represent the true hazard, but is what we estimate

based on the 32 years of the reliable historical observations.

Comparing the simulated return period maps of hurricane strength

in Figure 12 shows the advantages of using observed tracks and for-

mation locations. Figure 12b is much closer to Figure 12a (observa-

tions), than Figures 12c (ĜTI) and 12d (GTI) are. Compared to

observations, some of the biases in the TC climatology discussed ear-

lier are reflected in the return period map. For example, the differ-

ence map between GTI and observations (Figure 12e) shows that GTI

estimates a higher hazard (shorter return period) in the central

Pacific than do the observations. This difference is related to the

overestimation of storm activity in that area shown in Figure 7d. In

the IO, the simulated hazard is smaller (longer return period) than

the observed one, due to the low frequency and the low intensity

biases. Despite these differences in detail, GTI captures the high haz-

ard regions for hurricane strength storms in most of the global TC

basins, such as WNP, ENP, and Southern Indian Ocean.

Figure 10. The normalized rank histogram from landfall frequencies from

Figures 8 and 9.

Figure 11. PDF of LMI from 1981 to 2012 global historical record (black) and

from 400 GTI realizations (gray). Blue and red lines are PDFs using subsets of

non-RI and RI storms from observations. The cyan and pink lines show the

same quantities but from simulations.
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Figure 12. Return period map for storms exceeding Category 1 hurricane strength from (a) 1981–2012 observations, and

a 32 year simulations from (b) ĜT̂I, (c) ĜTI, and (d) GTI. Data are calculated in 28 3 28, and a Gaussian smoothing is applied

with length scale of 3 grid points. The contours represent return periods of 10, 100, and 1,000 years. (e) The difference

maps between (a) and (d), where blue (red) tones represent areas in which the hazard is underestimated (overestimated)

in GTI.
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The return period map of Cat31 storms (Figure 13) shows the advantages of calculating storm evolution in

a consistent environment, i.e., in GTI, for more rare events. ĜT̂I underestimates the Cat31 storm hazard,

especially in the WNP. GTI, on the other hand, reasonably captures the global hazard of Cat31. This is again

because GTI is able to simulate sufficient numbers of RI storms.

Figure 13. Similar to Figure 12 but for storms exceeding Category 3 hurricane strength.
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5.2. Regional Return Period

To discuss TC hazard at regional scales, we select 13 sub-basin areas and calculate the return period curves

as a function of landfall intensity. The 13 chosen areas are the coastal regions of Madagascar, Bay of Bengal,

Vietnam, China, the Philippines, Taiwan, Japan, western Mexico, Caribbean islands, Gulf of Mexico, eastern

US, Pacific islands (Papua New Guinea and eastern Indonesia) and northern Australia (Figures 14 and 15).

The observed return period curves, especially those for the strongest landfall intensity thresholds, are lim-

ited by the available observations. In simulations, the spread of simulated hazard (in color patches)

increases with intensity because the low-intensity landfall hazard is mostly controlled by the tracks. ĜT̂I has

only one set of tracks by construction—i.e., the observed tracks—and therefore has almost no spread. In

Figure 14. Return period curves of landfall intensity in (a) Madagascar, (b) Bay of Bengal, (c) Vietnam, (d) China, (e) the

Philippines, (f) Taiwan, and (g) Japan from observations (black), and 400 ensemble members from simulations (from left

to right): ĜT̂I (gray shading), ĜTI (cyan shading), GTI (red shading), and regional frequency-adjusted GTI (purple shading).

The lighter (darker) patches represent 0 to 100 (25–75) percentiles. The solid lines are return period curves calculated

using all 12,800 year simulations.
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the ĜTI and GTI, there are 10 sets of tracks that contribute to the spread. At higher intensity thresholds, the

intensity model ensemble contributes to the spread of the hazard estimation.

Ideally, the historic return period curve falls within the ensemble spread of the simulated curves, an indica-

tion of an unbiased model. Biases in the return period curves have at least two general sources: landfall fre-

quency (the location of the curves) and intensity (the shape of the curves). Model curves shifted toward the

right (left) with steeper (lower) slope can be interpreted as underestimation (overestimation) of TC hazard.

The observed return period curves (black) lay in the simulated spreads of ĜT̂I (gray patches) in most places.

Although the observed tracks are used in ĜT̂I, there are still shifts toward the right in the simulated return

period curves in the Bay of Bengal, Vietnam, Japan, western Mexico, indicating that some of the observed

landfalling storms dissipate in simulations before making landfall. In Australia and the Philippines, ĜT̂I

underestimates landfall intensities. Including the track model (ĜTI, cyan patches) results in underestimations

in most places, except in the Pacific islands where ĜTI has more landfalls than the observations do. This is

consistent with the equatorial bias discussed in section 4.

Using the same environmental conditions for genesis, track, and intensity (GTI, red patches) improves the

estimated return period curves. There is a small landfall frequency bias in the coastal regions of China, Tai-

wan, Japan, and Caribbean islands. GTI underestimates the landfall frequency in Madagascar, Vietnam, west-

ern Mexico, Gulf of Mexico, and eastern US. The bias is largest in Gulf of Mexico, followed by Bay of Bengal.

