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An epigenetic clock analysis of race/
ethnicity, sex, and coronary heart disease
Steve Horvath1,2*† , Michael Gurven3†, Morgan E. Levine1, Benjamin C. Trumble3, Hillard Kaplan4,

Hooman Allayee5, Beate R. Ritz6, Brian Chen7, Ake T. Lu1, Tammy M. Rickabaugh8, Beth D. Jamieson8,

Dianjianyi Sun9, Shengxu Li9, Wei Chen9, Lluis Quintana-Murci10, Maud Fagny11, Michael S. Kobor12,

Philip S. Tsao13,14, Alexander P. Reiner15, Kerstin L. Edlefsen16, Devin Absher17† and Themistocles L. Assimes13†

Abstract

Background: Epigenetic biomarkers of aging (the “epigenetic clock”) have the potential to address puzzling findings

surrounding mortality rates and incidence of cardio-metabolic disease such as: (1) women consistently exhibiting lower

mortality than men despite having higher levels of morbidity; (2) racial/ethnic groups having different mortality rates

even after adjusting for socioeconomic differences; (3) the black/white mortality cross-over effect in late adulthood;

and (4) Hispanics in the United States having a longer life expectancy than Caucasians despite having a higher burden

of traditional cardio-metabolic risk factors.

Results: We analyzed blood, saliva, and brain samples from seven different racial/ethnic groups. We assessed the

intrinsic epigenetic age acceleration of blood (independent of blood cell counts) and the extrinsic epigenetic

aging rates of blood (dependent on blood cell counts and tracks the age of the immune system). In blood,

Hispanics and Tsimane Amerindians have lower intrinsic but higher extrinsic epigenetic aging rates than

Caucasians. African-Americans have lower extrinsic epigenetic aging rates than Caucasians and Hispanics but no

differences were found for the intrinsic measure. Men have higher epigenetic aging rates than women in blood,

saliva, and brain tissue.

Conclusions: Epigenetic aging rates are significantly associated with sex, race/ethnicity, and to a lesser extent

with CHD risk factors, but not with incident CHD outcomes. These results may help elucidate lower than expected

mortality rates observed in Hispanics, older African-Americans, and women.

Keywords: DNA methylation, Epigenetic clock, Race, Gender, Aging, Coronary heart disease, Hispanic paradox,

Black/white mortality cross-over

Background

Many demographic and epidemiological studies explore

the effects of chronological age, race/ethnicity, and sex on

mortality rates and susceptibility to chronic disease [1–5],

but it remains an open research question whether race/

ethnicity and sex affect molecular markers of aging dir-

ectly. To what extent clinical biomarkers of inflammation,

dyslipidemia, and immune senescence relate to cellular

markers of aging also remains an open question. One

major challenge is the lack of agreement on how to define

and measure biological aging rates [6]. Many biomarkers

of aging have been proposed ranging from clinical markers

(such as whole-body functional evaluations and gait speed)

to molecular markers such as telomere length [7, 8]. Avai-

lable biomarkers capture only particular aspects of aging.

For example, African Americans have been shown to

have longer telomere lengths than Caucasians [9], des-

pite significantly higher levels of inflammation, lower

average life expectancies, and higher disease incidence.

To date, no studies have employed epigenetic measures
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to estimate and compare molecular aging rates among

gender or racial/ethnic groups.

Measures incorporating DNA methylation levels have

recently given rise to a new class of biomarkers that

appear informative of aging given that age has a pro-

found effect on DNA methylation levels in most human

tissues and cell types [10–18]. Several recent studies

have measured the epigenetic age of tissue samples by

combining the DNA methylation levels of multiple

dinucleotide markers, known as Cytosine phosphate

Guanines or CpGs [19–21]. We recently developed the

epigenetic clock (based on 353 CpGs) to measure the

age, known as “DNA methylation age” or “epigenetic

age,” of assorted human cell types (CD4+ T cells or

neurons), tissues, and organs—including blood, brain,

breast, kidney, liver, lung [20], and even prenatal brain

samples [22]. The epigenetic clock is an attractive bio-

marker of aging because it applies to most human

tissues and its accurate measurement of chronological

age is unprecedented.

The following evidence shows that the epigenetic clock

captures aspects of biological age. First, the epigenetic

age of blood has been found to be predictive of all-cause

mortality even after adjusting for chronological age and

a variety of known risk factors [23–25]. Second, the

blood of the offspring of Italian semi-supercentenarians

(i.e. participants who reached an age of at least 105 years)

has a lower epigenetic age than that of age-matched

controls [26]. Third, the epigenetic age of blood relates

to frailty [27] and cognitive/physical fitness in the elderly

[28]. The utility of the epigenetic clock method has been

demonstrated in applications surrounding obesity [29],

Down’s syndrome [30], HIV infection [31], Parkinson’s dis-

ease [32], Alzheimer’s disease-related neuropathologies

[33], lung cancer [34], and lifetime stress [35]. Here, we

apply the epigenetic clock to explore relationships between

epigenetic age and race/ethnicity, sex, risk factors of coron-

ary heart disease (CHD), and the CHD outcome itself.

Results
Blood datasets and racial/ethnic groups

An overview of our DNA methylation datasets can be

found in Table 1. We analyze multiple sources of DNA:

mostly blood, saliva, and lymphoblastoid cell lines. In

addition, brain datasets were used to compare men and

women (Table 2). We considered the following racial/ethnic

groups (Table 1): 1387 African Ancestry (African Ameri-

cans and two groups from Central Africa), 2932 Caucasian

(non-Hispanic whites), 657 Hispanic, 127 East Asians

(mainly Han Chinese), and 59 Tsimane Amerindians.

Accuracy of the epigenetic clock

DNAm age, also referred to as epigenetic age, was calcu-

lated in human samples profiled with the Illumina Infinium

450 K platform using a previously described method [20].

As expected, we found DNAm age to have a strong linear

relationship with chronological age in blood and saliva (cor-

relations in the range of 0.65–0.93, Figs. 1, 2, 3, 4, and 5)

and in lymphoblastoid cell lines (r = 0.59; Additional file 1).

Based on a spline regression line, we defined a “universal”

measure of epigenetic age acceleration, denoted “Age

Accel.” in our figures, as the difference between the ob-

served DNAm age value and the value predicted by a spline

regression model in Caucasians. The term “universal” refers

to the fact that this measure can be defined in a vast majo-

rity of tissues and cell types with the notable exception of

sperm [20]. A positive value of the universal age acceler-

ation measure indicates that DNA methylation age is

higher than that predicted from the regression model for

Caucasian participants of the same age. Our intrinsic and

extrinsic age acceleration measures (see “Methods”) only

apply to blood data. A measure of intrinsic epigenetic age

acceleration (IEAA) measures cell-intrinsic epigenetic aging

effects that are not confounded by extra-cellular differences

in blood cell counts. The measure of IEAA is an incomplete

measure of the age-related functional decline of the im-

mune system because it does not track age-related changes

in blood cell composition, such as the decrease of naïve

CD8+ T cells and the increase in memory or exhausted

CD8+ T cells [36–38]. The measure of extrinsic epigenetic

age acceleration (EEAA) only applies to whole blood and

aims to measure epigenetic aging in immune-related com-

ponents. It keeps track of both intrinsic epigenetic changes

and age-related changes in blood cell composition (see

“Methods”). The estimated blood cell counts, which are

used in these measures, correlate strongly with correspond-

ing flow cytometric measurements from the MACS study

(Additional file 2): r = 0.63 for CD8 +T cells, r = 0.77 for

CD4+ T, r = 0.67 B cell, r = 0.68 naïve CD8+ T cell, r = 0.86

for naïve CD4+ T, and r = 0.49 for exhausted CD8+ Tcells.

