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Abstract: We consider an EOQ model with multiple suppliers that have random capacities, which leads to uncertain yield in
orders. A given order is fully received from a supplier if the order quantity is less than the supplier’s capacity; otherwise, the
quantity received is equal to the available capacity. The optimal order quantities for the suppliers can be obtained as the unique
solution of an implicit set of equations in which the expected unsatisfied order is the same for each supplier. Further characterizations
and properties are obtained for the uniform and exponential capacity cases with discussions on the issues related to diversification
among suppliers. © 2005 Wiley Periodicals, Inc. Naval Research Logistics 53: 101–114, 2006.
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1. INTRODUCTION

Continuous-review inventory systems with random yield
have been modeled in several different ways in the litera-
ture. The original idea behind yield randomness is due to
the fact that the quantity received from the supplier may dif-
fer somewhat from the quantity ordered. As discussed in the
review by Yano and Lee [20], a common way to model yield
uncertainty is to take the random yield Yq “stochastically pro-
portional” to the order quantity q so that Yq = Uq. Here, U is
a random variable that may represent, for example, the frac-
tion of non-defective items. Earlier examples of these models
can be found in Karlin [11], Silver [17], and Shih [16]. Lee
and Yano [12] formulate the multistage serial production sys-
tem with random yield and deterministic demand. Henig and
Gerchak [10] provide a comprehensive analysis of general
periodic-review models with random yield in multi-periods
and show the optimality of “nonorder-up-to” policies. Unfor-
tunately, these policies are not as simple as the well-known
base-stock and (s, S) policies. Under such polices, no order
is given if inventory position is over a critical threshold, but
the order quantity below this level does not necessarily bring
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the inventory position to a fixed base-stock level. Parlar and
Berkin [14] and Gürler and Parlar [9] analyze the case where
supply is available only during intervals of random length.
Özekici and Parlar [13] introduce the idea of a random envi-
ronment that affects the demand, supply, and all cost param-
eters. They show the optimality of environment-dependent
base-stock and (s, S) policies when the supplier is unreliable.

Another approach in modeling random yield is to treat
yield uncertainty as a consequence of random capacity.
This may be due to unreliable machinery and unplanned
maintenance in a production system or possibly finite avail-
ability of items in an inventory system. In these models,
the quantity that is actually received is Yq = min{q, A}
if q is the order quantity and A is the random capac-
ity. Ciarallo, Akella, and Morton [2], for example, propose
a periodic-review production model with random capacity
where the base-stock policy is found to be optimal. Wang
and Gerchak [18] further extend this model to allow ran-
dom capacity and random yield simultaneously, i.e., Yq =
U min{q, A}. The structure of the optimal ordering policy
in each period is similar to that of Henig and Gerchak
[10]; i.e., an order is given if the inventory level at the
beginning of the period is below a critical point; other-
wise, no order is given. Güllü [8] considers a model where
the yield depends on the quantity present at the supplier
in addition to the availability of the supplier. Erdem and

© 2005 Wiley Periodicals, Inc.
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Özekici [5] analyze periodic models with random capac-
ity in a random environment and show the optimality of
environment-dependent base-stock policies when there is no
fixed cost. In continuous-review environments, Wang and
Gerchak [19] analyze the effects of variable capacity on opti-
mal lot size and obtain optimality conditions for generally
distributed capacity.

An important factor that is missing or neglected in the
literature is the necessity to include multiple suppliers in
random capacity models. Random supplier capacity directly
implies that orders should be diversified to many suppliers
in order to reduce the risk associated with insufficient capac-
ity of the suppliers. In practice, the assumption that there
is a single supplier is often false and unrealistic since vari-
ability of actual yield can be reduced through diversification
of the risk by working with a number of suppliers. Exten-
sive studies have been done on the random yield and random
capacity models with a single supplier. On the other hand,
substantially less effort has been spent on models with multi-
ple suppliers due mainly to their apparent complexity. In the
original work is by Anupindi and Akella [1] they consider the
single-period problem of ordering from two different sup-
pliers with stochastically proportional yields. The optimal
policy, which is determined by two critical order points, is
of the form: “order from both,” “order from the cheaper sup-
plier,” or “do not order.” The issue of order diversification
is discussed by Erdem [4] in a single-period model where
there are two suppliers with random capacities to show that
the total order quantity does not necessarily bring the inven-
tory position to a base-stock level. Even with no fixed cost of
ordering, the optimal policy may be rather complicated. In
a continuous-review system, diversification under yield ran-
domness was first analyzed in the EOQ context by Gerchak
and Parlar [7] where two suppliers with identical cost param-
eters and nonidentical stochastically proportional yields are
considered. Parlar and Wang [15] extended these results to
supplier-specific unit cost of ordering and found the optimal
order quantities explicitly. All these multiple supplier studies
concentrate on two supplier models. The only other study that
considers an unlimited number of suppliers like our study is
by Fadıloğlu, Berk, and Gürbüz [6]. They analyze the mul-
tiple supplier binomial yield problem in an EOQ setting and
show that diversification is not always preferable.

In this paper, we discuss issues related to random capacity
and multiple suppliers in the well-known EOQ model. Our
problem is similar to that of Parlar and Wang [15] since we
both discuss yield uncertainty and multiple suppliers in the
EOQ model, but the yield structures are substantially different
and the number of suppliers is not limited to two. Another
closely related study is by Wang and Gerchak [19] where
there is a single supplier with random capacity. We generalize
these models to allow multiple nonidentical suppliers with
random capacities in a continuous-review system.

The organization of the paper is as follows: In Section 2,
we derive the general characterization for the optimal order
quantities of the random capacity EOQ model with multiple
suppliers. Sections 3 and 4 are devoted to the special cases of
the uniform and exponential capacity suppliers where some
interesting properties of the optimal solution are provided. In
Section 5, the issues related to diversification among suppliers
are discussed and results are demonstrated by some numerical
illustrations. The reader should refer to the Appendix for the
lengthy proofs.

2. EOQ MODEL WITH MULTIPLE SUPPLIERS

If it is certain that the suppliers deliver what is ordered, then
it is surely most economical to work with the supplier who
provides the product at the least cost for the desired quality
level. However, this is often not the case in real life and it is
a fact that usually companies prefer to work with more than
one supplier. Under random supplier capacities, the retailer
should order from a number of suppliers in order to diversify
the risk associated with shortages.

In this section, we model the setting described above by
assuming that there are n suppliers with constant lead times.
Joint orders are given to n suppliers with independent random
capacities {Ai ; i = 1, 2, . . . , n} having distribution func-
tions Fi and density fi . Let qi be the order quantity for
the ith supplier; then the amount received from supplier i

is Yqi
= min{qi , Ai}. At the beginning of any order cycle,

if q1, q2, . . . , qn are the order quantities for the n suppliers,
then the total amount actually received from the joint order
is Yq1 + Yq2 + · · · + Yqn

. We assume that F̄i(x) > 0 for all
x ≥ 0 unless stated otherwise throughout the remainder of the
paper. However, we may relax this assumption and analyze
the model when there is an upper bound ai for the capacity
of the supplier i, such that F̄i(x) = 0 for all x ≥ ai . This is
illustrated in the uniform capacities setting in Section 3.

Our model assumes that all the available suppliers are used.
The joint order (setup) cost is Kn, the cost of giving an order
to all of the n available suppliers. If which subset of the sup-
pliers used is also a decision, then the order cost would be
a function of the subset that would be the sum of a supplier
specific (minor) setup and an order specific (major) setup.
This situation is discussed and illustrated in Section 5.3.

The unit purchase cost is c and unit inventory holding cost
is h per unit time. We suppose that all suppliers offer the same
unit price since we want to focus on the effect of random
capacity on the ordering policy.

