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Abstract

While multi-hop broadcast protocols, such as Trickle, Deluge and MNP, have gained tremendous

popularity as a means for fast and convenient propagation of data/code in large scale wireless sensor

networks, they can, unfortunately, serve as potential platforms for virus spreading if the security is

breached. To understand the vulnerability of such protocols and design defense mechanisms against

piggy-backed virus attacks, it is critical to investigate the propagation process of these protocols in

terms of their speed and reachability. In this paper, we propose a general framework based on the

principles of epidemic theory, for vulnerability analysis of current broadcast protocols in wireless

sensor networks. In particular, we develop a common mathematical model for the propagation that

incorporates important parameters derived from the communication patterns of the protocol under

test. Based on this model, we analyze the propagation rate and the extent of spread of a malware

over typical broadcast protocols proposed in the literature. The overall result is an approximate

but convenient tool to characterize a broadcast protocol in terms of its vulnerability to malware

propagation. We have also performed extensive simulations which have validated our model.
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I. Introduction

As wireless sensor networks are being widely deployed in a plethora of applications [5], [2], security

remains one of the most critical challenges yet to be fully addressed. Recent emergence of viruses

like Cabir1 that spread over air interfaces in cellular networks, indicate that wireless sensor networks

are also extremely vulnerable to malwares. Although Cabir uses the bluetooth interface to spread

between cell-phones, it proves that viruses have perpetrated the wireless domain too, and it is a matter

of time before we would find a virus that spreads over the 802.15.4 medium, which is now used by

a large portion of sensor nodes. Furthermore, the unique characteristics of wireless sensor networks

further extend this vulnerability. First of all, the high density deployment of wireless sensors implies

that any malware infection can be highly contagious. Secondly, sensor nodes are severely resource

constrained, and hence lack sophisticated defense mechanisms to fight virus attacks. Attacks which

might seem apparently simple in a normal network might prove detrimental in the case of a sensor

network. For instance, a piece of software that can spread and at the same time performs a complex

action that depletes battery can be malicious from the sensor network’s standpoint. Moreover, the fact

that it would be difficult to continuously monitor a deployed network makes it even more vulnerable.

In recent years, several over-the-air reprogramming protocols such as Trickle [16], Firecracker

[19], Deluge [11] or MNP [15] have been proposed in the sensor network literature, to reprogram

or re-configure a sensor network over the air. These protocols are based on epidemic propagation

principles. They are extremely useful, when troubleshooting the entire network as the sensors are

generally considered inaccessible after deployment. However, as much as these protocols provide

reconfigurability to the sensor network they could also serve as easy vehicles for any malware to

propagate through the entire network. This way, the malware need not devise any strategy to target

any specific node based on some knowledge of the topology but simply rely on the reprogramming

1http://www.f-secure.com/v-descs/cabir.shtml
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protocol’s propagation mechanism to transport itself to the entire network.

Therefore, it is critical to understand the behavior of these protocols in the light of malware

propagation in a sensor network in order to be able to devise effective security mechanisms in the

event of a security breach.

A set of recent works have focused on authentication mechanisms for securing broadcast protocols,

particular for code-update [9], [8], [10], using a combination of hash trees or hashchain based schemes

and digital signatures. Generally, they require the first packet of the data-stream to be digitally signed

at the source and verified by nodes along the propagation paths. The rest of the packets are either

secured by a hash chain or a hash tree over the entire set of subsequent packets. However, the

complexity of the security mechanism may increase significantly in the presence of multiple sinks

or base stations [24], [8] with hash trees being generated for each one. Moreover, if the source of a

network-wide broadcast is a regular sensor node, then it might be prohibitive to use digital signatures as

it would have to perform both signing and verification functions. More importantly, if a regular sensor

node indeed serves as a broadcast source using digital signatures for authentication, its undetected

compromise could reveal all the security related information to the attacker rendering the broadcast

protocol vulnerable. Consequently, an adversary, on capturing that node, can employ the protocol as

a malicious code propagation vehicle.

In this paper, we consider such a general scenario for network-wide broadcasting of information

and instead of looking into particular cryptographic techniques to secure broadcast protocols, we focus

on the understanding and modeling of their working process in terms of data propagation speed and

reachability. In particular, we look at a scenario where a source node has been compromised and is

being used alongwith the communication mechanism of the broadcast protocol to compromise the rest

of the nodes by propagating a piece of malware over the network.

Specifically, our contribution is a novel framework based on epidemic theory [3], which serves as

a common and flexible platform for capturing and characterizing the spread of malware over different

broadcast protocols (e.g., Trickle, Firecracker, Deluge and MNP), thus facilitating a comparative

analysis of their potential vulnerabilities. The epidemic model for data propagation is constructed

based on the local spatial interaction of nodes in a neighborhood. In order to map a specific broadcast
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protocol to our model, we derive the spreading rate from the general communication pattern of the

protocol, incorporating the physical communication constraints of the wireless network. Subsequently,

we use this rate in our epidemic model to observe the dynamics of the malware infection spread over

the particular protocol. In addition, the model also allows for the study of the effects of simultaneous

recovery processes on the infection spread effected by the broadcast protocol.

It should be emphasized here that our model is very generic and could serve a broader objective

of effectively comparing different broadcast based multihop communication protocols in terms of

their speed of propagation and coverage of the network. The flexibility of the model allows different

protocols to be plugged into the framework for comparison on a common platform. However, in

this paper, we look at a specific problem of characterizing malware spread over broadcast based

dissemination/reprogramming protocols and exposing their vulnerabilities.

Indeed, several protocols and algorithms for data dissemination in sensor networks [13], [1], [16],

[11], [14], [17], [18] have been proposed in the literature that are based on the philosophy of epidemic

data propagation. These protocols are either meant to flood a piece of information to the entire network

or disseminate code for reprogramming all the nodes of the network. Keeping the resource constraints

of the sensors in mind, they try to optimize the performance by reducing the number of redundant

transmissions at each node as much as possible.