Hispanics have a lower intrinsic aging rate than

Caucasians

We find that Hispanics have a consistently lower IEAA

compared to Caucasians (p = 7.1 × 10–10, Fig. 1m). An

important question is whether the observed differences

in blood can also be observed in other tissues. Using a

novel saliva dataset (dataset 4, saliva from PEG) we find

that Hispanics have a lower epigenetic aging rate than

Caucasians (p = 0.042, Fig. 1i). The fact that our findings

in blood can also be validated in saliva is consistent with

the strong correlation between epigenetic age acceleration

measures of the two sources of DNA (r = 0.70, p = 1.4 ×

10–12, Fig. 1n). The lower value of IEAA in Hispanics

unlikely reflects country of birth or of residence (at age

35 years) given the robust findings across samples and

our detailed analysis in the WHI, where we find that

Hispanics born outside US, but living in the US, have a

Horvath et al. Genome Biology  (2016) 17:171 Page 2 of 22



higher IEAA than Hispanics born and raised in the US

(p = 0.025, Additional file 3B).

CHD risk factors bear little or no relationship with IEAA

We related our measures of age acceleration to risk fac-

tors related to CHD since the latter are significant pre-

dictors of mortality. In postmenopausal women from the

Women’s Health Initiative (WHI), we found no evidence

that IEAA is associated with disparities in education,

high density lipoprotein (HDL) or low density lipopro-

tein (LDL) cholesterol, insulin, glucose, C-reactive pro-

tein (CRP), creatinine, alcohol consumption, smoking,

diabetes status, or hypertension (see Table 3).

Tsimane have a lower intrinsic aging rate than Caucasians

The Tsimane are an indigenous population (~15,000 in-

habitants) of forager-horticulturalists who reside in the

remote lowlands of Bolivia. They reside mostly in open-air

thatch huts, and actively fish, hunt, and cultivate plantains,

rice, and manioc through slash-and-burn horticulture

[39]. Tsimane provide a unique contribution to aging re-

searchers and epidemiologists because they experience

high rates of inflammation due to repeated bacterial, viral,

and parasitic infections, yet show minimal risk factors for

Table 1 Overview of the DNA methylation datasets. The rows correspond to the datasets used in this article. Columns report the tissue

source, DNA methylation platform, number of participants, access information, and citation and a reference to the use in this text

Tissue source Array Participants
(n)

Women
(n)

African Ancestry,
Caucasian, Hispanic,
Tsimane, East Asian (n)

Mean age
(years) (range)

Available Citation Figure

1. Women’s Health Initiative
(blood)

450 1462 1462 676, 353, 433, 0, 0 63 (50–80) dbGAP, NHLBI Current
article

1

2. Bogalusa (blood) 450 969 547 288, 681, 0, 0, 0 43 (29–51) dbGAP, NHLBI Current
article

1

3. PEG (blood) 450 335 138 0, 289, 46, 0, 0 70 (36–91) GSE72775 Current
article

1

4. Saliva from PEG 450 259 113 0, 166, 93, 0, 0 69 (36–88) GSE78874 Current
article

1

5. Older Tsimane and
others

450 310 150 0, 235, 38, 37, 0 66 (35–92) GSE72773 Current
article

3

6. Younger Tsimane
and Caucasians

450 46 31 0, 24, 0, 22, 0 15 (2–35) GSE72777 Current
article

3

7. East Asians vs.
Caucasians (PSP
samples removed)

450 312 132 0, 279, 0, 0, 33 68 (34–93) GSE53740 Li, 2014 [73] 3

8. African populations 450 256 50 256, 0, 0, 0, 0 40 (16–90) EGAS00001001066 Fagny, 2015
[42]

4

9. Cord blood 27 216 110 92, 70, 0, 0, 0 0 (0–0) GSE27317 Adkins,
2011 [44]

10. Male saliva 27 91 0 0, 59, 32, 0, 0 29 (21–55) GSE34035 Liu, 2010
[74]

11. Female saliva 27 42 42 0, 27, 15, 0, 0 27 (21–55) GSE34035 Liu, 2010
[74]

12. Lymphoblastoid
cell lines

450 237 154 75, 68, 0, 0, 94 34 (5–73) GSE36369 Heyn, 2013
[88]

Additional file 1

Table 2 Description of brain datasets for evaluating the effect

of gender. Additional details can be found in “Methods”

Data Participants
(n)

Men
(%)

Age mean ± SE
[min, max]

Brain
region

Brain tissue
samples (n)

Study 1 117 41 % 84.0 ± 9.8 [40, 105] CRBLM 112

EC 108

PFCTX 114

STG 117

Study 2 142 68 % 48.0 ± 23.2 [16, 96] CRBLM 112

FCTX 133

PONS 125

TCTX 127

Study 3 147 63 % 44.3 ± 9.6 [19, 68] CRLM 147

Study 4 37 62 % 64.4 ± 17.4 [25, 96] CRBLM 36

PFCTX 36

Study 5 209 66 % 52.3 ± 29.8 [1, 102] CRBLM 201

FCTX 201

Study 6 718 37 % 88.5 ± 6.6 [66, 108] DLPFC 718

CRBLM cerebellum, DLPFC dorsolateral prefrontal cortex, EC entorhinal cortex,

FCTX frontal cortex, PFCTX prefrontal cortex, PONS pons, STG superior temporal

gyrus, TCTX temporal cortex

Horvath et al. Genome Biology  (2016) 17:171 Page 3 of 22
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Fig. 1 Intrinsic epigenetic age acceleration in Caucasians and Hispanics. a-d DNA methylation age (y-axis) versus chronological age (x-axis) in (a)

Women’s Health Initiative, (b) blood data from PEG, (c) dataset 5, (d) saliva data from PEG. Dots corresponds to participants and are colored by ethnic

group (gray = Caucasian, blue =Hispanic). The gray line depicts a spline regression line through Caucasians. We define two measures of age acceleration

based on DNAm age. e-g The bar plots relate the universal measure of epigenetic age acceleration to race/ethnicity, which is defined as residual to the

spline regression line through Caucasians, i.e. the vertical distance of a point from the line. By definition, the mean age acceleration in Caucasians is zero.