Using renewal theory, the long run average total cost func-
tion is simply the ratio of expected total cost per cycle
to expected cycle length. The required expression for the
average cost as a function of the order quantities for the n

suppliers is
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Kn + cE[Yq1 + Yq2 + · · · + Yqn
] + hE[(Yq1 + Yq2 + · · · + Yqn

)2]/(2D)

E[Yq1 + Yq2 + · · · + Yqn
]/D . (1)

The numerator of (1) is the sum of joint ordering cost, ex-
pected cost of purchasing, and the expected total inventory
holding cost in a cycle. Now, we derive an expression for
E[(Yq1 + Yq2 + · · · + Yqn

)2] that will simplify (1). Since the
random capacities are assumed to be independent, we have

E[(Yq1 + Yq2 + · · · + Yqn
)2]

=
n∑

i=1

E
[
Y 2

qi

] +
n∑

i,j=1,j �=i

E[Yqi
]E[Yqj

]. (2)

The average total cost expression in (1) can now be re-
written as

cD

+ KnD + h
[∑n

i=1 E
[
Y 2

qi

] + ∑n
i,j=1,j �=i E[Yqi

]E[Yqj
]]/2∑n

i=1 E[Yqi
] .

(3)

The total purchase cost cD can be disregarded in the
optimization problem so that it now becomes minq1,q2,...,qn≥0

T C(q1, q2, . . . , qn), where

T C(q1, q2, . . . , qn)

= KnD + h
[∑n

i=1 E[Y 2
qi
] + ∑n

i,j=1,j �=i E[Yqi
]E[Yqj

]]/2∑n
i=1 E[Yqi

] .

(4)

At this point, we need to provide the expressions for E[Yqi
]

and E[Y 2
qi
] in (4). We can compute E[Yqi

] as

E[Yqi
] =

∫ +∞

0
min{qi , y} dFi(y)

=
∫ qi

0
y dFi(y) + qiF̄i(qi). (5)

Note that E[Yqi
] ≤ E[Ai] with limqi→+∞ E[Yqi

] = E[Ai].
The derivative of E[Yqi

] with respect to order quantity qi is
nonnegative since

dE[Yqi
]

dqi

=
∫ +∞

qi

dFi(y) = F̄i(qi) ≥ 0, (6)

while the second derivative is nonpositive since

d2E[Yqi
]

dq2
i

= −fi(qi) ≤ 0. (7)

We conclude that E[Yqi
] is a concave increasing function with

E[Yqi
] |qi=0 = 0 and it converges to E[Ai] as qi increases.

Similarly, we obtain E[Y 2
qi
] by using Yqi

= min{qi , Ai} as

E
[
Y 2

qi

] =
∫ +∞

0
min{qi , y}2 dFi(y)

=
∫ qi

0
y2dFi(y) + q2

i F̄i(qi). (8)

Now, E[Y 2
qi
] ≤ E[A2

i ] with limqi→+∞ E[Y 2
qi
] = E[A2

i ]. Fur-
thermore, we differentiate E[Y 2

qi
] in (8) with respect to qi so

that

dE[Y 2
qi
]

dqi

= 2qi

∫ +∞

qi

dFi(yi) = 2qiF̄ (qi) ≥ 0 (9)

and find that E[Y 2
qi
] is also an increasing function with

E[Y 2
qi
] |qi=0 = 0 and converging to E[A2

i ] as qi increases.
However, it is not necessarily concave.

We can now get into the details of solving our optimiza-
tion problem to minimize T C(q1, q2, . . . , qn). The following
result provides an interesting implicit characterization for the
optimal solution of the random capacity EOQ model with
multiple suppliers.

THEOREM 1: The optimal order quantities of the random
capacity EOQ model with n suppliers are given as the unique
nonnegative solution of the following set of equations:

2q1

n∑
i=1

E[Yqi
] + 2

n∑
i=2

n∑
j=i

E[Yqi
]E[Yqj

]

−
n∑

i=1

E
[
Y 2

qi

] = 2KnD

h
(10)

q1 − E[Yq1 ] = q2 − E[Yq2 ] = · · · = qn − E[Yqn
]. (11)

Theorem 1 reveals an important property of the optimal
order quantities of the random capacity EOQ model with
multiple suppliers. If we reconsider the condition in (11), we
see that qi − E[Yqi

] is a positive constant since Yqi
≤ qi

for all qi . This optimal policy stipulates that the retailer’s
order should be diversified such that the expected number
of unfulfilled order units is the same for each supplier. This
relation specifies the optimal order quantities from all sup-
pliers as a function of the optimal order quantity from any
given supplier. Since qi − E[Yqi

] is an increasing function
of qi , if the order quantity from any supplier increases, then
all other order quantities should also increase in order to sat-
isfy (11). It is (10) that determines what the optimal order
quantity should be for the first supplier and thereby estab-
lishes the optimal order quantities for the other suppliers as
well. We see in (10) that as 2KnD/h, the square of classical
EOQ formula, increases, all the order quantities increase.
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If the setup cost is not dependent on the number of suppli-
ers, it is always better to diversify among all available sup-
pliers since setting any of the order quantities to zero would
necessitate setting all order quantities to zero so that (10)
is satisfied. This is quite intuitive, since by diversifying our
orders we decrease the probability that we exceed the capac-
ities of the suppliers and thereby decrease the uncertainty in
what we receive.

In the next corollary we show that the optimal order quan-
tities from the suppliers follow the stochastic order of their
capacity distributions. The corollary states that if the prob-
ability of fully receiving the order is greater for a supplier
compared to another, then we should order more from this
supplier.

COROLLARY 2: Let Ai �st Aj then q∗
i ≥ q∗

j .

PROOF: By definition, if Ai �st Aj , then F̄i(u) ≥ F̄j (u)

for all u ≥ 0. Since Ai �st Aj implies that Min(Ai , q) �st

Min(Aj , q), we can write E[Min(Ai , q)] ≥ E[Min(Aj , q)]
or simply E[Yqi

] |qi=q ≥ E[Yqj
] |qj=q . Since qk−E[Yqk

] |qk=q

is a non-decreasing function of q for any supplier k, q∗
i ≥ q∗

j

so that the optimality condition (11) is satisfied. �
We should remark that the underlying assumption behind

the theory presented in this section is that the random capaci-
ties of the suppliers are unbounded. When bounded capacities
are considered, the system of equations given in Theorem 1
may not yield a solution. This is due to the fact that even if the
retailer orders more than the capacity bound from a supplier,
the distribution of the quantity received will be the same as
when the capacity bound is ordered. Thus, qi − E[Yqi

] will
be constant after the bound is reached for supplier i. This
means that it may be impossible to set the expected number
of unfulfilled order units to the level satisfying (11). Then,
the order quantity for that supplier should be set to its capac-
ity bound, and the optimization problem should be solved for
the rest of the supplier order quantities. Yet, one should note
that Corollary 2 is always valid irrespective of the bounded-
ness of the capacity distributions. The approach in the case
of multiple suppliers with bounded capacities is illustrated in
the next section.

3. SUPPLIERS WITH UNIFORM CAPACITIES

In real life, the suppliers have always a bound on their
capacity, which means that they can never satisfy an infinite
order. Thus, it is practically relevant to consider bounded
capacity distributions. Among the bounded distributions,
the uniform distribution is the simplest—yet reasonable—
distribution to model the random capacity. The underlying
assumption while using the uniform capacity distribution is
that any capacity value within a given interval is equally
likely. In the case of lack of knowledge about the true capacity

distribution, the uniform distribution is the best choice from a
practical point of view. Furthermore, noting that the supplier
may be unable to send any quantity from time to time due
to production shutdowns, etc., one can claim that the lower
bound on the capacity distribution has to be zero.