The study of the propagation of worms or viruses in the Internet [26], [27] have also been based

on this theory. Most of these models assume network properties that are characteristic of the Internet

topology. However, the same epidemic models are unsuitable for use in sensor networks. Several

random graph theoretic models [20] exist for the spread of epidemics in a network. The authors in

[6] used this model to study the spread of node compromise in a wireless sensor network where

communication is secured by a shared secret key based mechanism. The malware in a compromised

node uses the secret keys shared with its neighbors to securely communicate with them and infect

them in the process. However, their analytical model fails to capture the temporal dynamics of the

compromise propagation and only succeeds in capturing the final outcome of the infection. In [12], the

authors propose a topology aware temporal and spatial worm propagation model in sensor networks.

Although they present a closed form solution for computing the infected fraction of the network,
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their model assumes a structured grid topology and also does not consider the simultaneous effects

of any recovery process on the infection spread. Moreover, it is difficult to use the model to represent

different broadcast protocols and study their epidemic characteristics against each other.

Therefore, our main difference from existing works lie in two aspects: 1) The flexibility by which

different broadcast protocols can be plugged into the model to capture an approximate behavior of

their propagation speed and reachability into the network 2) The incorporation of a simultaneous

recovery process and its effect on the infection propagation dynamics.

A preliminary version of this work has been accepted for publication in [7].

The remainder of the paper is organized as follows. In section II, we present some preliminary

discussions relevant to the work in this paper. In section III, we present our proposed epidemic

modeling framework with the detailed analysis. In section IV, we map three broadcast protocols onto

our epidemic model. In Section V, we present the experimental details and conclude the paper in

section VI.

II. Preliminaries

In this section, we present some preliminaries including network topology model, basic concepts

of epidemiology, and briefly overview the broadcast protocols we will later analyze.

A. Sensor Network Model

We model a wireless sensor network as an undirected geometric random graph Gp(duv)(N) [21] of

N nodes, where p(duv) is the probability of having a link between nodes u and v at a distance duv

from each other. The expected number of links in the network is then given by

Ed =
N∑

u=1

N∑
v=u+1

p(duv) (1)

Correspondingly, the mean degree, η, of a node is defined as:

η =
2Ed

N
(2)

The link existence probability p(duv) is based on the transmission radius Rc of each node, which
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is computed using suitable radio propagation models for wireless sensor networks. For example, if

the received power at distance r from the transmitter is denoted by P(r), then in the log-normal

shadowing model [23], the assumption is that the logarithm of P(r) is normally distributed.

B. Basics on Epidemic Theory

Epidemic theory [3] aims to measure the infection outcomes in relation to a population at risk

comprising the set of people who possess a susceptibility factor with respect to the infection. This factor

is dependent on several parameters like exposure, spreading rate, previous frequency of occurrence

and so on, which define the potential of the disease causing the infection. Various models exist in

epidemic theory that characterize an infection spread, such as Susceptible-Infected-Susceptible (S-

I-S) model and Susceptible-Infected-Recovered (S-I-R) model. In the former model, a susceptible

individual acquires infection and then after an incubation period (i.e., the time the infection persists),

the individual becomes susceptible again. On the other hand, in the latter model which is more generic,

the individual recovers and becomes immune to further infections.

In the general deterministic S-I-R model, S(t), I(t) and R(t) denote the number of susceptible, infected

and recovered (or immunized) individuals at time t, respectively. If β denotes the infection rate and

γ denotes the removal rate of infected individuals, then assuming a homogeneous mixing model (i.e.,

each of the susceptibles can get in contact with any of the infectives), the basic differential equations

that describe the rate of change of susceptibles, infectives and recovered individuals are given by:

dS(t)

dt
= −βS(t)I(t) (3)

dI(t)

dt
= βS(t)I(t) − γI(t) (4)

dR(t)

dt
= γI(t) (5)

The above equations can be solved either approximately or precisely based on certain boundary

conditions.

C. Broadcast Protocols

In this section we provide an overview of three broadcast protocols proposed for data dissemination

in sensor networks. We will later analyze their properties, and how, if compromised, they can be
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employed for malware propagation.

1) Trickle: Trickle [16] is an algorithm for propagating and maintaining code updates in wireless

sensor networks. The basic approach of Trickle is based on a “polite gossip” policy where nodes

periodically broadcast code summary advertisements to local neighbors but remain silent if they have

recently heard a summary identical to theirs. When a node hears old gossip, it triggers a code update,

so that the gossiping node can be updated. Trickle also regulates its rate of gossiping based on

received gossip information. Thus, a node will gradually reduce its gossip rate if it does not hear new

information. When it indeed overhears any new gossip, the rate will be increased.

For further details, the reader is referred to the original paper [16].

2) Firecracker: In [19], the authors have introduced a technique which is a combination of both

routing and broadcasts in order to rapidly deliver a piece of data to every node in a network. To start

the dissemination process, the data source first routes data to certain distant points termed seed points

in the network. Once the data reaches the respective destinations, broadcast-based dissemination begins

along the path like a string of firecrackers. Nodes that fall along the routes chosen by the routing

protocol store the data. Once a node has received the data, it then uses a broadcast-based local

dissemination protocol, such as Trickle [16], to spread the data.

3) Deluge: Deluge [11] is a reliable data dissemination protocol for propagating large data objects

from one or more source nodes to many other nodes. It is based on prior work on density-aware,

maintenance protocols. Deluge operates as a state-machine where each node follows a set of strictly

local rules to achieve a desired global behavior. In order to accommodate the large size of a data

object, Deluge divides it into fixed size pages which is a basic unit for data transferring. A page is

composed of a fixed number of P packets. Thus, Deluge uses the reliability of gossiping in Trickle

while increasing the data propagation speed by pipelining the pages through the network.

Specifically, a node operates in one of the three states at any time: MAINTAIN, RX, or TX. In the

MAINTAIN state, a node is responsible for ensuring that all nodes within its communication range

have all the available data of the newest version. In this state, the node could essentially use the same

mechanism as Trickle [16] to control the transmission of redundant messages. Also, nodes advertise a

summary of their data locally. In the RX state, a node sends out requests to those nodes from whom it
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has previously heard advertisements about newer pages. In the TX state, a node transmits page updates

after receiving requests from nodes that contain older versions of the pages of the data object.