h, m Results after combining the three blood datasets using Stouffer’s meta-analysis method. i Age acceleration residual versus ethnicity in the saliva data

from PEG. j-m The y-axis reports the mean value of IEAA, which is defined as residual from a multivariate regression model that regresses DNAm age on

age and several measures of blood cell counts. Each bar plot reports 1 standard error and the p value from a group comparison test (ANOVA). n Age

acceleration in blood versus age acceleration in saliva for the subset of PEG participants for whom both data were available

a

d

g

b

e

h

c

f

i

Fig. 2 Intrinsic epigenetic age acceleration in Tsimane, Hispanics, East Asians, and Caucasians. a-c DNA methylation age (y-axis) versus chronological

age (x-axis) in (a) dataset 5, (b) dataset 6, (c) dataset 7. Dots corresponds to participants and are colored by race/ethnicity (green= African American,

gray= Caucasian, blue= Hispanic, red = Tsimane, orange= East Asians). The gray line depicts a spline regression line through Caucasians. We define two

measures of age acceleration based on DNAm age. d-f The bar plots relate the universal measure of epigenetic age acceleration to race/ethnicity,

which is defined as residual to the spline regression line through Caucasians, i.e. the vertical distance of a point from the line. g-i The y-axis reports the

mean value of IEAA, which is defined as residual from a multivariate regression model that regresses DNAm age on age and several measures of

blood cell counts. Each bar plot reports 1 standard error and the p value from a group comparison test (ANOVA)
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heart disease or type 2 diabetes as they age; they have min-

imal hypertension and obesity, low LDL cholesterol and

no evidence of peripheral arterial disease [39–41]. Since

Hispanics share genetic ancestry with peoples indigenous

to the Americas, we hypothesized that a slower intrinsic

aging rate might also be observable by analyzing Tsimane

blood samples [39]. Among participants who are older than

35 years, Tsimane have the lowest intrinsic age acceleration

(Fig. 2d, g). While Tsimane have a significantly lower IEAA

than Caucasians after the age of 35 years (p = 0.0061), no

significant difference could be observed in younger partici-

pants (Fig. 2e, h). In this analysis, the threshold of 35 years

was chosen so that a sufficient number of young partici-

pants would be included in dataset 6. We found no signifi-

cant difference in IEAA between older Hispanics and

Tsimane, which might reflect the relatively low group sizes

of n = 37 Tsimane versus n = 38 Hispanics.

IEAA is not associated with CHD in the WHI

Based on our findings above showing little or no rela-

tionship between IEAA and CVD risk factors at baseline,

we hypothesized that IEAA would not predict future on-

set of CHD. A multivariate logistic regression model

shows that IEAA is not significantly associated with an

increased risk of incident CHD (Table 4). However, as

expected, current smoking, prior history of diabetes,

hypertension, high insulin and glucose levels, and lower

HDL predicted an increased risk of CHD (Table 4).

Hispanics and Tsimane have a higher EEAA than

Caucasians

According to our measure of EEAA, Hispanics have a sig-

nificantly older extrinsic epigenetic age than Caucasians

(meta-analysis p = 0.00012, Fig. 4a–d) and fewer naïve

CD4+ T cells, based on cytometric data from the WHI

LLS, the MACS study, and imputed blood cell counts

(Fig. 4f–j, Additional file 2H, I). This pattern of fewer

naïve CD4+ T cells is even more pronounced for Tsimane

(Fig. 4m, n), who experience repeated acute infections and

elevated, often chronic, inflammatory loads.

Epigenetic age analysis of East Asians

Because ancient Native American populations share

common ancestral lineages with East Asians, we exam-

ined whether East Asians also differ from Caucasians

in terms of epigenetic aging rates. We found no signifi-

cant difference between Caucasians and East Asians in

terms of IEAA (Fig. 2i), EEAA (Fig. 4o), or naïve CD4+

T cells (Fig. 4p). Similarly, we found no difference in

lymphoblastoid cell lines (Additional file 1). However,

a

c

f

b

d

g

e

h

Fig. 3 Intrinsic epigenetic age acceleration versus African or European Ancestry. a-c DNA methylation age (y-axis) versus chronological age (x-axis) in

(a) Women’s Health Initiative, (b) Bogalusa study. Dots corresponds to participants and are colored by race/ethnicity (green= African Ancestry, gray =

Caucasian). The gray line depicts a spline regression line through Caucasians. We define two measures of age acceleration based on DNAm age. c, d

The bar plots relate the universal measure of epigenetic age acceleration to race/ethnicity, which is defined as residual to the spline regression line

through Caucasians. e, h Results after combining the two blood datasets using Stouffer’s meta-analysis method. f, g The y-axis reports the mean value

of IEAA, which is defined as residual from a multivariate regression model that regresses DNAm age on age and several measures of blood cell counts.

Each bar plot reports 1 standard error and the p value from a group comparison test (ANOVA)
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Fig. 5 Analysis of African rainforest hunter-gatherers and farmers. a DNAm age versus age using 256 blood samples from [42]. The points are colored

as follows: magenta = AGR (urban setting), turquoise = AGR (forest), brown= RHG (forest). Group status versus (b) universal age acceleration, (d) intrinsic

age acceleration, (f) extrinsic age acceleration. Habitat versus (c) universal age acceleration, (e) intrinsic age acceleration, (g) extrinsic age acceleration.

(h, i) are analogous to (a, b) but the y-axis is based on a DNAm age estimate that excluded CpG that were located near SNPs. In this robustness

analysis, we removed CpG probes containing genetic variants at a frequency higher than 1 % in the populations studied
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v
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f
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Fig. 4 Extrinsic epigenetic age acceleration and blood cell counts across groups. EEAA versus race/ethnicity in (a, q) Women’s Health Initiative,

(b) blood data from PEG, (c, k) dataset 5, (l) dataset 6, (o) dataset 7, (r) Bogalusa study. Flow cytometric, age adjusted estimates (e, t) naïve CD8+

T and (j, x) naïve CD4+ T cell counts in the WHI LLS. Age adjusted estimates of naïve CD4 + T cells based on DNA methylation data from (f, u)

Women’s Health Initiative, (g) blood data from PEG, (h, m) dataset 5, (n) dataset 6, (p) dataset 7, (v) Bogalusa study. (d, i, s, w) Meta-analysis

across the respective datasets based on Stouffer’s method
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these comparative analyses are limited by the relatively

small number of samples and should be repeated in

larger datasets.

Which risk factors for cardiometabolic disease are

associated with EEAA?

Our multivariate model analysis in the WHI (Table 3)

shows that EEAA tracks better than IEAA with risk

factors for cardiometabolic disease; EEAA was positively

associated (higher) with: triglyceride levels (multivariate

model p = 0.04), CRP (p = 0.023), and creatinine (p = 0.008).

EEAA was negatively associated (lower) with higher levels

of education in all ethnic groups (p from 2.0 × 10–8 to 0.05,

Additional file 4I–L). For each racial/ethnic group, we

find that women who did not finish high school

exhibit the highest levels of EEAA (leftmost bar in

Additional file 4J–L).

Epigenetic aging rates of African Americans

In the following, we compare African Americans with

European Americans in terms of IEAA and EEAA. Com-

parisons of African Americans with Caucasians in terms

of IEAA yield contradictory findings across datasets that

differ in age range: African American women have

slightly lower IEAA than Caucasian women in the WHI

(p = 0.017 Fig. 3f ), but no significant difference can be

observed for the younger participants of the Bogalusa study

(Fig. 3g). Indeed, participants in the WHI (aged between

50 and 80 years) were older than those of the Bogalusa

study (aged between 29 and 51 years). This failure to detect

a significant racial/ethnic difference in IEAA in younger

participants is consistent with our results from the com-

parison of younger Tsimane and Caucasians (Fig. 2h). A

multivariate model analysis based on the Bogalusa study

(comprising African Americans and Caucasians) confirms

that IEAA does not differ between middle-aged African

Americans and Caucasians but IEAA is higher among men

(p = 0.025) and has a marginally significant association with

hypertension (p = 0.064, Table 5). When relating individual

variables to IEAA, we find significant associations for

hypertension (p = 0.00035, Additional file 5D–F) but not

for type II diabetes status or educational level.