When the random capacity of a supplier is uniformly dis-
tributed on [0, a] for some a > 0, by using (5) and (8) we
can easily obtain

E[Yq] = q − q2

2a
= q

(
1 − q

2a

)
(12)

and

E
[
Y 2

q

] = q2 − 2

3a
q3 = q2

(
1 − 2q

3a

)
. (13)

In the single supplier case with n = 1, the optimality con-
dition (10) yields

w(q) = q2
(

1 − q

3a

)
= 2KD

h
. (14)

for 0 ≤ q ≤ a. It is not surprising at all that lima→+∞ q2(1−
q

3a
) = q2, leading to the classical EOQ model. One can show

that w(q) is strictly increasing on [0, a] with w(0) = 0 and
w(a) = 2a2/3. Therefore, the optimal order quantity is the
unique solution of (14) in [0, a] if a2 ≥ 3KD/h. However,
if a2 < 3KD/h, then the optimal order quantity is a since
it does not make sense to order more than what the supplier
can possibly deliver.

Note that our assumption F̄ (x) > 0 is clearly not satis-
fied in the uniform capacity case since F̄ (x) = 0 whenever
x ≥ a. Therefore, it is no longer true that the optimal order
quantity is the unique solution of (14). However, this does not
constitute a major obstacle. It suffices to treat this problem as
a constrained optimization problem with 0 ≤ q ≤ a so that
whenever there is no solution of (14) on [0, a] the optimal
order quantity is a.

We now consider the general case with n suppliers where
the capacity Ai of supplier i is uniformly distributed between
zero and some ai > 0. In this section, we suggest a proce-
dure to find the optimal order quantities when the random
capacities have upper bounds.

THEOREM 3: Consider the EOQ model with n suppliers
that have uniform capacities so that Ai ∼ Uniform [0, ai] for
some ai > 0 and i = 1, 2, . . . , n. Let q0

i be a solution of
the equations

[
n(n − 1)

4a2
1

]
q4

1 +
[

2 − 3n

3a1

n∑
i=1

√
ai

a1

]
q3

1

+

2

n∑
i=1

n∑
j=i

√
ai

a1

aj

a1
−

n∑
i=1

ai

a1


 q2

1 = 2KnD

h
(15)
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and

qk =
√

ak

a1
q1 (16)

for k = 2, 3, . . . , n. If q0
i ≤ ai for all i = 1, 2, . . . , n, then the

optimal order quantity is Qi = q0
i for all i.

Theorem 3 states that, if all the order quantities given by
the first order conditions do not exceed the capacity bounds,
then the optimal order quantities are uniquely determined.
Otherwise, the optimal order quantity for that supplier must
be equal to its capacity bound since there is no point in order-
ing more. In Corollary 4, we state a related property of the
optimal solution if the first order conditions do not lead to a
feasible solution. It is interesting that the optimality condi-
tion is a cubic equation for n = 1 and a quartic equation for
any larger n as stated in (14) and (15).

COROLLARY 4: Suppose without loss of generality that
the suppliers are ordered such that a1 ≥ a2 ≥ · · · ≥ an. If
k = max{i; q0

i < ai , i = 1, 2, . . . , n}, then Qi = ai for all
i = k + 1, k + 2, . . . , n.

PROOF: It is sufficient to show that if q0
i > ai , then q0

i+1 >

ai+1. Using (16), we can write

q0
i+1 =

√
ai+1

a1
q0

1 =
√

ai+1

ai

√
ai

a1
q0

1 =
√

ai+1

ai

q0
i . (17)

Since ai ≥ ai+1,
√

ai+1/ai ≥ ai+1/ai . Also noting that q0
i >

ai , (17) leads to

q0
i+1 ≥ ai+1

ai

q0
i >

ai+1

ai

ai = ai+1. (18)

Thus, q0
i+1 > ai+1 and the rest follows by induction on i. �

By Corollary 4, if the order quantities determined by the
first order conditions in Theorem 3 are less than or equal to the
capacity bounds for the first k high-capacity suppliers, then
the optimal order quantities for all the other suppliers are at
their capacity bounds, i.e., Qi = ai since q0

i ≥ ai for i =
k + 1, . . . , n. So, by setting Qk+1 = ak+1, . . . , Qn = an, the
first order conditions defined by (10) must be resolved to find
the optimal order quantities Q1, Q2, . . . , Qk . This implies
that we need to replace (15) by

[
k(k − 1)

4a2
1

]
q4

1 +
[

2 − 3k

3a1

k∑
i=1

√
ai

a1

]
q3

1

+

2

k∑
i=1

k∑
j=i

√
ai

a1

aj

a1
−

k∑
i=1

ai

a1


 q2

1 = 2KnD

h
. (19)

Once Q1 is found by using (19), Q2, . . . , Qk are determined
by using the first order conditions in (16). Let us note that
this will lead to an increase in the previously obtained order
quantities q0

1 , q0
2 , . . . , q0

k found by using Theorem 3 and this
iterative procedure is repeated until Qi ≤ ai for all i.

In Table 1 we provide some numerical illustrations for the
two suppliers problem with uniform capacities. Experiments
are made in two sets for a1 = 85 and a1 = 100, respectively,
and the corresponding a2 levels are chosen such that a1 ≥ a2.
The cost parameters are K = 200, D = 32, h = 2.

As a consequence of Corollary 4, if the higher capacity
supplier is ordered at its capacity bound, (i.e., Q1 = a1),
then so is the second supplier. It is also easy to check that the
expected number of unfulfilled order units from both suppli-
ers Qi −E[YQi

] is the same if both order quantities are lower
than the capacity bounds. If the order quantity is at capacity
bound, then E[YQi

] = E[Ai] = ai/2. Finally, if the capacity
constraints are more restrictive due to low levels of a2, then

Table 1. Numerical results of the two suppliers problem with uniform capacities.

a1 a2 Q1 Q2 Q1 − E[YQ1 ] Q2 − E[YQ2 ] E[YQ1 ] E[YQ2 ] T C

85 85 49.44 49.44 14.38 14.38 35.06 35.06 169.01
50 61.86 47.45 22.51 22.51 39.35 24.93 173.19
30 75.26 30.00 32.32 15.00 41.94 15.00 180.52
25 85.00 25.00 42.50 12.50 42.50 12.50 183.26
10 85.00 10.00 42.50 5.00 42.50 5.00 195.09

5 85.00 5.00 42.50 2.50 42.50 2.50 200.65
2 85.00 2.00 42.50 1.00 42.50 1.00 204.48

100 100 47.40 47.40 11.23 11.23 36.17 36.17 167.14
50 61.21 43.28 18.73 18.73 42.48 24.55 171.51
30 73.23 30.00 26.81 15.00 46.42 15.00 176.45
20 80.34 20.00 32.28 10.00 48.07 10.00 180.69
10 100.00 10.00 50.00 5.00 50.00 5.00 186.67

5 100.00 5.00 50.00 2.50 50.00 2.50 190.32
2 100.00 2.00 50.00 1.00 50.00 1.00 192.84
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the optimal expected total cost is increased, which is intuitive
as well.

These illustrations help us provide some intuition for the
multiple suppliers problem with bounded capacities: If the
optimal order quantities for certain suppliers are at their
bounds, then there is a capacity problem at these suppliers
that prevents us from diversifying our orders as in the absence
of bounds. Obviously, this leads to an increase in the aver-
age costs. We can overcome this difficulty by increasing the
number of suppliers we are working with.

4. SUPPLIERS WITH EXPONENTIAL
CAPACITIES

In this section, we assume that the random capacities are
exponentially distributed with parameter µ so that F(x) =
1 − exp(−µx), x ≥ 0. Exponential capacities provide us
an ideal setting for getting insight about unbounded capacity
case since it is computationally more tractable compared to
other unbounded distributions. Specifically, the exponential
case yields some explicit solutions. The analysis of the expo-
nential capacities provided in this section is then used for
an illustration of the unbounded capacities case in contrast
with the bounded capacities case, discussed in the previous
section.