4) MNP: MNP [15] is another broadcast based multi-hop reprogramming protocol for sensor

networks. It in particular addresses the issue of message collisions and hidden terminal problems

in previous reprogramming protocols like Deluge. It incorporates several functionalities of Deluge

for code dissemination, such as periodic advertisement of metadata. However, it also implements a

sender selection algorithm which attempts to guarantee that in a neighborhood there is at most one

source transmitting the program at a time. An advertising node does not service requests from other

nodes immediately but waits until it has transmitted a threshold number of advertisements to gather

the requests from other nodes. During this time, nodes in a neighborhood decide who should serve as

the sender. Moroever, MNP also propagates the entire code image over each hop before propagating it

across the next hop. MNP saves energy by reducing the active radio time of a sensor node by forcing

it into sleep state when its neighbors are transmitting a segment which is not of interest.

Although there are possible similarities in the functional operation of these protocols, they are

fundamentally different in their design and target applications. While Trickle is mainly concerned with

maintaining code and propagating small data updates around the network with minimum overhead,

Deluge focuses on propagating large chunks of data in a pipelined fashion across the network. Fire-

cracker, on the other hand, combines routing and local broadcast for quickly transferring information

to different parts of the network. MNP propagates large data chunks like Deluge, but also employs a

sender selection mechanism to enforce a single data source in a neighborhood.

D. Attack Model

In this subsection, we briefly present the possible attacks on the broadcast protocols. A source node

uses a broadcast protocol, e.g., Deluge, MNP, etc, to disseminate a piece of information to the rest of

the network. Firstly, under the absence of any kind of authentication scheme, the compromise of any

node can be a threat to the entire network. In other words, if a compromised node running a malicious

software broadcasts a metadata advertising a higher version, other nodes would start to download it.

Secondly, in the presence of authentication techniques used by the source of the broadcast, we
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observe, that it may not always be the base-station that is disseminating useful information to the

entire network. In other words, we assume that a regular sensor node can also be the source of

such a broadcast where these protocols are employed. Possible authentication schemes include digital

signatures and hash chain based mechanisms [8], [9]. An attacker, who has compromised a source node

and retrieved the keys pertaining to the security functions of the protocol, can then implant a piece of

malware and use the protocol to transfer it to the rest of the nodes. We characterize a malware [28]

as being a piece of malicious software which could include computer viruses, worms, trojan horses,

spywares, etc. Since, the malware is now signed by the captured keys at the source, it would pass

authentication verification at the recipient nodes. The working mechanism of the broadcast protocol

allows an infected node to successfully pass on the malware in its neighborhood and ultimately spread

it to the whole network in a circular multihop rippled propagation.

III. An Analytical Framework based on Epidemic Theory

In this section, we propose a novel framework based on epidemic theory for analyzing the propa-

gation of malware over a sensor network broadcast protocol. The framework captures both the local

spatial interaction in a static network scenario and the temporal dynamics of the propagation process.

Our basic idea is to model the communication between a compromised and a non-compromised node

as a contact between an infected individual and a susceptible one. Moreover, just as a susceptible

individual might get infected with a certain probability once it is in contact with an infective one, a

non-compromised node would be compromised if it receives any malware through a communication

with a compromised node.

A. System Model

The population in our model is the total number of nodes, N , in the sensor network which are

assumed to be stationary and uniformly randomly distributed with the node density denoted by σ. The

number of infected nodes I(t) at time t are those that have been compromised by a malware spreading

over the broadcast protocol. Likewise, S(t) and R(t) respectively denote the set of susceptible and

recovered nodes at time t.
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The rate of malware infection, β, represents the probabilistic rate at which an infective node

communicates with a susceptible one through a broadcast protocol, thus compromising the latter.

Here β depends on two factors: (i) probability ρ representing the infectivity of the malware which is

a measure of how contagious it is, and (ii) the rate of communication of the protocol. The degree of

susceptibility of a node depends on its average degree η, the rate of communication between nodes,

and the probability ρ.

We use ρ as a parameterization of the different infectivity characteristics of different malwares. In

other words, we use this parameter to differentiate the threat potentials of different malwares which

is independent of the broadcast protocol. This parameter, which is the probability of infection, is used

as a weighting factor on the communication rate to generate the infection rate β. The justification

is that malwares may use different schemes to use the broadcast protocols for compromising the

nodes. Moreover, depending on the scheme, the infection can be potent enough to spread further, i.e.,

compromise the recipient susceptible node and further go on to infect other susceptible nodes. The

infection rate, β, is, thus, obtained by combining the communication rate with ρ.

The rate of removal, γ, represents the rate at which nodes recover and lose their infectivity in

the network. This recovery procedure, for instance, is effected either by injection of an antivirus to

disinfect the virus infected nodes or revoking the compromised nodes.

TABLE I. Notation Summary
Model Parameter Description

N Total number of nodes

η Average node degree

σ Node density

Rc Communication radius of node

S(t) Susceptible nodes at time t

I(t) Infective nodes at time t

R(t) Recovered nodes at time t

β Malware infection rate

γ Malware removal rate

ρ Malware infectivity

Since the sensor nodes are assumed to be stationary, they cannot homogeneously mix with any

other node in the network. This implies that when all the neighboring susceptible nodes around an

infective node i acquire the infection, then i is rendered inoperative and does not contribute further

to the infection spread. Moreover, we assume that an infected sensor node, as a stealth technique,
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Fig. 1. The Spreading Phenomenon in a Sensor Field

uses the normal operation of a broadcast protocol to infect its neighbors. Thus, the infection rate is

dependent on the communication rate of the broadcast protocol.

The working principle of a broadcast protocol states that once a node has new data, it updates its

surrounding neighbors by first sending an advertisement. This implies that there is a circular region of

infected nodes centered at the source node which grows with time as the infection spreads outwards

riding on top of the broadcast protocol. We approximate this observation into our model by having

nodes on the periphery or wavefront of the infected circular region trying to infect their susceptible

neighboring nodes lying outside this circle. These susceptible neighbors reside in a circular strip of

width equivalent to a node’s communication radius Rc, outside the infected circle as illustrated in Fig.