Our findings for EEAA are highly consistent across the

two studies and age groups: African Americans have lower

EEAA than Caucasians in the WHI and in the Bogalusa

study (p = 7.2 × 10–7, Fig. 4q, r, s). Our flow cytometric

Table 3 Multivariate model that regresses epigenetic age acceleration on participant characteristics in the WHI. Coefficients and

p values from regressing measures of intrinsic and extrinsic epigenetic age acceleration on participant characteristics from dataset 1

Multivariate linear regression Intrinsic EAA Extrinsic EAA

Estimate (SE) p Estimate (SE) p

Race/ethnicity Hispanic vs. African American –0.94 (0.35) 0.007 3.363 (0.439) <10–15

White vs. African American 0.71 (0.295) 0.016 1.94 (0.37) 1.6 × 10–7

HDL-cholesterol 0.006 (0.01) 0.558 –0.003 (0.013) 0.799

Triglyceride 0.003 (0.002) 0.059 0.004 (0.002) 0.04

Insulin 0 (0.001) 0.664 0.001 (0.001) 0.337

Glucose 0.003 (0.004) 0.486 0.007 (0.005) 0.112

CRP 0.023 (0.018) 0.215 0.052 (0.023) 0.023

Creatinine 0.703 (0.594) 0.237 1.985 (0.745) 0.008

BMI 0.035 (0.021) 0.103 0.045 (0.027) 0.093

Education High school (HS) vs. no HS 0.357 (0.426) 0.403 –0.784 (0.534) 0.142

Some college vs. no HS 0.469 (0.381) 0.219 –1.171 (0.478) 0.014

College vs. no HS 0.486 (0.519) 0.349 –2.253 (0.65) 0.001

Grad school vs. no HS 0.36 (0.424) 0.396 –1.648 (0.531) 0.002

Alcohol Past drinker vs. Never 1.668 (1.1) 0.13 –0.598 (1.379) 0.665

Light drinker vs. Never –0.101 (0.536) 0.85 –0.751 (0.672) 0.264

Moderate vs. Never –0.416 (0.748) 0.578 –0.401 (0.937) 0.669

Heavy vs. Never –0.354 (0.88) 0.687 –0.833 (1.103) 0.45

Smoking Former vs. Current –0.573 (1.039) 0.581 –0.104 (1.302) 0.936

Never vs. Current –0.376 (1.039) 0.718 –0.122 (1.303) 0.925

Diabetes 0.216 (0.43) 0.616 –0.061 (0.539) 0.909

Hypertension 0.364 (0.241) 0.131 0.262 (0.302) 0.386

R-squared 0.029 0.069
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Table 4 Logistic model that regresses CHD status on epigenetic age acceleration and participant characteristics in the WHI. Coefficients,

Wald Z statistics, and corresponding p values resulting from regressing CHD status on measures of epigenetic age acceleration and

various participant characteristics. The results for the measure of IEAA and EEAA can be found in columns 2 and 3, respectively

Logistic model. Outcome CHD case status Intrinsic EAA Extrinsic EAA

Covariates Estimate (SE) Z p Estimate (SE) Z p

Epig. Age Accel –0.017 (0.01) –1.72 0.085 –0.006 (0.008) –0.74 0.458

Age 0.027 (0.008) 3.44 0.001 0.028 (0.008) 3.52 4.3 × 10-4

Race/ethnicity Hispanic vs. African American 0.083 (0.152) 0.55 0.584 0.118 (0.153) 0.77 0.443

White vs. African American 0.141 (0.135) 1.04 0.298 0.135 (0.135) 1.00 0.319

HDL-cholesterol –0.02 (0.005) –4.29 1.8 × 10–5 –0.02 (0.005) –4.33 1.5 × 10-5

Triglyceride 0.001 (0.001) 1.43 0.153 0.001 (0.001) 1.38 0.169

Insulin 0.002 (0.001) 2.26 0.024 0.002 (0.001) 2.25 0.024

Glucose 0.005 (0.002) 2.64 0.008 0.005 (0.002) 2.64 0.008

CRP 0.013 (0.008) 1.61 0.107 0.013 (0.008) 1.61 0.108

Creatinine 0.518 (0.281) 1.84 0.065 0.515 (0.281) 1.84 0.067

BMI –0.011 (0.01) –1.19 0.235 –0.012 (0.01) –1.22 0.223

Education High school (HS) vs. no HS –0.058 (0.183) -0.32 0.753 –0.067 (0.183) –0.37 0.715

Some College vs. no HS 0.008 (0.164) 0.05 0.96 –0.004 (0.165) –0.03 0.979

College vs. no HS –0.198 (0.223) –0.89 0.373 –0.219 (0.223) –0.98 0.327

Grad school vs. no HS –0.237 (0.183) –1.29 0.196 –0.251 (0.183) –1.37 0.171

Alcohol Past drinker vs. Never –0.6 (0.514) –1.17 0.243 –0.641 (0.513) –1.25 0.212

Light drinker vs. Never –0.34 (0.233) –1.46 0.145 –0.343 (0.233) –1.47 0.141

Moderate vs. Never –0.1 (0.32) –0.31 0.754 –0.096 (0.32) –0.30 0.764

Heavy vs. Never –0.34 (0.381) –0.89 0.373 –0.337 (0.381) –0.88 0.377

Smoking Former vs. Current –0.997 (0.467) –2.13 0.033 –0.989 (0.467) –2.12 0.034

Never vs. Current –1.321 (0.468) –2.82 0.005 –1.317 (0.468) –2.81 0.005

Diabetes 0.706 (0.196) 3.61 3.0 × 10-4 0.699 (0.196) 3.58 3.4 × 10-4

Hypertension 0.565 (0.103) 5.46 4.8 × 10-8 0.559 (0.103) 5.41 6.3 × 10-8

Table 5 Multivariate model that regresses epigenetic age acceleration on participant characteristics in the Bogalusa study. Coefficients

and p values from regressing measures of intrinsic and extrinsic epigenetic age acceleration on participant characteristics from dataset 2

Multivariate linear regression Intrinsic EAA Extrinsic EAA

Estimate (SE) Z p Estimate (SE) Z p

Race Caucasian vs. African American –0.013 (0.316) –0.04 0.97 0.843 (0.316) 2.67 0.0076

Gender Female vs. Male –0.622 (0.278) –2.24 0.025 –0.718 (0.277) –2.60 0.0093

Education Grade 8–9 vs. < Grade 8 1.583 (1.468) 1.08 0.28 2.177 (1.465) 1.49 0.14

Grade 10–12 vs. < Grade 8 1.285 (1.27) 1.01 0.31 2.267 (1.267) 1.79 0.074

Vocat/Tech vs. < Grade 8 0.307 (1.299) 0.24 0.81 1.921 (1.295) 1.48 0.14

College vs. < Grade 8 0.85 (1.281) 0.66 0.51 2.375 (1.277) 1.86 0.062

Graduate vs. < Grade 8 0.147 (1.336) 0.11 0.91 1.53 (1.332) 1.15 0.25

Diabetes (II) 0.173 (0.485) 0.36 0.72 0.012 (0.483) 0.03 0.98

Hypertension 0.539 (0.291) 1.86 0.064 1.247 (0.29) 4.30 1.7 × 10-5

R-squared 0.025 0.043
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data from the WHI LLS show that African American

women exhibit a higher abundance of naïve CD8+ T cells

than Caucasian women (p = 1.7 × 10–9, Fig. 4t).

In multivariate regression analyses of EEAA, we find that

African Americans have indications of a significantly youn-

ger immune system age than Caucasians (p= 0.0076) after

controlling for gender, educational level, diabetes status, and

hypertension. In the Bogalusa study, we find three significant

predictors of EEAA: race/ethnicity, hypertension, and gen-

der (p= 0.0093, Table 5). A marginal analysis in the Bogalusa

study identifies a significant association between EEAA and

hypertension (p = 8.0 × 10–5, Additional file 5G–I), type II

diabetes status in Caucasians (p = 0.0085, Additional file

6H), but not in African Americans (Additional file 6I).