By using (5) and (8) one can easily show that

E[Yq] = 1

µ
(1 − e−µq) (20)

and

E
[
Y 2

q

] = 2

µ2
(1 − (1 + µq)e−µq). (21)

In the single supplier case with n = 1, the optimal order
quantity satisfies (10) as

2(µQ + e−µQ − 1)

µ2
= 2KD

h
. (22)

It is not surprising at all that limµ→0
2(µQ+e−µQ−1)

µ2 = Q2,
leading to the classical EOQ model. As a matter of fact, it
is not difficult to show that, as µ gets smaller, the random
capacity gets stochastically larger and the order quantity gets
smaller.

The solution of (22) is given explicitly by

Q = 1

µ

[
1 + K̂µ2 + W

(−e−(1+K̂µ2)
)]

, (23)

where K̂ = KD/h for notational simplicity and W is the
Lambert W function that can be computed with arbitrary pre-
cision. The Lambert W function is the inverse of f (y) = yey

so that it satisfies W(x)eW(x) = x for any x. It arises naturally
in some interesting problems and has some nice properties.
The reader is referred to Corless et al. [3] for details on Lam-
bert W function. In our case, since 0 ≤ K̂ ≤ +∞, we have
−e−1 ≤ −e−(1+K̂µ2) ≤ 0 and

−1 = W(−e−1) ≤ W(−e−(1+K̂µ2)) ≤ W(0) = 0 (24)

so that

K̂µ ≤ Q ≤ 1

µ
+ K̂µ. (25)

Using (22) and (25) for small and large values of µ, we can
use the approximation

Q ∼=
{

KDµ/h, for large µ√
2KD/h for small µ

(26)

without having to use the Lambert W function. Using the fact
that Q ≥ EOQ (Wang and Gerchak [19]) and (25), we can
obtain bounds L and U for Q such that

L = max

{√
2KD

h
,
KDµ

h

}
≤ Q ≤ 1

µ
+ KDµ

h
= U .

(27)

We can rewrite the bounds as

[L, U ] =

√

2KD

h
max


1,

√
K̂

2
µ


 ,

1

µ
+ K̂µ


 (28)

so that the lower bound is given by the EOQ if µ ≤
√

2/K̂ .
As a numerical illustration, suppose that there is a single

supplier with an exponentially distributed random capacity.
The numerical results are given in Table 2 for a selected set of
values. The table also includes previously developed bounds
[L, U ] where L = max{√2KD/h,KDµ/h}, U = (1/µ) +
KDµ/h and the EOQ (

√
2KD/h).

One can observe the sensitivity of the optimal solution on
the model parameters. The optimal order quantityQ increases
as the order cost K or demand D or parameter µ increases or
the holding cost h decreases. Note that the cycle length E[T ]
does not necessarily increase with Q as in the deterministic
EOQ model. Due to the randomness of the capacity, it also
depends on how µ or D varies in addition to the change in Q.
The approximations provided by (26) are quite good since the
interval [L, U ] is short for large µ as in case 12. For small val-
ues of µ, the EOQ (

√
2KD/h) may provide a good approx-

imation as in case 1 depending on the value of KD/h. The
approximation will be better for smaller values of this ratio.
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Table 2. Numerical results of the single supplier problem with exponential capacity.

No. K D h µ Q T C(Q) 100E[T ] [L, U ] EOQ

1 1 100 3 0.025 8.5 25.4 7.6 [8.2, 40.8] 8.2
2 50 100 3 0.025 75.6 226.9 33.9 [57.7, 81.7] 57.7
3 100 100 3 0.025 121.4 364.2 38.1 [83.3, 123.3] 81.7

4 50 10 1 0.025 36.4 36.4 238.9 [31.6, 52.5] 31.6
5 50 20 1 0.025 54.9 54.9 149.2 [44.7, 65] 44.7
6 50 500 1 0.025 665.0 665.0 8.0 [625, 665] 223.6

7 50 100 0.1 0.025 1290.0 129.0 40.0 [1250, 1290] 316.2
8 50 100 1 0.025 164.3 164.3 39.3 [125, 165] 100
9 50 100 10 0.025 36.4 363.9 23.9 [31.6, 52.5] 31.6

10 1 100 3 0.25 12.1 36.4 3.8 [8.3, 12.3] 8.2
11 1 100 3 0.50 18.7 56.0 2.0 [16.7, 18.7] 8.2
12 1 100 3 1.5 50.7 152.0 0.7 [50, 50.7] 8.2

Now let us consider the general case where there are mul-
tiple suppliers with exponentially distributed capacities and
derive some properties of the optimal solution. Before we
state Theorem 5, consider

f (q) = q − 1

µ1
(1 − e−µ1 q) (29)

the difference between q and E[Yq] for the first supplier.

THEOREM 5: Consider the EOQ model with n suppliers
that have exponential capacities so that Ai ∼ Exponential
(µi) for some µi > 0 and i = 1, 2, . . . , n. The optimal order
quantities can be found as the unique nonnegative solution of
the equations

2KnD

h
= 2

µ2
1

(µ1q1 + e−µ1q1 − 1)

+
n∑

i=2

2

µ1µi

(
µ1q1 + (1 − e−µ1q1)W

(−e−1−µif (q1)
))

+ 2
n−1∑
i=2

n∑
j=i+1

1

µi

1

µj

(
1 + W

(−e−1−µif (q1)
))

× (
1 + W

(−e−1−µj f (q1)
))

(30)

and

qk = f (q1) + 1

µk

[
1 + W

(
−e−(1+µkf (q1 ))

)]
(31)

for k = 2, 3, . . . , n.

Note that when there is a single supplier, (30) is equiv-
alent to (22). Theorem 5 gives a simple procedure to
compute the optimal order quantities. First, the optimal

order quantity is determined for the first supplier as the
unique nonnegative solution of (30); then (31) is solved
to compute the optimal order quantities for all other
suppliers.

We provide a numerical illustration in Table 3 for two
suppliers with the same data used for the uniform suppli-
ers case where the results are given in Table 1. Recall that
the cost parameters are K2 = 200, D = 32, and h = 2 with
EOQ = 80. We choose the parameters of the exponential dis-
tribution so that means are the same when compared with the
uniform case. In other words, we set 1/µi = ai/2 so that
2/µi = ai and one can compare the results in the two tables
to see the effects of the uniform and exponential distribu-
tions. Since there are no upper bounds on the order quantities
as in the uniform case, the optimal solution is determined
uniquely by (30) and (31). Note also that Qi − E[YQi

] is
always the same for both suppliers, unlike the uniform case.
As the mean capacity of supplier 2 is decreased by increasing
µ2, the expected quantity E[YQ2 ] that is actually received also
decreases steadily. But, note that the order quantity eventually
gets close to the mean, which was also the case for the uniform
distribution.

5. DIVERSIFICATION UNDER IDENTICAL
SUPPLIERS

We now discuss the case when all supplier capacities
are independent and identically distributed. The results for
the general case obviously apply when the capacities are
identical. Yet one cannot clearly identify the effect of the
number of suppliers on the optimal diversification scheme
for nonidentical suppliers, since the scheme is also depen-
dent on the individual yield structures of different suppliers.
By considering the identical suppliers case, one can isolate
the effect of the number of suppliers on the optimal order
policy.
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Table 3. Numerical results of the two suppliers problem with exponential capacities.