1. We consider two situations in our model: (i) where nodes are not recovered once they are infected,

and (ii) where nodes can be recovered from the infection. We derive analytical expressions for each

sub-population function S(t), I(t) and R(t) for both cases.

B. Model Analysis

In this section, we present a detailed analysis of the propagation mechanism by deriving the functions

describing the dynamics of each sub-population with time. The following lemma is used to calculate

the number of nodes in a circular strip of radius h hops where one hop length is dependent on the

density of nodes.
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Lemma 1: Given that sensor nodes are uniformly randomly distributed in a field, the number of

nodes which are h hops away from a source node is O(h).

Proof: As we assume N nodes to be uniformly randomly distributed in a square of unit area, the

number of nodes along each side of the unit square is O(
√
N) with an average hop length of O(1).

The average distance between a source and destination node in this square is O(
√
N). In other words,

we can claim that if nodes are uniformly randomly distributed in a unit square such that the average

distance between any two nodes is O(N), then there are O(N2) nodes present in the unit square. In

a similar manner, with uniform random deployment of nodes in a circle having a radius of h hops,

the total number of nodes present is O(h2). Thus, the number of nodes which are h hops away from

a source situated at the center, along the circumference, is ψπ(h2 − (h− 1)2) = O(h) where ψ is the

node density.

We now present our model separately for the cases without node recovery and with node recovery in

the network.

1) No Recovery: In this case, we assume that the nodes, once infected, are compromised and

cannot be recovered. Thus, R(t) = 0 and γ = 0 in Eqs. (4) and (5). Consequently, with time there

is a gradual increase in the number of infected nodes, ultimately reaching the whole network. In this

case, we have non-homogeneous mixing because only the infected nodes that lie within distance Rc

from the periphery of the circle of infected nodes can communicate with the susceptible nodes, and

thus have the potential to infect them. For instance, in Fig. 2 the infected node k cannot infect a

susceptible node because all the susceptible nodes fall outside its communication range. Thus, all the

nodes, such as k, that lie in the interior of the infected circle are essentially inoperative and do not

spread further infections. The number of infected nodes I ′(t) that lie in the circular strip of thickness

Rc from the circumference is given by:

I ′(t) = I(t) − σπ(r(t) −Rc)
2,
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Fig. 2. Circular strip of thickness Rc. Only a fraction of neighboring nodes of an infected node are the potentially

susceptible ones.

where σ is the uniform density of nodes and r(t) is the radius of the circle that contains the infected

nodes. Note that, σπr(t)2 = I(t). After simplification we obtain:

I ′(t) = (2
√
σπRc)

√
I(t) − σπR2

c . (6)

We observe that I ′ is of the order of O(
√
I) as also proven in Lemma 1, and hence can be approximated

as I ′ = c
√
I , where c = 2

√
σπRc is the proportionality constant. Now, the set of susceptible nodes

that are able to communicate with I ′ is a small fraction of S(t). In particular, if η is the average degree

of a node, then each node in I ′(t) is able to communicate with only η neighbors on the average. The

radio transmission range, Rc, defines a node’s neighborhood and its degree η. However, not all of

the η neighbors of an infected node are susceptible. As illustrated in Fig. 2, for example, only the

susceptible nodes that lie within the circle of radius Rc can potentially be infected by node j. As the

malware propagates, we observe that for each infected node j in the peripheral circular strip, it tries

to infect the susceptible fraction of its η neighbors. Thus, we can write the mass balance equation as:

N(t) = S(t) + I(t) (7)

and the differential equations as:

dI

dt
= βc

√
I
(N − I)

N
η (8)
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dS

dt
= −βc

√
I
(N − I)

N
η (9)

Substituting U = 1/
√
I , the first equation can be simplified into the following:

dU

U2 − 1/N
= −βcη

2
dt (10)

which after integration on both sides and applying the boundary condition I(0) = 1, i.e., initially only

one node was compromised, leads to the following:

I(t) = N

⎛
⎜⎝ 2

1 + (
√

N−1√
N+1

) e
− βcη√

N
t
− 1

⎞
⎟⎠

2

(11)

Note that in the above equation when t = ∞, I(t) = N , i.e., asymptotically all the nodes will be

compromised. Eq. (11) basically gives the rate at which the infection of compromised nodes spreads

across the network. For mapping a broadcast protocol onto this model, we would derive β in terms

of the communication rate of the protocol.

Apart from the study of malware spread, which is the main focus of this paper, our non-recovery

model would also serve as a tool to analyze general information propagation in wireless sensor

networks under different conditions of network connectivity. Moreover, as we would see in subsequent

sections, incorporation of the communication rate of different broadcast protocols into our model would

permit a comparative analysis of their data propagation potential against each other.

2) With Recovery: In this case, we assume that the network has the capability to recover some

of the infected nodes that have been compromised. Once a node gets compromised, there is a finite

probability and duration within which it can be recovered and lose its infectivity. This recovery

mechanism could be effected by injecting a disinfecting software into the network. Without any loss

of generalization, let τ denote the expected duration that a node stays infected. The expected recovery

rate is thus given by γ = 1
τ
. Moreover, from the attacker model’s perspective, we also assume that

after a node has recovered, it is immune to that particular malware which caused the infection. This

may not hold for other classes of malwares which might be currently active in the network. However,

it is a fair assumption because we are interested in evaluating the vulnerability of the protocol from
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the perspective of how fast it takes for a particular malware with a given infectivity to use it to infect

the whole network.

Moreover, we have also assumed that it is only an infected node that can be recovered. Thus,

our model does not encompass the cases where susceptible nodes are made immune before they are

infected.