Contrary to our findings in the WHI, no significant associ-

ation can be observed between EEAA and educational

level (Additional file 7).

African rainforest hunter-gatherers and farmers

To evaluate the effect of subsistence ecology and environ-

ment on epigenetic aging rates, we analyzed 256 blood

samples from two different groups in Central Africa: rain-

forest hunter-gatherers (RHGs, traditionally known as “pyg-

mies,” sampled from Baka and Batwa populations) and

African populations that have adopted an agrarian lifestyle

(AGRs, traditionally known as “Bantus,” sampled from the

Nzebi, Fang, Bakiga, and Nzime populations) over the last

5000 years [42]. The ancestors of the RHGs and AGRs

diverged ~60,000 years ago. These groups have historically

occupied separate ecological habitats—the ancestors of

RHGs in the equatorial rainforest while those of AGRs in

drier, more open space savannahs and grasslands. Many

RHG groups still live in the rainforest as mobile bands,

whereas AGR populations now occupy primarily rural or

urban deforested areas, though some AGR groups have

settled in the rainforest over the last millennia.

We considered three groups: (1) RHG (n = 102); (2)

AGR living in the forest (n = 60); and (3) AGR living in an

urban setting (n = 94). The forest habitat was significantly

associated with an increase in AgeAccel (p = 2.4 × 10–8,

Fig. 5c) and EEAA (p = 5.9 × 10–11, Fig. 5g), but no differ-

ence was found for IEAA (p = 0.11, Fig. 5e). Further, no

significant difference could be observed between AGR

and RHG when focusing on participants living in the rain-

forest, suggesting greater importance of environment over

genetic differences. These results are not affected by dif-

ferences in genetic variants between RHG and AGR as

can be seen from a robustness analysis where we removed

CpG probes containing genetic variants at a frequency

higher than 1 % in the populations studied (Fig. 5h, i).

Sex effects in blood and saliva

We explored whether differences exist between men and

women in epigenetic aging rates. According to measures

of IEAA, men are older than women in two racial/ethnic

groups: African Americans (Additional file 8A, B) and

Caucasians (Additional file 9A, B, N, Z).

Overall, men have higher IEAA and EEAA than

women even when controlling for education, diabetes,

and hypertension (Table 5). Using saliva data from

PEG, we find that Hispanic men age faster than

Hispanic women (p = 0.021, Fig. 6j). According to

EEAA, Caucasian men are epigenetically older than

Caucasian women (Additional file 9C, O, ZA), but we

do not observe a significant difference in other

groups such as African Americans (Additional file

8C) or central African populations (Fig. 6p, q). The

results for EEAA are also consistent with significant

sex differences in blood cell counts suggesting more

rapid immunosenescence in men. Men have fewer

naïve CD4+ T cells than women in three racial/ethnic

groups: Caucasians (p = 0.0015 in the Bogalusa study,

p = 0.051 in PEG, p = 4.2 × 10–5 in dataset 5); Tsimane

(p = 0.0088 in older Tsimane); and African Americans

(p = 0.011 in the Bogalusa study).

Sex effects in brain tissue

We analyzed the effect of sex on the universal measure

of age acceleration (Age Accel.) in six independent brain

datasets (Table 2 and “Methods”). In total, we analyzed

2287 brain samples from 1370 participants. In our ana-

lysis, we distinguished the cerebellum from other brain

regions because it is known to age more slowly than

other brain regions according to the epigenetic clock

[43]. While sex did not have a significant effect on the

epigenetic age of the cerebellum (Fig. 7a), we found that

other brain regions from men exhibit a significantly higher

age acceleration than those from women (Fig. 7b, meta-

analysis p = 3.1 × 10–5).

Studies of young participants

So far, our results have largely pertained to partici-

pants who are middle-aged or older (Table 1, column

6) as we only had access to two datasets involving

newborns, infants, children, adolescents, and/or young

adults. In dataset 6 (which involved participants be-

tween the ages of 2 and 35 years), we did not observe

a significant difference epigenetic aging rates between

Caucasians and Tsimane. In cord blood samples [44],

we found no significant difference in the epigenetic

ages of cord blood samples between African American

and Caucasian newborns (p = 0.23).

Robustness analysis in the WHI

The epigenetic clock involves 47 CpGs whose broadly

defined neighborhood includes a single nucleotide

polymorphism (SNP) marker according to the probe

annotation file from the Illumina 450 K array. Thus, genetic
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differences coupled with differences in hybridization effi-

ciency could give rise to spurious differences between dif-

ferent racial/ethnic groups.

We addressed this concern in multiple ways. First, we

re-analyzed the WHI data by removing the 47 CpGs

(out of 353 epigenetic clock CpGs) from the analysis.

The epigenetic clock software imputes the 47 missing

CpGs using a constant value (the mean value observed

in the original training set). Using the resulting modified

epigenetic clock, we validate our findings of racial/ethnic

differences in terms of IEAA and EEAA (Additional file

8A–C). However, this type of robustness analysis is limited

because the removal of a subset of DNA methylation

probes, potentially influenced by proximal genetic variation,

is not as good a control as directly having matched genetic

data. Second, we used a completely independent epigenetic

biomarker based on a published signature of age-related

CpGs from Teschendorff et al. [13]. Again, these results

corroborate our findings (Additional file 8D, E). Third, we

validated our findings using the original blood-based aging

measure by Hannum [19] (Additional file 8F, G). Fourth,

we highlight that both the Horvath and Hannum age

estimators were developed based on training data from

mixed populations. The training data underlying the

Horvath clock involved four racial/ethnic groups (mainly

Caucasians, Hispanics, African Americans, and to a lesser

extent East Asians). The Hannum clock was trained on

Caucasians and Hispanics. While race/ethnicity can lead to

a significant offset between DNAm age and chronological

age (which is interpreted as age acceleration), these two

variables are highly correlated in all racial/ethnic groups.

Discussion

Our main findings are that: (1) Hispanics and Tsimane

have a lower intrinsic but a higher extrinsic aging rate

than Caucasians; (2) African Americans have a lower

extrinsic epigenetic aging rate than Caucasians and

Hispanics; (3) levels of education are associated with a

decreased level of EEAA in each race/ethnic group

(Additional file 4); (4) neither intrinsic nor extrinsic aging

rates of blood tissue are predictive of incident CHD in the

WHI even though EEAA is weakly associated with several
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Fig. 6 Sex effect on epigenetic age acceleration in blood and saliva. Panels of the first two rows (a-j) and last two rows (k-s) relate sex to intrinsic

and extrinsic epigenetic age acceleration, respectively. Results are reported for blood tissue in all but one panel (j). The combined results across

all blood studies can be found in panels (i) IEAA, (s) EEAA. Each bar plot reports 1 standard error and a Kruskal–Wallis test
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cardiometabolic risk factors of CHD (such as hyper-

tension, triglycerides, and CRP); (5) men exhibit

higher epigenetic aging rates than women in blood,

saliva, and brain samples, and (6) the rain forest habi-

tat is significantly associated with extrinsic age

acceleration but not with intrinsic age acceleration in

African populations. Although precise understanding

of the significance of epigenetic aging measures awaits

further elaboration, our principal findings may provide

additional context towards resolving several controver-

sial, epidemiological paradoxes, including the Hispanic

paradox, black–white mortality cross-over, the Tsimane

inflammation paradox, and the sex morbidity–mortality

paradox.