2/µ1 2/µ2 Q1 Q2 Qi − E[YQi
] E[YQ1 ] E[YQ2 ] T C

85 85 57.48 57.48 25.97 31.51 31.51 177.97
50 70.27 58.50 35.91 34.37 22.59 185.73
30 82.74 61.05 46.31 36.48 14.74 194.98
25 86.82 62.25 49.83 36.99 12.41 198.47
10 101.94 68.30 63.30 38.64 5.00 213.88

5 108.10 71.44 68.94 39.16 2.50 221.19
2 112.12 73.66 72.66 39.46 1.00 226.23

100 100 54.13 54.13 21.07 33.07 33.07 174.39
50 69.08 53.73 31.64 37.44 22.09 182.34
30 80.20 54.86 40.25 39.24 14.61 189.62
20 87.83 56.43 46.46 41.37 9.96 195.59
10 97.12 59.29 54.29 42.83 5.00 204.24

5 102.43 61.38 58.88 43.55 2.50 209.87
2 105.86 62.88 61.88 43.98 1.00 213.73

Since the suppliers are identical E[Yqi
] = E[Yqj

] and
E[Y 2

qi
] = E[Y 2

qj
] for all i, j , the symmetric nature of the

formulation reduces our multivariate optimization problem
in (4) to one involving the single decision variable q = q1 =
q2 = · · · = qn with average total cost

min
q≥0

T C(q) = KnD

nE[Yq] + 1

2
h

[
E[Y 2

q ] + (n − 1)E[Yq]2

E[Yq]

]
.

(32)

THEOREM 6: The optimal common order quantity Qn of
the random capacity EOQ model with n identical suppliers
is the unique finite solution of the equation

2nqE[Yq] + n(n − 1)E[Yq]2 − nE
[
Y 2

q

] = 2KnD

h
. (33)

Now we derive and illustrate the effects of diversification
among the suppliers when they are identical with uniformly
and exponentially distributed capacities, respectively. Note
that the total order quantity is nQn and it is an important
quantity to measure the effects of diversification. We assume
that Kn = K so that the cost of ordering is a constant irrespec-
tive of the number of suppliers. However, we also illustrate
the case where Kn = K + nk, K , k ≥ 0.

5.1. Suppliers with Uniform Capacities

When ak = a, then qk = q for all k and the optimality
condition for the identical uniform capacities problem (33)
can be rewritten as

wn(q)=
[
n(n − 1)

4a2

]
q4 +

[
(2 − 3n)n

3a

]
q3 + n2q2 = 2KD

h

(34)

using (12)–(14). One can show that wn(q) is strictly increas-
ing on [0, a] with wn(0) = 0 and wn(a) = ((3n2 + 8n −
3)/12)a2. Therefore, the optimal order quantity is the unique
nonnegative solution of (34) in [0, a] if a2 ≥ 24KD/(3n2 +
8n − 3)h. However, if a2 < 24KD/(3n2 + 8n − 3)h, then
the optimal order quantity is a. Let

n∗ = min

{
n ≥ 1 : 3n2 + 8n − 3 ≥ 24KD

a2h

}
; (35)

then it follows that Qn = a and the total order quantity is
nQn = na whenever n < n∗. This implies that the total order
quantity increases on [1, n∗] because the suppliers do not have
sufficient total capacity and one should order the maximum
amount possible. However, once the number of suppliers n

exceeds n∗, the total order quantity decreases.

COROLLARY 7: Suppose there are n identical suppliers
with uniformly distributed capacities so that Ai ∼ U [0, a]
for some a > 0 and all i = 1, 2, . . . n. If Kn = K for all n ≥ 1,
then

(n + 1)Qn+1 ≤ nQn (36)

for all n ≥ n∗ and the total order quantity decreases as n

increases. Moreover, limn→+∞ nQn = EOQ = √
2KD/h

for any a.

We now provide some illustrations in Fig. 1, where a
replenishment order is given simultaneously to n identical
suppliers, each having uniformly distributed capacities on
[0, a]. We see that as the number of identical suppliers
increases, the total optimal order quantity nQn decreases and
converges to the optimal order quantity of the incapacitated
or certain yield model with EOQ = √

2KD/h = 80. In other
words, if the number of suppliers is large, then there is almost
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Figure 1. Total optimal order quantity versus number of identical
suppliers.

no risk of getting stockout at any supplier; thus, all orders
are fully received and therefore it is optimal to diversify the
EOQ = 80 among n suppliers.

It is obvious that diversification decreases the total order
quantity more significantly when the maximum capacity is
closer to the EOQ = 80. If all suppliers have infinite capac-
ities, then the yield is certain and optimal policy is to order
EOQ = 80 from a single supplier. However, if the capacity
is random and bounded by a = 200, then the order quantity
is Q1 = 86, which is greater than the EOQ. If the capacity
bound is even less than 200, say a = 100, then the optimal
order quantity increases to Q1 = 97.

In Fig. 2, the effect of the diversification on the optimal
expected cost is illustrated. As the number of identical sup-
pliers increases, the optimal expected cost decreases and
converges to the cost of an infinite capacity EOQ model
given by

√
2KDh = 160. In our model, diversification with a

large number of suppliers is always beneficial, allowing order
quantities and expected costs to decrease since the setup cost
K = 200 is not related to the number of suppliers used.

Figure 3 depicts the behavior of the expected total yield
nE[YQn

] as a function of the number of identical suppliers

Figure 2. Optimal expected total cost versus number of identical
suppliers.

Figure 3. Total expected yield versus number of identical
suppliers.

used. It is interesting to observe that as n increases, the
expected total yield nE[YQn

] increases too, although the total
order quantity nQn decreases. Although no formal proof is
provided, we can see that it is due to the reduced probabil-
ity of getting stockout at any supplier, when less is ordered
from each. It follows by observing the 3−standard deviation
bounds of the total random yield that when more suppliers
are used, risk is diversified and this leads to a decrease in the
variability of the total yield. Figures 1 and 3 show that when
the orders are diversified, less is ordered but more is expected
and they both converge to the EOQ with less deviation when
n is very large.

5.2. Suppliers with Exponential Capacities

Following the similar discussion for the uniform capacities
case, now we consider identical suppliers with exponential
capacities and illustrate the effect of diversification.

If there are two identical suppliers, then by using (33) with
n = 2 we obtain

2µQ2 + e−2µQ2 − 1

µ2
= K2D

h
(37)

where Q2 is the optimal order quantity for each one of the
two identical suppliers. Now, the solution is

Q2 = 1

2µ

[
1 + K̂2µ

2 + W(−e−(1+K̂2µ
2))

]
(38)

where K̂2 = K2D/h.
The comparison of (23) and (38) indicates that if K2 =

K1 = K so that K̂2 = K̂1, then 2Q2 = Q1. This is an
amazing result, which states that the total order quantity is the
same for the single and double supplier models. The ordering
cost is the same in both cases and the order is diversified
between the two suppliers by distributing the order quantity
equally among them. However, if K2 ≥ K1, then one can
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easily verify that 2Q2 ≥ Q1 by using the fact that W is
increasing on [−e−1, 0].

For arbitrary n ≥ 1, the optimality condition (33) yields
the unique solution of Qn as

µnQn− n(n − 2)e−µQn + 0.5n(n − 1)e−2µQn + 0.5n(n − 3)

µ2

= KnD

h
. (39)

COROLLARY 8: Suppose there are n identical suppliers
having exponentially distributed capacities with parameter
µ > 0. If Kn = K for all n ≥ 1, then

(n + 1)Qn+1 ≤ nQn (40)

so that the total order quantity decreases as n increases.
Moreover, limn→+∞ nQn = EOQ = √

2KD/h for any µ.

Corollary 8 implies that, if the fixed ordering cost does
not increase, then the total order quantity decreases with the
number of suppliers. Apparently, diversification of suppli-
ers decreases the risk of having insufficient stock at a single
supplier.

5.3. How Many Suppliers?

A very interesting and relevant issue in a retailer’s diver-
sification among suppliers is the selection of the suppliers
to work with. One would need a model that allows differ-
ent unit prices for different suppliers in order to discriminate
among suppliers. But one can still address the issue of how
many suppliers a retailer should work with within the con-
fines of our model. In this section we assume that all suppliers
are identical so that we can isolate the effect of number of
suppliers used.