Similar to the previous non-recovery case, the infected nodes that lie within a circular strip of

thickness Rc are able to interact with a fraction of the susceptible nodes. However, simultaneously,

a fraction of the infected nodes is also being recovered. Therefore, with recovery, the mass balance

equation takes the form:

N(t) = S(t) + I(t) + R(t) (12)

Similar to Eq. (6), the number of infected nodes that lie in the circular strip of thickness Rc is

proportional to
√
I(t) + R(t) =

√
N − S(t). Moreover, based on similar analysis for the non-recovery

case, each infected node interacts with the susceptible fraction of its neighbors. Therefore, the non-

linear ordinary differential equations describing the process can be defined as:

dI

dt
= βc

√
N − S

S

N
η − γI (13)

dS

dt
= −βc

√
N − S

S

N
η (14)

dR

dt
= γI (15)

We derive the exact solutions of these equations to find out the growth of infected and susceptible

nodes with time. Then we solve for S(t) and after putting the boundary condition i.e., at t = 0, S(t) =

N − 1, we obtain:

S(t) = N −N

⎛
⎜⎝ 2

1 + (
√

N−1√
N+1

) e
− βcη√

N
t
− 1

⎞
⎟⎠

2

. (16)

Substituting this expression in the equation for dI/dt, and denoting the constants C1 =
√

N−1√
N+1

and
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C2 = − βcη√
N

, we obtain:

dI

dt
=

βcη√
N

[{
N −N

(
2

1 + C1 eC2t
− 1

)2
}

(
2

1 + C1 eC2t
− 1

)]
− γI. (17)

After multiplying both sides by eγt, a little simplification leads to the form:

d(Ieγt)

dt
= −C2N

[{
1 −

(
2

1 + C1 eC2t
− 1

)2
}

(
2

1 + C1 eC2t
− 1

)]
eγI . (18)

We use the Gaussian Hypergeometric Function Hy2F1 [25] 2, to solve the above equation and

obtain a closed form expression for I(t). As with the non-recovery case, we use the same boundary

condition, i.e., at t = 0, I(t) = 1.

I(t) =
4C1C2NeC2t

(C2 + γ)(C2 + C1C2eC2t)2
[A] + e−C2t

− 4C1C2Ne−γt

(C2 + γ)(C2 + C1C2)2
[B], (19)

where

A = (C2 + γ)(−C2 + γ + γC1e
C2t) − (γ + γC1e

C2t)2

Hy2F1
(
1, 1 + γ/C2, 2 + γ/C2,−C1e

C2t
)

B = (C2 + γ)(−C2 + γ + γC1) − (γ + γC1)
2

Hy2F1 (1, 1 + γ/C2, 2 + γ/C2,−C1) .

2This function solves the Gaussian Hypergeometric differential equation: x(1 − x)y′′ + c − (a + b + 1)xy′ − aby = 0
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Eq. 19 gives the closed form expression for the number of infectives at time t in the recovery case.

Having proposed the epidemic model for the infection propagation in a sensor network, we now look

into how each broadcast protocol fits into the model. In the following section we derive the infection

rate β of our model in terms of the communication rate of each protocol in order to effectively

characterize the propagation over them.

In our analytical study, we have made certain assumptions which we highlight in this section. They

are as follows :

• The model does not assume channel contention delay when an infective node is communicating

with a susceptible one.

• Packet loss is predominantly assumed to be caused by packet collisions. Existing links between

two nodes is assumed to be of fairly good quality so that packets are negligibly lost due to a

failing link.

• The recovery scheme assumes that it is only possible to recover an infected node. In other words,

it does not incorporate immunization of susceptible nodes prior to infection.

IV. Analysis of Individual Broadcast Protocols

Given the above framework, in this section, we address each of the three broadcast protocols,

Trickle, Firecracker, and Deluge. Our methodology is to apply the derived framework by investigating

the key parameters specific to each of the protocols. Our goal is to derive the infection rate, β, for

each of them.

A. Trickle Protocol

Lemma 2: In the Trickle protocol, if the expected number of communication neighbors of a node

i is denoted by η, then the probability pk of i broadcasting metadata in each time interval is given by

pk = k
η+1

where k denotes the advertisement threshold.

Proof: A node broadcasts advertisements at most once per period Tp at a random time t ∈ [0, Tp].

However, if the number of received advertisements is less than the threshold k, it will choose to transmit

its own advertisement or suppress it. Assuming that t is uniformly randomly distributed in the interval

[0, Tp], the expected time between successive advertisements is
Tp

η+1
. Thus, the expected time Ek,
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for k advertisement transmissions, is
k·Tp

η+1
. The probability pk for a node to transmit its metadata is,

therefore, directly proportional to Ek. Normalizing pk by dividing with the period duration Tp, we

have pk = k
η+1

Theorem 1: In Trickle, the expected time for a node to receive metadata is given by E[Tadv] =

Tp

2
· ∑k

i=1

(
η+1

i

)
pk

i

(1 − pk)
η+1−i · 1

1−l
where l is the packet loss rate.

Proof: If the packet loss rate is denoted by l then the expected number of transmissions for a given

packet is 1
1−l

. Given that the expected number of neighbors of a node is η and the probability of a node

in a neighborhood to transmit metadata is pk, the probability that at least one node transmits metadata

is given by the binomial expression
∑k

i=1

(
η+1

i

)
pk

i(1 − pk)
η+1−i. Furthermore, since a node selects

a random time in the interval [0, Tp] to transmit metadata, the expected delay before transmitting

a metadata is
Tp

2
. Thus the net expected delay to successfully transmit metadata in a single hop

neighborhood is given by E[Tadv] = Tp

2
· ∑k

i=1

(
η+1

i

)
pk

i(1 − pk)
η+1−i · 1

1−l
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In Trickle, the moment a metadata has been transmitted in a neighborhood, the nodes immediately

update themselves by broadcasting the new code update packet. If we denote Tpkt as the transmission
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time of the code update packet, then the expected successful transmission time E[Ttx] is given by

E[Ttx] = Tpkt · 1

1 − l
(20)

Thus the total expected delay for a code update is given by

E[TCU ] = E[Tadv] + E[Ttx] (21)

Apart from the rate of transfer established by the physical characteristics of the network and the

working principle of the broadcast protocol, there is another important factor affecting the transfer

rate of a malware. This is the inherent characteristic of the malware, its type and what mechanism

it adopts to spread. We term this factor to be ρ, the infectivity of the malware. This parameter ρ

differentiates one malware from another. Incorporating this factor into our model, the infection spread

rate over Trickle protocol is given by

β =
ρ

E[TCU ]
(22)

B. Firecracker Protocol

We recall that Firecracker first routes the data to distant points in the network before starting the local

broadcast based dissemination. In order to model the protocol from an epidemiological standpoint,

we need to derive the spreading rate β of the protocol. For this, we visualize the end of the routing

phase as the beginning of the epidemic process making each of the end nodes of the routing phase

(seeds) to be a source of a sub-infection process.