Hispanic paradox

The lower level of IEAA in Hispanics echo the finding

that Hispanics in the US have a lower overall risk of

mortality than Caucasians despite having a disadvan-

taged risk profile [45–48]. Our findings stratified by

country of birth suggest that the lower intrinsic aging

rate of Hispanics does not reflect biases arising

through immigration such as a “healthy immigrant ef-

fect” (Additional file 3). Our finding regarding higher

levels of EEAA in Hispanics parallels the findings that

Hispanics have higher levels of metabolic/inflamma-

tory risk profiles [49] and that Hispanics have a lower

relative CD4+ T cell percentage than Caucasians [50].

Several articles have explored the question of why the

Fig. 7 Effect of sex on the epigenetic age of brain tissue. Each panel depicts a forest plot resulting from the meta-analysis of sex effects. Each row

in a forest plot shows the mean difference in epigenetic age between men and women and a 95 % confidence interval. To combine the coefficient

estimates from the respective studies into a single estimate, we applied a fixed-effects model weighted by inverse variance, which is implemented in

the metafor R package [89]. a Gender did not have a significant effect on the epigenetic age of the cerebellum, which is known to age more slowly

than other brain regions according to the epigenetic clock [43]. b When excluding cerebellar samples from the analysis, we find that male brain regions

exhibit a significantly higher age acceleration than female brain regions (mean difference = 0.82, meta-analysis p = 3.1 × 10–5). The difference remains

significant even after adjusting for intra-subject correlations using a linear mixed effects model (mean difference = 0.77, p = 0.0034)
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immune system of Hispanics might differ from that of

Caucasians [51–53].

Black–white mortality cross-over

In the US, the black–white mortality cross-over refers to

the reported pattern of lower mortality after the age of

85 years among black men and women, compared to

whites, despite their higher observed mortality rates at

younger ages [54–57]. Although we find no differences

in IEAA between African Americans and Caucasians at

younger ages, older African American adults from the

Bogalusa study had lower IEAA than their Caucasian

counterparts. This finding might reflect selective survival

of more robust individuals or other aspects of health and

systemic risk given its independence from common risk

factors for cardiovascular disease and type II diabetes mel-

litus. Our finding regarding the lower EEAA of African

Americans, compared to Caucasians, is consistent with the

longer leukocyte telomere lengths of African Americans

relative to those of Caucasians [3, 9]. Lastly, our flow cyto-

metric data show that African Americans have a larger

number of naïve CD8+ T cells than Caucasians (Fig. 4t).

Tsimane inflammation paradox

Our results regarding the low intrinsic aging rate in

Tsimane may help address another paradox (which we

refer to as the Tsimane inflammation paradox), wherein

high levels of inflammation and infection, and low HDL

levels, are not associated with accelerated cardiovascular

aging [39]. The finding that Tsimane have decreased

levels of IEAA has parallels to the following clinical/epi-

demiological observations: even older Tsimane show little

evidence of chronic diseases common in high-income

countries, like diabetes, atherosclerosis, asthma, and other

autoimmune disorders [39]. High levels of physical activity

are maintained well into late adulthood [58].

The finding that Tsimane have increased levels of

EEAA has parallels to the following observation: a life-

time of diverse pathogen stresses, elevated inflammation

and extensive immune activation, seems to lead to more

rapid depletion of naïve CD4+ T cells and greater expres-

sion of exhausted T cells, i.e. more rapid immunosenes-

cence [39, 40, 59]. Infectious disease and high chronic

inflammatory load contribute to the low life expectancy of

Tsimane, 43.5 years at birth during the period 1950–1989,

and 54.1 years during 1990–2002 [40, 60].

Sex morbidity–mortality paradox

The sex morbidity–mortality paradox was first described

in the 1970s and refers to the observation that women pos-

sess a lower age-adjusted mortality rate compared to men

despite a higher suffering from a higher burden of co-

morbid conditions [61, 62]. Most explanations focus on

differences in lifestyle behaviors or healthcare utilization.

However, marked sex differences in health and disabil-

ity remain after controlling for differences in work-

related behavior, smoking, obesity, and other behaviors

[63]. Whereas other explanations attest to sex differ-

ences in a variety of biomarkers, our epigenetic aging

markers show robust and consistent male-biased vul-

nerability in multiple tissues (blood, brain, and saliva)

in all racial groups. Similar sex differences in blood-

based epigenetic aging rates have also been reported in

minors and teenagers [64].

Strengths and limitations

Our study has several strengths including the analysis

of 18 DNA methylation datasets (Tables 1 and 2), large

sample sizes (almost 6000 samples), multiple tissues

(blood, saliva, brain), access to unique populations

(Tsimane Amerindians; rainforest hunter-gatherers and

farmers), two flow cytometric studies, and robust

epigenetic biomarkers of aging. Our analysis of race/

ethnicity also spanned seven different racial/ethnic groups

(African American, Caucasian, Hispanic, Tsimane,

East Asian, RHGs, and AGRs from Central Africa).

Another strength is that our analysis of race/ethnicity

involved two sources of DNA: blood and saliva. Lim-

itations include the use of some datasets that are

cross-sectional as opposed to longitudinal datasets

and the fact that both IEAA and EEAA rely on im-

puted blood cell counts based on DNA methylation

levels. Fortunately, the imputed blood cell counts are

quite accurate (Additional file 2). Our results re-

ported here concerning ethnic/racial differences in

blood cell counts are supported both by our two

flow cytometric datasets and by the literature. How-

ever, these measured data are not fully reflective of

the breakdown of blood cell types, representing only

T and B cells.

Conclusion

Our exploratory study demonstrates that epigenetic

aging rates differ between different racial/ethnic groups

and between men and women. Further, intrinsic epigen-

etic aging rates tend to have insignificant associations

with well-studied risk factors of CHD whereas extrinsic

aging rates tend to have significant (but weak) associ-

ations with several pro-inflammatory risk factors.

While racial/ethnic differences have previously been

observed in DNA methylation levels [44], we are the

first to directly compare epigenetic aging rates across

different racial/ethnic groups. Our derived intrinsic

and extrinsic epigenetic aging rates in blood offer an

independent glimpse into biological aging that incor-

porates genetics and the environment and provides

potential insight into a number of epidemiological

paradoxes. The application of genome-wide DNAm-
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based epigenetic analysis to understand race/ethnic

and sex disparities in biological aging is novel and of-

fers an important perspective that complements exist-

ing approaches based on other biomarkers. Future studies

will need to confirm our findings with longitudinal designs

and to extend the epigenetic age analysis to other tissues

and organs.

Methods

We differentiate groups according to “race/ethnicity,”

mindful about existing controversies over rigid racial

definitions. Our use of these terms reflects self-

identified group membership based on macro-categories

commonly employed in censuses, human genetics,

demography, and epidemiology. The term race/ethnicity

thus combines elements of genetic ancestry, population

history, and culture.

DNA methylation age and epigenetic clock

All of the described epigenetic measures of aging and

age acceleration are implemented in our freely available

software. The epigenetic clock is defined as a prediction

method of age based on the DNAm levels of 353 CpGs.

Predicted age, referred to as DNAm age, correlates with

chronological age in sorted cell types (CD4+ T cells, mono-

cytes, B cells, glial cells, neurons), tissues, and organs, in-

cluding: whole blood, brain, breast, kidney, liver, lung, saliva

[20]. Mathematical details and software tutorials for the

epigenetic clock can be found in the Additional files of [20].