We assume that the ordering cost, Kn, changes with the
number of suppliers, n, in the form of K + kn where K is the
fixed ordering cost and there is a variable cost of ordering, k,
k > 0 for each supplier used. We have already shown that the
total cost decreases with the number of suppliers used when
the ordering cost is independent of the number of suppliers
used. Thus, it is optimal to use all available suppliers. How-
ever, we now show that if the ordering cost increases linearly
with the number of suppliers, there is an optimal number
of suppliers that may be less than the number of available
suppliers.

We consider n identical suppliers having exponentially dis-
tributed capacities with equal parameter µ. Letting Kn =
K + kn in (39), the optimal order quantity, qn, is found and
the expected total cost is plotted for different levels of n and
µ where D = 32, K = 180, k = 10, h = 2. It is observed
from Fig. 4 that the benefit of increasing the number of sup-
pliers is large initially, but eventually decreases and then turns

Figure 4. Expected total cost versus number of identical suppliers.

negative, in agreement with intuition. This implies that there
exists an optimal number of suppliers. It is clear that when
the capacity parameter, µ increases (i.e., the expected capac-
ity, 1/µ, decreases) and the optimal number of suppliers to
work with increases in order to reduce the stockout risk at any
supplier. Moreover, the optimal expected total cost is greater
when the expected capacities are lower (i.e., µ is greater).

6. CONCLUSION

In this study, our objective is to introduce an EOQ model
with multiple suppliers and random capacities that enables
us to obtain intuition for ordering policy decisions. It is
remarkable to see that when the optimal policy is applied, the
expected number of unfulfilled order units from all suppliers
must all be the same. Noting that this property applies only
for the unbounded random capacity problem, the model with
bounded capacities is analyzed under the special case of uni-
formly distributed capacities. If the solution of the first order
condition violates the capacity constraint for any supplier,
then it is optimal to order at the capacity for that supplier and
for all suppliers with lower capacity bounds. Moreover, as
an illustration of the unbounded capacity case, the exponen-
tial capacities problem is analyzed and a characterization for
the optimal order quantities is obtained. Then the results for
the two cases are compared and contrasted. Finally the effect
of diversification is discussed under the settings of identical
suppliers with uniformly distributed capacities and exponen-
tially distributed capacities to show that the total optimal
order quantity decreases and converges to EOQ as the num-
ber of suppliers increase. Furthermore, when the ordering
cost increases linearly with the number of suppliers, there is
an optimal level for the number of suppliers used.

Our results indicate that computing the optimal order quan-
tities is not very difficult, especially when compared with the
complexity of the problem. Given the stochastic structure of
the random capacity, one can easily compute this quantity
to almost arbitrary precision. However, we also like to point
out that much needs to be done in improving the model. The
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obvious generalization would be to have suppliers with dif-
ferent ordering and holding costs. This presents a challenge in
modeling as well as in the optimization. Characterizations on
the optimal order quantities under this setting would be very
helpful to the practitioner, especially if they present further
intuition into the decision-making process about how many
and which suppliers to use. Finally, computational difficul-
ties when the cost function is more complex will need to be
resolved.

APPENDIX

PROOF (THEOREM 1): We check the first order optimality conditions
to find the optimal order quantity that minimizes T C(q1, q2, . . . , qn).
Differentiating (4) with respect to qk gives

∂T C(q1 , q2 , . . . , qn)

∂qk

= F̄k(qk
)

2
(∑n

i=1 E[Yqi
])2

.


−2KnD + h


2


qk +

∑
i �=k

E[Yqi
]

 n∑

i=1

E[Yqi
] −

n∑
i=1

E
[
Y 2

qi

]

−2
n−1∑
i=1

n∑
j=i+1

E[Yqi
]E[Yqj

]



 . (41)

Note that the denominator is always nonnegative and since F̄k(qk) > 0 for
all qk ≥ 0, the second term of the numerator should be zero at the optimal
solution so that

2


qk +

∑
i �=k

E[Yqi
]

 n∑

i=1

E[Yqi
] −

n∑
i=1

E
[
Y 2

qi

]

− 2
n−1∑
i=1

n∑
j=i+1

E[Yqi
]E[Yqj

] = 2KnD

h
. (42)

This gives us (10) by taking k = 1 and canceling the common terms. Note
that we have n equations in the form of (42) where the right-hand side is the
constant 2KnD/h, which is in fact equal to EOQ2. Thus, by equating these
equations and canceling the common terms, (11) follows directly.

We now show that the solution {q0
i > 0; i = 1, 2, . . . , n} satisfying the

first order conditions defined by (10) and (11) is unique. By (11) we can
see that for any fixed quantity q1, the other order quantities are uniquely
determined since qi − E[Yqi

] is zero when qi = 0 and it is an increasing
function of qi . Yet one can still freely choose any q1 and get other order
quantities such that (11) is still satisfied. Thus, we need to show that only one
of these infinitely many solutions also satisfies (10). Using (6), the implicit
differentiation of (11) yields

dq1 − F̄1(q1) dq1 = dq2 − F̄2(q2) dq2 = · · · = dqn − F̄n(qn) dqn. (43)

Since 1 − F̄i (qi ) = Fi(qi ), we have the relation

dqi

dq1
= F1(q1)

Fi(qi )
(44)

for all i, k. Note that by using (11), one can express all optimal order
quantities as a function of q1. So, we define the left-hand side of (10) as
w(q1, q2(q1), . . . , qn(q1)). Obviously, w(0, 0, . . . , 0) = 0, so if we can show
that w is increasing for q1 > 0, then the solution satisfying (10) is unique
since the right-hand side is a positive constant given by EOQ2.

Using (6) and (9), the derivative dw(q1, q2(q1), . . . , qn(q1 ))/dq1 can be
obtained as

2


1 +

∑
i �=1

F̄i (qi )
dqi

dq1


 n∑

i=1

E[Yqi
]

+ 2


q1 +

∑
i �=1

E[Yqi
]

(

n∑
i=1

F̄i (qi )
dqi

dq1

)
−

n∑
i=1

2qi F̄i (qi )
dqi

dq1

− 2
n−1∑
i=1

n∑
j=i+1

F̄i (qi )
dqi

dq1
E[Yqj

] + E[Yqi
]F̄j (qj )

dqj

dq1
. (45)

After substituting (44) in (45), (45) becomes

2


1 +

∑
i �=1

F̄i (qi )

Fi(qi )
F1(q1)


 n∑

i=1

E[Yqi
] + 2


q1 +

∑
i �=1

E[Yqi
]



×
n∑

i=1

F̄i (qi )

Fi(qi )
F1(q1) −

n∑
i=1

2qi

F̄i (qi )

Fi(qi )
F1(q1)

− 2
n−1∑
i=1

n∑
j=i+1

[
F̄i (qi )

Fi(qi )
F1(q1)E[Yqj

] + F̄j (qj )

Fj (qj )
F1(q1)E[Yqi

]
]

. (46)

Notice that the last term in (46) can be written as

n−1∑
i=1

n∑
j=i+1

[
F̄i (qi )

Fi(qi )
F1(q1)E[Yqj

] + F̄j (qj )

Fj (qj )
F1(q1)E[Yqi

]
]

=
n∑

i=1

n∑
j=1,j �=i

(
F̄i (qi )

Fi(qi )
F1(q1)E[Yqj

]
)

.