Thus, instead of a single node being the source of the infective spread, we have a set of nodes

initiating the process. Moreover, since the nodes are uniformly randomly deployed, the spreading rate

from each of the routing nodes is the same. These sub-processes work in the same manner as the

broadcast mechanism in Trickle. The population of nodes for each of these sub-processes would be

the nodes that are closer to each seed than to any other seed. Therefore, in our formulation, we divide

up the whole network into voronoi partitions where each voronoi cell corresponds to each seed node,
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as shown in Fig. 3. At any given time, the total number of nodes that have been infected is the sum

of the number of nodes infected in each voronoi partition.

If there are V seed points in the network which are the destination points of the routing phase, then

we have V corresponding voronoi regions with the voronoi points at each seed point. Let ni denote

the number of nodes in the ith region, where i = 1, 2, . . . , S. The spreading in each of these regions

is based on a local broadcast method similar to Trickle. Therefore, if vi(t) denotes the set of infected

nodes in region i at time t, then the fraction f(t) of infected nodes at time t is given by

f(t) =
|⋃S

i vi(t)|
N

(23)

where N =
∑S

i ni.

C. Deluge Protocol

Deluge builds off Trickle, using suppression and dynamic adjustment of the broadcast rate to

limit transmissions among neighboring nodes. Similar to the previous two protocols, we identify

the parameters in Deluge that allow it to be mapped onto the proposed epidemic model framework.

Since the basic unit of transfer in Deluge is a page, we approximate this page transfer rate as the rate

at which infection could spread over Deluge.

Given a lossy wireless environment with the packet loss rate as l, the expected number of trans-

missions for a packet is given by E[Npkt] = 1
1−l

. We recall that each page is composed of a constant

number of P packets. Since Deluge uses the same maintenance mechanism as Trickle for advertising

pages, the expected backoff time is also the same and equal to
Tp

2
. Similar to Trickle, a node in the

MAINTAIN state suppresses advertisements if it has already heard advertisements in its neighborhood

for a number of times larger than some constant k. As derived earlier, pk is the probability that a node

transmits advertisements in one time period Tp. Similar to the analysis done for Trickle, the expected

time that a node waits for an advertisement to be transmitted in its neighborhood is given by

E[Tadv] =
Tp

2
·

k∑
i=1

(
η + 1

i

)
pk

i(1 − pk)
η+1−i · 1

1 − l
(24)

Moreover, a node also does a random backoff in the RX state before sending a request packet. If
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E[Nreq] is the expected number of requests made by a node for acquiring a page, then the time spent

for making the requests is given by

E[Treq] =
Tp

2
· E[Npkt] · E[Nreq] (25)

The transmission time of P packets of a page is given by

E[Ttx] = P · E[Npkt] · Tpkt (26)

where Tpkt is the transmission time for a single packet.

At the same time, when a node in the RX state exceeds its limit by λ requests, it transits to the

MAINTAIN state and thus has to wait for advertisements. This time is denoted by E[Tfallback] and

given by

E[Tfallback] = �E[Nreq]

λ
� · E[Tadv] (27)

Thus, the expected time to transmit a page in a neighborhood is given by

E[Tpage] = E[Tadv] + E[Treq] + E[Ttx] + E[Tfallback] (28)

The average rate of page transfer is thus 1
E[Tpage]

. We assume a page transfer is enough for a malware

to compromise a node. Thus, if the infectivity of the malware is ρ, then the average infection rate

over the Deluge protocol is denoted by βD = ρ
E[Tpage]

.

D. MNP Protocol

The previous three protocols had similarities between them in parts of their operational methodolo-

gies. The reason to choose such similar protocols was to see how the model could capture the subtle

differences between them. At the same time, we are also interested in looking at a broadcast protocol

(viz. MNP) which is designed differently. This protocol also works to propagate code across the

network in a pipelined manner. Alongwith that, it employs a sender selection algorithm to circumvent

the hidden terminal problem faced by protocols like Deluge when the network density increases.
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Similar to previous analysis, we formulate the expression of the average page transfer rate from a

source node to recipients in a neighborhood. We argue that the malware uses the data propagation

rate of the protocol to spread itself. We assume the same lossy environment as in Deluge and assume

that there is a constant number P of packets in a page. We simplify our analysis by considering

only the basic functioning of MNP without the query/update phase. This phase of MNP generally

accounts for lost packets. By already taking the lossy wireless characteristics into consideration we can

safely neglect this protocol feature of MNP. However, contrary to Deluge, MNP does not use similar

maintenance mechanisms as Trickle. A node in the Advertise state broadcasts an advertisement message

message every random interval. It has a threshold value κ for the maximum number of advertisement

messages before servicing requests made by neighbors. This duration of κ advertisement messages

is used by nodes in a neighborhood to select an appropriate sending source and allow nodes not

interested in the transmission to go to sleep.

We assume that the inter-arrival time of the advertisement messages is negative exponentially

distributed with average arrival rate δ. As defined in Deluge, if E[Npkt] denotes the expected number

of packets transmitted based on the error rate l, and Tpkt denotes the transmission rate, then the time

for a successful packet transmission is E[Npkt] · Tpkt. Thus, the effective expected inter-arrival time

of successfully transmitted advertisement messages is given by

T i
adv =

1

δ
+ E[Npkt] · Tpkt (29)

The effective advertisement arrival rate is then given by δeff = 1
T i

adv
.