Figure 15. Continuation of Figure 14. (h) Western Mexico, (i) Caribbean islands, (j) Gulf of Mexico, (k) Eastern US, (l) Pacific

islands, and (m) Australia.
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Furthermore, GTI results in too many landfall events in the Pacific islands due to the equatorward bias in

the southern Pacific.

In order to bias-correct the frequency locally, we shift the return period curves (GTI adjust, purple patches)

to match the observed return periods at the lowest threshold (35 kt), which is the threshold with the most

observations, and is more reliable than the higher intensity thresholds. After shifting the simulated curves,

the observed curves fall within the spread in the simulations for most of the regions, staying within the 25–

75 percentiles (darker purple patches), except in China and the Pacific islands. In China, the observed return

period curve for landfall intensities larger than 80 kt is at the low edge of the simulated spread, i.e., the haz-

ard is overestimated. The overestimation is much more severe in the Pacific islands.

6. Summary and Discussion

This study describes a new, environmentally forced tropical cyclone (TC) hazard model. It is composed of

three model components that, together, represent the complete storm lifetime: a genesis model (TCGI), a

beta-advection track model (BAM) and an auto-regressive (AR) intensity model. The TCGI and BAM are

developed following Tippett et al. (2011) and Emanuel et al. (2006), respectively, while the AR intensity

model is from our previous work (Lee et al., 2016a). The TCGI defines the spatial and temporal formation

rate (i.e., the numbers of storms that should form at a given location within a given period) using the

observed climatological relationship between storm formation and absolute vorticity, relative humidity, rel-

ative sea surface temperature, and vertical shear (section 3.1). After the initial seeding, the BAM moves vorti-

ces following the synthetic steering flow (section 3.2). The synthetic wind has the statistics of the monthly

averaged winds but also contains high-frequency perturbations calculated from the daily variance and

covariance. The intensity model predicts the storm’s evolution using a deterministic multiple linear regres-

sion plus a stochastic component (section 3.3). In the deterministic component of the intensity model, the

TC intensity change is a function of potential intensity, deep-layer mean vertical wind shear, midlevel rela-

tive humidity, and storm intensity persistence. The stochastic component represents the physical processes

that are not considered in the deterministic model and is necessary in order for the intensity model to simu-

late the observed distribution of TC intensity.

The model captures many aspects of TC genesis, track, intensity, and landfall statistics, including their den-

sity distributions, probability density function (PDF) of storms’ lifetime maximum intensity (LMI) and landfall

intensity, as well as the landfall frequency. The model has a positive frequency bias in the central Pacific

and in the equatorial region. A particularly interesting result is that it captures the observed LMI PDF, which

has a main peak and a’’ shoulder’’ at higher intensities. This finding is different from those in our previous

study, Lee et al. (2016a), in which the realizations were conducted using the AR intensity model and

observed tracks. The observed shoulder feature in the global LMI PDF (the regional LMI PDF are bimodal)

appears to be due to the separation in two monomodal PDFs, one from storms which undergo rapid inten-

sification (RI, intensity change larger than 35 kt per 24 h) and the other one from those which do not (Lee

et al., 2016b). While the AR intensity model running along the observed tracks is able to simulate RI storms,

it does not generate as many RI storms as are found in observations. The reason for this underestimation is

that some of the synthetic storms end when the observed track ends regardless of their intensities, which

artificially reduces the probability of RI. Combining the AR intensity model and the BAM track model

resolves the inconsistency, and gives the synthetic storms opportunity to undergo RI when the environment

permits (Figure 11). Self-consistent tracks and intensities improve not only the LMI distribution but the

storms’ lifetime intensities, and therefore also landfall intensities.

With the well-simulated TC climatology, the model can estimate regional TC hazard reasonably well. How-

ever, it predicts more landfalls in the western North Pacific and Pacific islands, and fewer landfalls in the

northern Atlantic and Indian Ocean than are found in observations. These landfall biases lead to biases in

the estimated TC hazards. A possible causes of the landfall biases is the design of the BAM, especially the

beta drift, which does not take into account the storm strength. Further investigation into this issue will be

carried out in the future. For now, we have corrected these biases during the post-processing with a local

frequency adjustment. The large positive hazard bias for the Pacific islands, however, remains, because the

model generates too many strong landfalling storms there. These and other biases in the TC hazard can be

corrected to some extent, so that the TC hazard model can generate estimates of the probability of landfall
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at a given intensity that are in agreement with observations at shorter return periods, while also giving esti-

mates at longer return periods where such estimates cannot be directly generated from observations.

While the environmental parameters used here are obtained from reanalysis, they can potentially be

obtained instead from a global climate model. However, when assessing hazard in a changing climate, it

may be appropriate to choose somewhat different predictors. For example, Camargo et al. (2014) showed

that using saturation deficit and potential humidity allows for a better representation of the response to

mean climate warming than using relative humidity, although both indices have similar behavior in the cur-

rent climate. Similarly, we might want to use PI instead of relative SST in the genesis model in the future.

Parameters used in the intensity model might need some adjustments as well. Preliminary results using one

of the CMIP5 models (not shown) suggest that the TC hazard model is able to produce reasonable TC clima-

tologies in both current and future climates. One of the challenging issues will be how to make appropriate

bias corrections in the required predictors obtained from different climate models. Application of our model

in such a climate change context, forced by a range of global climate models, will be presented in a future

publication.
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