= F1(q1)


 n∑

i=1

n∑
j=1

F̄i (qi )

Fi(qi )
E[Yqj

] −
n∑

i=1

F̄i (qi )

Fi(qi )
E[Yqi

]



= F1(q1)

n∑
i=1

F̄i (qi )

Fi(qi )

n∑
j=1

E[Yqj
] − F1(q1)

n∑
i=1

F̄i (qi )

Fi(qi )
E[Yqi

]. (47)

By substituting (47) in (46) and by making further simplifications, we get

2
n∑

i=1

E[Yqi
] + 2F1(q1)

n∑
i=1

E[Yqi
]
∑
i �=1

F̄i (qi )

Fi(qi )
+ 2q1F1(q1)

n∑
i=1

F̄i (qi )

Fi(qi )

+ 2F1(q1)
∑
i �=1

E[Yqi
]

n∑
i=1

F̄i (qi )

Fi(qi )
− 2F1(q1)

n∑
i=1

qi

F̄i (qi )

Fi(qi )

− 2F1(q1)

n∑
i=1

F̄i (qi )

Fi(qi )

n∑
j=1

E[Yqj
] + 2F1(q1)

n∑
i=1

F̄i (qi )

Fi(qi )
E[Yqi

]],

(48)

which can be written as

2
n∑

i=1

E[Yqi
] − 2F̄1(q1)

n∑
i=1

E[Yqi
] + 2q1F1(q1)

n∑
i=1

F̄i (qi )

Fi(qi )

+ 2F1(q1)
∑
i �=1

E[Yqi
]

n∑
i=1

F̄i (qi )

Fi(qi )
− 2F1(q1)

n∑
i=1

qi

F̄i (qi )

Fi(qi )

+ 2F1(q1)

n∑
i=1

F̄i (qi )

Fi(qi )
E[Yqi

]. (49)
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Rewriting the fourth term in (49) and reorganizing the terms gives

2F1(q1)

n∑
i=1

E[Yqi
] + 2q1F1(q1)

n∑
i=1

F̄i (qi )

Fi(qi )

+ 2F1(q1)

(
n∑

i=1

E[Yqi
]

n∑
i=1

F̄i (qi )

Fi(qi )
− E[Yq1 ]

n∑
i=1

F̄i (qi )

Fi(qi )

)

− 2F1(q1)

n∑
i=1

F̄i (qi )

Fi(qi )
(qi − E[qi ]), (50)

which is equal to

2F1(q1)

{
n∑

i=1

E[Yqi
] +

n∑
i=1

F̄i (qi )

Fi(qi )
[(q1 − E[Yq1 ]) − (qi − E[qi ])]

+
n∑

i=1

E[Yqi
]

n∑
i=1

F̄i (qi )

Fi(qi )

}
. (51)

Since (q1 − E[Yq1 ]) = (qi − E[qi ]) by the first order conditions defined
in (11), (51) is finally simplified as

2F1(q1)

n∑
i=1

E[Yqi
]
(

1 +
n∑

i=1

F̄i (qi )

Fi(qi )

)
, (52)

which is definitely positive for q1 > 0. So, w(q1, q2(q1), . . . , qn(q1)) is an
increasing function of q1, and since w(0, 0, . . . , 0) = 0, there is a unique
solution in the form [q0

1 , q0
2 , . . . , q0

n ] satisfying the first order conditions
defined by (10) and (11).

In order to determine the nature of the critical point, we need to check
the Hessian of T C(q1, q2, . . . , qn) at this point. The second degree partial
derivatives of the function at the critical point must be computed. Taking the
derivative of (41) with respect to qk and using the fact that (41) is equal to
zero at the critical point, we obtain

∂2T C(q1, q2, . . . , qn)

∂q2
k

∣∣∣∣∣
(q0

1 ,q0
2 ,...,q0

n)

= hF̄k(q
0
k )

2
(∑n

i=1 E[Y
q0
i
]
)2

×




2
n∑

i=1
E[Y

q0
i
] + 2

(
q0

k + ∑
i �=k

E
[
Y

q0
i

])
F̄k

(
q0

k

) − 2q0
k F̄k

(
q0

k

)
−2F̄k

(
q0

k

) ∑
i �=k

E
[
Y

q0
i

]



= hF̄k(q
0
k )∑n

i=1 E[Y
q0
i
] > 0. (53)

Taking the derivative of (41) with respect to qj and, again, using the fact
that (41) is equal to zero at the critical point, we obtain

∂2T C(q1, q2, . . . , qn)

∂qk∂qj

∣∣∣∣
(q0

1 ,q0
2 ,...,q0

n)

= hF̄k(q
0
k )

2
(∑n

i=1 E
[
Y

q0
i

])2

×
[

2F̄j (q
0
j )

∑n
i=1 E

[
Y

q0
i

] + 2
(
q0

k + ∑
i �=k E[Y

q0
i
])F̄j (q

0
j ) − 2q0

j F̄j (q
0
j )

−2F̄j (q
o
j )

∑
i �=j E[Yqo

i
]

]

= h
(
F̄k(q

0
k )
)2

2
(∑n

i=1 E[Y
q0
i
]
)2

[(
q0

k − E
[
Y

q0
k

]) −
(
q0

j − E
[
Y

q0
j

])]
. (54)

Since (qk − E[Yqk
]) = (qj − E[Yqj

]) at the critical point by the first order
conditions given in (11), (54) is equal to zero. Hence, all the off-diagonal
entries of the Hessian are 0, while all the diagonal entries are positive. This
means that the Hessian is a positive definite matrix and the unique critical
point defined by (10) and (11) is a local minimum. Moreover, the partial
derivatives of the total cost function indicate that at any boundary (i.e.,
where qi = 0), the total cost function decreases as one gets away from the
boundary (i.e., as qi increases). Thereby, the minimum must occur inside
the feasible region. Thus, the critical point is the global minimum for the
T C(q1, q2, . . . , qn) function. �

PROOF (THEOREM 3): Since Ai � Uniform [0, ai ], E[Yqi
] and E[Y 2

qi
]

can be written as in (12) and (13). Now, consider the first order conditions
given in Theorem 1. By using (12) and (13), (11) gives the first order optimal-
ity condition in (16). By further substitution, we rewrite E[Yqi

] and E[Y 2
qi

] as

E[Yqi
] =

√
ai

a1
q1 − q2

1

2a1
(55)

E
[
Y 2

qi

] = ai

a1
q2

1 − 2

3a1

√
ai

a1
q3

1 . (56)

Now, we substitute E[Yqi
] and E[Y 2

qi
] in (10) to derive the first order

optimality condition in (15). This leads to

2KnD

h
= 2q1

n∑
i=1

(√
ai

a1
q1 − q2

1

2a1

)
+ 2

n∑
i=2

n∑
j=i

(√
ai

a1
q1 − q2

1

2a1

)

×
(√

aj

a1
q1 − q2

1

2a1

)
−

n∑
i=1

(
ai

a1
q2

1 − 2

3a1

√
ai

a1
q3

1

)

=
[

n(n − 1)

4a2
1

]
q4

1 +
[

2 − 3n

3a1

n∑
i=1

√
ai

a1

]
q3

1

+

2

n∑
i=1

n∑
j=i

√
ai

a1

aj

a1
−

n∑
i=1

ai

a1


 q2

1 , (57)

where we skip the mathematical manipulations in between. Finally, let
q0

1 , q0
2 , . . . , q0

n be the solution satisfying the first order conditions in (15)
and (16). If for all i, q0

i ≤ ai , then this solution is feasible and it is the
unique optimal solution by Theorem 1. �

PROOF (THEOREM 5): Since Ai � Exponential (µi), E[Yqi
] and

E[Y 2
qi

] can be written as in (20) and (21). Now, consider the optimal-
ity conditions given in Theorem 1. By using (20) and (21), (11) can be
rewritten as

q1 − 1

µ1
(1 − e−µ1q1 ) = qk − 1

µk

(1 − e−µkqk ) (58)

for any k. The solution of (58) gives (31) by using the Lambert W function.
We substitute E[Yqi

] and E[Y 2
qi

] in (10) to derive the first order optimality
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condition in (30). This leads to

2KnD

h
= 2q1

n∑
i=1

(
1

µi

(
1 + W

(−e−1−µif (q1)
)))

+ 2
n∑

i=2

n∑
j=i

(
1

µi

(
1 + W

(−e−1−µif (q1)
)))

×
(

1

µj

(
1 + W

(−e−1−µj f (q1)
)))