Accordingly, the average duration for κ advertisement messages is given by

Eκ[Tadv] =
κ

δeff

(30)

We are analyzing the propagation rate that MNP offers to a malware riding on it when the protocol

is disseminating new code. Therefore, similar to Deluge, we focus on a situation when there is a new

version of code propagating in the network. Subsequently, during this interval Eκ[Tadv], the advertising

node would have received at least one request from a neighbor. Moreover, like Deluge, a requesting
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node might have to make E[Nreq] number of requests to acquire a page. We make a simplifying

assumption that κ is chosen in a way such that during the interval Eκ[Tadv], the advertising node has

received at least E[Nreq] requests. This means that at the end of Eκ[Tadv], it is ready to service a

request.

After Eκ[Tadv], the source sends the P packets of a page. It also sends a Start Download and an

End Download message signifying the start and end of each page. Thus, the total expected time for

a page transfer is given by

E[Tpg] = Eκ[Tadv] + E[Npkt] · Tpkt(P + 2) (31)

With ρ denoting the infectivity of the malware, the infection rate over MNP is then given by βM =

ρ
E[Tpg ]

.
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Fig. 4. Without Recovery : Growth of infected nodes, I(t), with time for different values of ρ (malware infectivity)

and average network degree for different broadcast dissemination protocols.

E. Analysis Discussion

There are several important parameters in our model for the derivation of the infection rate β that

require careful evaluation for the propagation model to achieve the desired accuracy. For MICA2
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Fig. 5. With Recovery : Time Dynamics of infected nodes, I(t), for different values of τ (average infectivity

duration) and average network degree for different broadcast dissemination protocols.

motes, the maximum packet transmission rate is around 36 packets/sec with a packet size of 32 bytes.

This results in a packet transmission time of 0.027 sec. The average packet loss rate due to effects

such as packet collisions, etc., is assumed to lie between 0.1 and 0.2 which is the average value

derived from simulation data. Thus, in our formulation, l = 0.1 and Tpkt = 0.027 sec. Simulation

results of Deluge [11] have shown that the average number of requests for acquiring a page E[Nreq]

is approximately equal to 5.4.

Figures 4 and 5, respectively, illustrate the analytical plots depicting the propagation dynamics for

each protocol in a network of 1000 nodes, both for the non-recovery case and the case where nodes

have an expected recovery time. In Fig. 4, sub-figures (a) and (b) show the dynamics of the malware

spread over Trickle, with varying infectivity, for average degrees 5 and 8 respectively.The value of

the metadata advertisement bound k, is equal to 2.

We observe that the change in degree from 5 to 8, even for the least infective malware, increases

the speed of infection by more than 20%. The next two sub-figures depict Firecracker’s performance.

The source node is situated at the center and the routing destinations are points situated close to the

other corners of the field. The effect of increasing the number of strategically placed source nodes
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to spread the infection, has a significant impact on the subsequent rate of spread of the malware.

We observe that routing the data to three corners instead of just the opposite two almost halves the

compromise time of the whole network.

Deluge and MNP are meant for bulk transfer of data, and propagate one page at a time. This

makes its spreading rate slower than Trickle or Firecracker. This is duly captured in our model as

depicted in figs. 4 (e) and (f) for Deluge and figs. 4 (g) and (h) for MNP. From our model, we

can get a fair picture of the temporal propagation when we compare protocols falling in the same

class. Thus, comparing between Deluge and MNP, we observe how MNP’s propagation process is

slowed down by its sender selection algorithm. This is manifested in the fact that an advertising node

collects requests and waits for a threshold number of advertisements before starting to service them.

It is during this time that its sender selection procedure chooses a particular node as a sender. From

a vulnerability standpoint, we can say that this feature also slows down infectious malwares which

might have spread deeper into the network faster, had the requests been serviced immediately, as in

Deluge. This is valuable time for a recovery process to control the spread.

An important observation of our model is that, contrary to networks with homogeneous mixing, in

a sensor network with limited spatial interactions between nodes, there is no distinct phase transition

point of the infection. This is probably because the spread rides on top of a controlled broadcast

protocol and the propagation happens along a circular front which is spatially bounded. This means

that, contrary to conventional epidemic flooding, the malware has to abide by the discipline imposed

by the communication pattern of these protocols which try to minimize unnecessary transmissions to

save energy.

As expected, our model captures the fact that Firecracker achieves the highest propagation rate

among the protocols discussed and thus poses a very high threat for malware transfer in the event

of an outbreak. Comparing figs. 4 (a) and (c), we observe that even with a lower node degree,

Firecracker, with route points as opposite corners, achieves network compromise in about 25% to

40% of the time as Trickle. However, comparing figs. 4 (e) and (g), we observe that MNP with an

advertisement threshold of 4, takes almost 70% more time than taken by Deluge.

Fig. 5 illustrates the infection dynamics in the face of a simultaneous recovery procedure in the
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network. Without making any assumptions on the recovery process adopted, we have depicted the

infection dynamics under different average rates for recovery. As mentioned earlier, recovery could

be achieved by injecting a piece of disinfecting software, such as an antivirus, into the network. We

observe the infection dynamics based on different values for average infectivity duration depicted by

the parameter τ . We also assume the malware to have high infectivity of ρ = 0.8. From the sub-figures

in Fig. 5, we observe that the fraction of the network that gets maximally infected is significantly

lowered with a simultaneous recovery procedure. This difference is even more significant in the case

of a lower value of τ which further weakens the potency of the infection. For instance, comparing

figs. 5(f) and 4(f), the peak of the infective curve, with average τ = 100, is lowered significantly

and it is also achieved at a time close to 200 seconds in the non-recovered case, while it reaches

a value close to 450 seconds with recovery. Similarly in MNP, comparison of figs. 5(g) and 4(g)

shows that a simultaneous recovery procedure not only lowers the peak of the infection curve but

also slows the time it is reached, considerably. For the curves with lower infectivity duration (e.g.,

τ = 25), the difference in the peak fraction infected is even larger. Thus, the introduction of the

recovery process slows down the infection considerably and in the case of Deluge and MNP, it is

even more conspicuous because the general speed of the protocol is slower. As an aside, the total

recovery time for Deluge takes almost twice the time taken by Firecracker.