An online age calculator can be found at our webpage

(https://dnamage.genetics.ucla.edu).

Intrinsic versus extrinsic measures of epigenetic age

acceleration in blood

Empirical studies show that DNAm has a relatively weak

correlation with various measures of white blood cell

counts [31], which probably reflects the fact that dozens

of different tissue and blood cell types were used to de-

fine DNAm age. However, we find it useful to explicitly

define another measure of age acceleration that is com-

pletely independent of blood cell counts as described in

the following. We distinguish intrinsic from extrinsic

measures of epigenetic age acceleration in whole blood

according to their relationship with blood cell counts. A

measure of intrinsic epigenetic age acceleration (IEAA)

measures “pure” epigenetic aging effects that are not

confounded by differences in blood cell counts. Our

measure of IEAA is defined as the residual resulting

from a multivariate regression model of DNAm age on

chronological age and various blood immune cell counts

(naïve CD8+ T cells, exhausted CD8+ T cells, plasma B

cells, CD4+ T cells, natural killer cells, monocytes, and

granulocytes). The measure of IEAA is an incomplete

measure of the age-related functional decline of the

immune system because it does not track age-related

changes in blood cell composition, such as the decrease

of naïve CD8+ T cells and the increase in memory or

exhausted CD8+ T cells [36–38].

We defined a measure of EEAA that only applies to

whole blood and aims to measure epigenetic aging in

immune-related components in two steps. First, we

formed a weighted average of the epigenetic age measure

from Hannum et al. [19] and three estimated measures

of blood cells for cell types that are known to change

with age: naïve (CD45RA + CCR7+) cytotoxic T cells;

exhausted (CD28-CD45RA-) cytotoxic T cells; and

plasma B cells using the approach by Klemera Doubal

[65]. Second, we defined the measure of EEAA as the re-

sidual resulting from a univariate model that regressed

the weighted average on chronological age. By definition,

our measure of EEAA has a positive correlation with the

amount of exhausted CD8+ T cells and plasmablast cells

and a negative correlation with the amount of naïve

CD8+ T cells. Blood cell counts were estimated based on

DNA methylation data. EEAA tracks both age-related

changes in blood cell composition and intrinsic epige-

netic changes. In most blood datasets, EEAA has a mo-

derate correlation (r = 0.5) with IEAA. We note that, by

definition, none of our three measures of epigenetic age

acceleration are associated with the chronological age of

the participant at the time of blood draw.

Relationship to mortality prediction

Although the epigenetic clock method was only pub-

lished in 2013, there is already a rich body of literature

that shows that it relates to biological age. Using four

human cohort studies, we previously demonstrated that

both the Horvath and Hannum epigenetic clocks are

predictive of all-cause mortality [23]. Published results

in Marioni et al. [23] show that DNAm age adjusted for

blood cell counts (i.e. IEAA) is prognostic of mortality in

four cohort studies. We recently expanded our original

analysis by analyzing 13 different cohorts (including three

racial/ethnic groups) and by evaluating the prognostic

utility of both IEAA and EEAA. All considered measures

of epigenetic age acceleration were predictive of age at

death in univariate Cox models (pAgeAccel = 1.9 × 10–11,

pIEAA = 8.2 × 10–9, pEEAA = 7.5 × 10–43) and multivariate

Cox models adjusting for risk factors and pre-existing

disease status (pAgeAccel = 5.4 × 10–5, pIEAA = 5.0 × 10–4,

pEEAA = 3.4 × 10–19) where the latter adjusted for chrono-

logical age, body mass index, education, alcohol, smoking

pack years, recreational physical activity, and prior history

of disease (diabetes, cancer, hypertension). These re-

sults will be published elsewhere. Further, the offspring

of centenarians age more slowly than age matched con-

trols according to Age Accel and IEAA [26] which

strongly suggests that these measures relate to heritable

Horvath et al. Genome Biology  (2016) 17:171 Page 13 of 22

https://dnamage.genetics.ucla.edu


components of biological age. Two independent re-

search groups have shown that epigenetic age acceler-

ation predicts mortality [24, 25].

Description of the blood datasets listed in Table 1

All data presented in this article have been made publicly

available as indicated in the column “Available” of Table 1.

Dataset 1: Women’s Health Initiative (WHI)

Participants included a subsample of participants of the

WHI study, a national study that began in 1993 which

enrolled postmenopausal women between the ages of 50

and 79 years into either one of two three randomized

clinical trials [66]. None of these women had CHD at

baseline but about half of these women had developed

CHD by 2010. Women were selected from one of two

WHI large subcohorts that had previously undergone

genome-wide genotyping as well as profiling for seven

cardiovascular disease related biomarkers including total

cholesterol, HDL, LDL, triglycerides, CRP, creatinine,

insulin, and glucose through two core WHI ancillary

studies [67]. The first cohort is the WHI SNP Health

Association Resource (SHARe) cohort of minorities that

includes >8000 African American women and >3500

Hispanic women. These women were genotyped through

WHI core study M5-SHARe (www.whi.org/researchers/

data/WHIStudies/StudySites/M5) and underwent bio-

marker profile through WHI Core study W54-SHARe

(…data/WHIStudies/StudySites/W54). The second cohort

consists of a combination of European Americans from

the two Hormonal Therapy trials selected for GWAS and

biomarkers in core studies W58 (…/data /WHIStudies/

StudySites/W58) and W63 (…/data/WHIStudies/Study-

Sites/W63). From these two cohorts, two sample sets were

formed. The first (sample set 1) is a sample set of 637

CHD cases and 631 non-CHD cases as of 30 September

2010. The second sample set (sample set 2) is a non-

overlapping sample of 432 cases of CHD and 472 non-

cases as of 17 September 2012. The ethnic groups differed

in terms of the age distribution in the sense that Caucasian

women tended to be older. Therefore, we randomly

removed 80 % of the Caucasian women who were older

than 65 years when it came to the direct comparisons

reported in our figures. This resulted in a total sample size

of 1462 women, comprising 673 African Americans, 353

Caucasians, and 433 Hispanics. There was no significant

difference in age between the three ethnic groups. How-

ever, we kept all of the samples in our analysis of clinical

characteristics, such as future CHD status and baseline

characteristics such as education, hypertension, diabetes,

and smoking, in order to ensure that sufficient sample sizes

were available for these analyses. Our results are highly

robust with respect to using the smaller or larger versions

of the datasets. All results are qualitatively the same for the

two versions of the datasets. We acknowledge a potential

for selection bias using the above-described sampling

scheme in WHI but suspect if such bias is present it is

minimal. First, some selection bias is introduced by

restricting our methylation profiling at baseline to women

with GWAS and biomarker data from baseline as well,

given the requirement that these participants must have

signed the WHI supplemental consent for broad sharing of

genetic data in 2005. However, we believe that selection

bias at this stage is minimized by the inclusion of partici-

pants who died between the time of the start of the WHI

study and the time of supplemental consent in 2005, which

resulted in the exclusion of only ~6–8 % of all WHI

participants. Nevertheless, participants unable or un-

willing to sign consent in 2005 may not represent a

random subset of all participants who survived to 2005.

Second, some selection bias may also occur if similar

gross differences exist in the characteristics of partici-

pants who consented to be followed in the two WHI

extension studies beginning in 2005 and 2010 com-

pared to non-participants at each stage. We believe

these selection biases if present have minimal effects on

our effect estimates. Data are available from the page

https://www.whi.org/researchers/Stories/June%202015%

20WHI%20Investigators'%20Datasets%20Released.aspx,

see the link https://www.whi.org/researchers/data/Do

cuments/WHI%20Data%20Preparation%20and%20Use.pdf.