−
n∑

i=1

(
2

µ2
i

(
1 + (

2 + µif (q1) + W
(−e−1−µif (q1)

))

× W
(−e−1−µif (q1)

)))
,

which, after some tedious mathematical manipulations, can be shown to
equal (30). �

PROOF (THEOREM 6): We check the first and second order optimal-
ity conditions to find the optimal order quantity that minimizes T C(q).
Differentiating (32) with respect to q gives

d T C(q)

d q
= hF̄ (q)

n2E[Yq ]2

[(
nqE[Yq ] − n

2
E
[
Y 2

q

]

+ n(n − 1)

2
E[Yq ]2

)
− KnD

h

]
. (59)

Note that the denominator is always nonnegative and since F̄ (q) > 0 for
all q ≥ 0, the second term of the numerator should be zero at the optimal
solution, which gives us the required equality in (33). Let us denote the
left-hand side of (33) as

w(q) = 2nqE[Yq ] + n(n − 1)E[Yq ]2 − nE
[
Y 2

q

]
. (60)

It is observed that w(0) = 0 and w(q) is strictly increasing since w′(q) =
2nE[Yq ]+2n(n−1)E[Yq ]F̄ (q) > 0 for q > 0. Therefore, there is a unique
and finite solution satisfying w(Qn) = 2KnD/h. The fact that this is the
global minimum follows by noting that T C is unimodally decreasing on
[0, Qn] and increasing on [Qn, +∞]. This is a direct consequence of the
fact that w(q) is strictly increasing so that the sign of the derivative of T C

in (59) is the same as that of w(q) − (2KnD/h). �

PROOF (COROLLARY 7): Assume n ≥ n∗ so that (34) is satisfied
uniquely on [0, a] by the optimal order quantity. We can rewrite (36) as

n + 1

n
Qn+1 ≤ Qn, (61)

where wn(Qn) = wn+1(Qn+1) = 2KD/h. Since wn(q) is increasing on
[0, a], it suffices to show that wn(

n+1
n

Qn+1) ≤ wn(Qn) = 2KD/h to

prove (36). We now evaluate wn(q) for q = n+1
n

Qn+1 and verify that, in fact,

wn

(
n + 1

n
Qn+1

)
=

[
(n − 1)

4a2

]
(n + 1)4

n3
Q4

n+1

+
[

(2 − 3n)

3a

]
(n + 1)3

n2
Q3

n+1 + (n + 1)2Q2
n+1 ≤ 2KD

h

= wn+1(Qn+1). (62)

After writing the expression (34) for Qn+1 on the right-hand side of (62),
the required inequality in (62) is true if and only if

[
(n − 1)(n + 1)4

4a2n3
− (n + 1)n

4a2

]
Q4

n+1

+
[

(2 − 3n)(n + 1)3

3an2
+ (3n + 1)(n + 1)

3a

]
Q3

n+1 ≤ 0. (63)

In order to check whether (63) holds, we define a function l(q) on [0, a]
so that l(Qn+1) is given by the left-hand side of (63). We will show more
generally that l(q) ≤ 0 for all 0 ≤ q ≤ a. Note that l(0) = 0 and

d l(q)

d q
= (n + 1)

a
q2

[
q

a

(
2 − 2

n2
− 1

n3

)
+

(
−3 + 1

n
+ 2

n2

)]
. (64)

In this expression, the first and second multiplicands are always nonnegative
and the third multiplicand is nonpositive for 0 ≤ q ≤ a. Hence, dl(q)/dq

≤ 0 on [0, a] and l(Q) ≤ 0 for 0 ≤ q ≤ a.
To prove that the total order quantity decreases to the EOQ, take xn = nQn

and let x = limn→+∞ xn be the limit of this decreasing sequence (for
n ≥ n∗). Defining

bn =
[

n(n − 1)

4a2

]
Q4

n +
[

(2 − 3n)n

3a

]
Q3

n + n2Q2
n

=
[

x2
n − (x2

n/n)xn

4a2

] (xn

n

)2 + 2xn

3a

(xn

n

)2 − x2
n

a

(xn

n

)
+ x2

n , (65)

the result follows trivially from (34) by noting that limn→+∞ bn = x2 for
all values of a so that x = EOQ = √

2KD/h. �

PROOF (COROLLARY 8): We have already shown that (40) holds as an
equality for n = 1. Suppose that n ≥ 2. We can rewrite (40) as

n + 1

n
Qn+1 ≤ Qn, (66)

where Qn and Qn+1 satisfy

µnQn − n(n − 2)e−µQn + 0.5n(n − 1)e−2µQn + 0.5n(n − 3) = KD

h
µ2

(67)

and

µ(n + 1)Qn+1 − (n + 1)(n − 1)e−µQn+1 + 0.5(n + 1)ne−2µQn+1

+ 0.5(n + 1)(n − 2) = KD

h
µ2 (68)

from (39). Define

g(q) = µnq − n(n − 2)e−µq + 0.5n(n − 1)e−2µq + 0.5n(n − 3), (69)

which is clearly increasing on [0, +∞) with g(0) = 0. So, to prove (66), it
suffices to show that g( n+1

n
Qn+1) ≤ g(Qn). By (67), we know that g(Qn) =

KDµ2/h is a constant. We now evaluate g(q) for q = n+1
n

Qn+1 and verify
that in fact

g

(
n + 1

n
Qn+1

)
= µ(n + 1)Qn+1 − n(n − 2)e−µ n+1

n Qn+1

+ 0.5n(n − 1)e−2µ n+1
n Qn+1 + 0.5n(n − 3) ≤ KD

h
µ2 = g(Qn). (70)
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We insert (68) in (70) for KDµ2/h so that the required inequality in (70) is
true if and only if

(n + 1)(n − 1)e−µQn+1 − 0.5n(n + 1)e−2µQn+1 − n(n − 2)e− n+1
n µQn+1

+ 0.5n(n − 1)e−2 n+1
n µQn+1 ≤ n − 1. (71)

In order to check whether (71) holds, we define a function l(q) on [0, +∞]
so that l(Qn+1) is given by the left-hand side of (71). We will show more
generally that l(q) ≤ n − 1 for all q ≥ 0.

Note that l(0) = n − 1 and limq→+∞ l(q) = 0 ≤ n − 1. It is therefore
sufficient to show that l(q) is a nonincreasing function for q ≥ 0. Thus,
we differentiate l(q) and check whether the derivative is nonpositive. Note
that

d l(q)

d q
= −µ(n + 1)e−µq

(
(n − 1) − ne−µq − (n − 2)e−µq/n

+ (n − 1)e−µq(n+2)/n
)
. (72)

Apparently, (72) is nonpositive if

(n − 1) − ne−µq − (n − 2)e−µq/n + (n − 1)e−µq(n+2)/n ≥ 0. (73)

Following the same argument above, we see that the left-hand side in (73)
is a function of q and takes values in the interval [0, n − 1]. Thus,
it is sufficient to show that (73) is nondecreasing. So, we differentiate
the left-hand side of (73) with respect to q and find that the derivative
satisfies

(
n − 2

n

)
µe−µq/n[1 − e−µq(n+1)/n] + nµe−µq [1 − e−2µq/n] ≥ 0,

(74)

since both terms in (74) are nonnegative for q ≥ 0.
To prove that the total order quantity decreases to the EOQ, take xn =

nQn and let x = limn→+∞ xn be the limit of this decreasing sequence.
Defining

bn = µxn − n(n − 2)e−( µ
n )xn + 0.5n(n − 1)e

−
(

2µ
n

)
xn + 0.5n(n − 3)

µ2
,

(75)

the result follows trivially from (39) by noting that limn→+∞ bn = x2/2
for all values of µ so that x = EOQ = √

2KD/h. The analysis starts by
writing the exponential functions in (75) in series form using Taylor’s expan-
sion and evaluates the limit of each term to arrive at the quadratic function
of x. �
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