We, thus, observe that our model can successfully capture the propagation process and shed signifi-

cant light on the temporal dynamics of how a malware could spread over current broadcast protocols.

However, at this point we would also like to acknowledge a few limitations of our model. One of

them is that our model fails to capture border effects in the network. As a result, it generally performs

better when the spread is happening from the center outwards and loses accuracy when edge effects

become significant.

Our model also shows inaccuracies when the density of the network becomes very high. Although,

we have considered the physical effects of the network and the packet loss due to collisions, at very

high densities, the hidden terminal problem becomes significant, especially in protocols like Deluge.

Consequently, our model cannot capture it effectively. For instance, when we increase the average

degree of the network from 5 to 8 our model observes an increase in the rate of propagation of
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the malware. This is in accordance with the fact that an infected node gets more susceptible nodes

to infect. However, if the density and subsequently the node degree becomes very high, then the

spreading rate would decrease because of the increase of the number of collisions. In such a scenario,

our model would then require to be adequately tuned with the correct packet loss probability in order

to accurately model the infection propagation.

Moreover, in our analytical formulations, we have assumed that there is no channel contention

delay. This delay gets reflected in our simulations which probably accounts for the slight discrepancy

between the simulation and analytical curves.

Within its limitations, our model could behave as a handy tool to assess each broadcast protocol

quickly to gather approximate knowledge of its vulnerability to malwares of different infectivity.

V. Simulation Study

In this section, we outline the simulation setup and details to implement the propagation process

in each of the three broadcast protocols. The time dynamics of the malware spread is captured with

varying degrees of infectivity on the whole network. We have used JProwler [4], a probabilistic,

event-driven wireless network simulator in Java, for our experiments.

In the simulation experiments, we assume N = 1000 sensor nodes with uniform random deployment

in the network. We have used the gaussian radio model in JProwler. We assume that the link qualities

are high enough to guarantee very high packet reception rates and, thus, packets are lost only when

there is a collision. The maximum data rate of wireless links is set to be 32 Kbps. The maximum

length of a packet is fixed at 40 bytes. The MAC protocol is based on a simple CSMA scheme like

BMAC [22]. The metrics for evaluating the proposed framework is the time it takes for a malware to

infect a given fraction of the network, spreading over each broadcast protocol. Each reported result

is averaged over twenty simulation runs.

Our simulation works in two phases. In the first phase, we form the network where each node

identifies its set of neighbors and entries are made into a neighbor table. By randomly choosing links

to keep or delete, we control the average degree of the network. We perform this by modifying the

transmit power of individual nodes so as to change the average number of total links in the network.
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The entry for each node in the neighborhood table can indicate whether a node is susceptible, infected

or recovered. The average node degree of the network is set to typical values of 5 and 8.

In the second phase, we simulate actual virus propagation over each broadcast protocol. Initially, at

t = 0, the number of infected nodes, denoted by I(0) is set to be 1. The time period Tp, of Trickle,

has been assumed to be the unit and is equal to 1 second in our simulation.

First, we performed the simulation study for the case where there is no recovery against different

values of the malware infectivity, ρ. We simulate under different network connectivities and study

the time dynamics of the infected population. For each susceptible neighbor of an infective node to

which a data packet is to be transmitted, malware transmission is done based on the probability ρ,

independently for each node. A node, once infected, stays infected for the rest of the simulation time.

Fig. 6 shows the simulation results for the propagation dynamics over each broadcast protocol against

different values for the malware infectivity. We observe that the nature of the curves closely match

our analytical model.

We also observe some discrepancies between our simulation and analytical results as is evident

from figs. 4 and 6. This is attributed to the fact that the differential equation based approach

approximates the process to be continuous in time which is not the case in our simulation. Moreover,

our model does not incorporate border or edge effects and the infection is assumed to propagate from

the center outwards. With a considerable increase in the density of the network, our simulation results

would deviate significantly from the analytical results. This is attributed to the error in the packet loss

probability that creeps in such scenarios. Our model would then have to be tuned accordingly so that

the packet loss probability can effectively capture the impact of high density.

The simulation results for recovery are depicted in Fig. 7. With predefined infection rates derived

from the broadcast protocols, we have simulated a simultaneous recovery process given that an

infection spread is active.

VI. Conclusion

Broadcast protocols in sensor networks are vulnerable as potential carriers of malwares/viruses that

spread over air interfaces. In this paper, we provide a common mathematical model to analyze the
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Fig. 6. Simulation Without Recovery : Growth of infected nodes, I(t), with time for different values of ρ (malware

infectivity) and average network degree for different broadcast dissemination protocols.
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Fig. 7. Simulation With Recovery : Time Dynamics of Infected Nodes with time for different values of τ (average

infectivity duration) and average network degree for different broadcast dissemination protocols.
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process of malware propagation over different multihop broadcast protocols. Although approximately,

our model successfully captures the ripple based propagation behavior of the wavefront of a broadcast

protocol. Not only is the model capable of assessing the performance of each protocol in the face of

a virus outbreak, but it also helps in comparing their vulnerabilities against each other. Its generic and

flexible nature allows us to conveniently fit parameters of different broadcast protocols and analyze

their susceptibilities. Despite the similarities in operation between some of the protocols discussed, the

epidemic model successfully highlights their differences from a propagation standpoint. The model

can also be extended to other complex broadcast protocols by successfully computing the infection rate

β for that protocol. A point worth noting is that, although, in this paper, we have focused specifically

on the issue of malware spreading over broadcast protocols and their temporal dynamics, our model

is very generic and could serve as a tool to compare the general performance of different protocols in

terms of speed of information dissemination and network coverage under different states of network

connectivity.

As part of our future work, we would like to extend our model to incorporate more realistic

deployment strategies like group-based deployment, etc.
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