Dataset 2: Bogalusa

We analyzed the blood DNA methylation levels of 968

participants (680 Caucasians, 288 African Americans;

age range = 28–51.3 years) from the Bogalusa Heart

study [68] who were examined in Bogalusa, Louisiana

during 2006–2010 for cardiovascular risk factors. All

participants in this study gave informed consent at each

examination. Study protocols were approved by the In-

stitutional Review Board (IRB reference no. 12-395283)

of the Tulane University Health Sciences Center. DNA

was extracted from 1106 whole blood samples using the

PureLink Pro 96 Genomic DNA Kit (LifeTechnology, CA,

USA) following the manufacturer’s instructions. The Infi-

nium HumanMethylation450 BeadChip (Methy450K) was

used for whole genome DNA methylation analysis.

All the samples were processed at the Microarray Core

Facility, University of Texas Southwestern Medical Center

at Dallas, Texas. For DNA methylation analysis, 750 ng

genomic DNA from each participant was bisulphite

converted using the EZ-96 DNA Methylation Kit (Zymo

Research, CA, USA) and the efficiency of the bisulphite

conversion was confirmed by built-in controls on the

Methy450K array. The methylation profile of each individ-

ual was measured by processing 4 μL of bisulphite-

converted DNA, at a concentration of 50 ng/μL, on a

Methy450K array. The bisulphite-converted DNA was
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amplified, fragmented, and hybridized to the array. The

arrays were scanned on an Illumina HiScan scanner and

the raw methylation data were extracted using Illumina’s

Genome Studio methylation module. Data cleaning proce-

dures were undertaken using R package “minfi” [69],

generating quality control report, finding sample outliers,

cell counts estimation, and annotation accessing. The

R package wateRmelon [70] was used for β-value

normalization and quality control. For correction of

systematic technical biases in the 450 K assay, β-value

normalization was performed by the “dasen” function,

in which type I and type II intensities and methylated

and unmethylated intensities will be quantile normal-

ized separately after backgrounds equalization of type I

and type II. The R package ChAMP [71] was used for

batch effect analysis and correction with “champ.SVD”

and “champ.runCombat” functions. The clinical variables

and participant characteristics are defined in the captions

of the respective Additional files.

The are available from https://biolincc.nhlbi.nih.gov/

studies/bhs/.

Dataset 3: blood from Hispanics and Caucasians of PEG

The Parkinson’s disease, Environment, and Genes (PEG)

case-control study aims to identify environmental risk fac-

tors (e.g. neurotoxic pesticide exposures) for Parkinson’s

disease.

The PEG study is a large population-based study of

Parkinson’s disease of mostly rural and township residents

of California’s central valley [72]. Here we only used dis-

eased participants from wave 1 (PEG1). Since all partici-

pants of dataset 3 had Parkinson’s disease, disease status

could not confound associations with epigenetic aging.

Medication status was not associated with epigenetic age

acceleration. The data are available from Gene Expression

Omnibus.

Dataset 4: saliva samples from PEG

This novel dataset comes from the PEG study (described

above). Since PD disease status did not relate to epigen-

etic age acceleration in these data, we ignored it in the

analysis. However, our findings are unchanged after in-

corporating PD status in a multivariate model. About

half of the samples overlapped with those of dataset 3,

which is why we could correlate epigenetic age acceler-

ation between blood and saliva.

Datasets 5 and 6: blood from Tsimane, Hispanics, and

Caucasians

Datasets 5 and 6, which were collected and generated in

the same way, only differ in terms of the chronological

ages. All participants in dataset 5 are older than 35 years

while those in dataset 6 are younger or equal to 35 years.

The dataset involved three different ethnic groups:

Tsimane Amerindians, Hispanics living in the US, and

Caucasians living in the US. Fasting whole-blood sam-

ples were collected from Tsimane via venipuncture in

field villages in the vicinity of San Borja, Bolivia as a part

of the annual biomedical data collection for a longitu-

dinal project on aging during 2004–2009 (Tsimane

Health and Life History Project). Manual complete blood

counts were conducted using a hemocytometer, erythro-

cyte sedimentation rate was calculated following the

Westergren method, and hemoglobin was analyzed with

a QBC Autoread Plus Dry Hematology System (Drucker

Diagnostics, Port Matilda, PA, USA). Specimens were

stored in liquid nitrogen until transfer to the US on dry

ice, where they were stored at –80 °C. All participants

provided written and informed consent; study protocols

and procedures were approved at the individual, village,

and Tsimane government level, as well as by the Univer-

sity of California, Santa Barbara and University of New

Mexico Institutional Review Boards (IRB Reference num-

bers 14-0604 and 07-157, respectively). Specimens were

shipped on dry ice to the University of Southern California

for extraction. The same core facility provided blood sam-

ples that were collected at the same time and stored in the

same condition as Hispanic participants living in the US.

The DNA samples from all participants (Caucasians,

Hispanics, Tsimane) were randomized across the Illumina

chips to avoid confounding due to chip effects. For our

age prediction analysis, we used background corrected

beta values resulting from Genome Studio.

Hispanics for datasets 5 + 6: Participant recruitment:

Participation in the BetaGene study was restricted to

Mexican Americans from families of a proband with ges-

tational diabetes mellitus (GDM) diagnosed within the

previous 5 years. Probands were identified from the patient

populations at Los Angeles County/USC Medical Center,

OB/GYN clinics at local hospitals, and the Kaiser Perma-

nente health plan membership in Southern California.

Probands qualified for participation if they: (1) were of

Mexican ancestry (defined as both parents and ≥3/4 of

grandparents Mexican or of Mexican descent); (2) had a

confirmed diagnosis of GDM within the previous 5 years;

(3) had glucose levels associated with poor pancreatic β-

cell function and a high risk of diabetes when not pregnant;

and (4) had no evidence of β-cell autoimmunity by GAD-

65 antibody testing. Recruitment targeted two general

family structures using siblings and/or first cousins of

GDM probands, all with fasting glucose levels <126 mg/dl

(7 mM): (1) at least two siblings and three first cousins

from a single nuclear family; or (2) at least five siblings

available for study. Using information from the proband to

determine preliminary eligibility, siblings and first cousins

were invited to participate in screening and, if eligible, de-

tailed phenotyping (below) and collection of DNA. Avai-

lable parents and connecting uncles and aunts were asked
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to provide DNA and had a fasting glucose determination.

In addition, women of Mexican ancestry who have gone

through pregnancy without GDM, as evidenced by a

plasma or serum glucose level <120 mg/dl after a 50 g oral

glucose screen for GDM, were also collected. Recruitment

criteria for control probands were similar to that of the

GDM probands, but were also selected to be age, BMI, and

parity-matched to the GDM probands. Unrelated samples

for the present methylation analysis were selected ran-

domly from all BetaGene participants. The BetaGene

protocol (HS-06-00045) has been approved by the Institu-

tional Review Boards of the USC Keck School of Medicine.

Dataset 7: blood from East Asians and Caucasians

Here we downloaded the publicly available DNA methy-

lation data from GSE53740 [73]. Since we found that

progressive supranuclear palsy (PSP) had a significant

effect on epigenetic age acceleration, we removed PSP

samples from the analysis. Further, we focused on com-

paring East Asians to Caucasians since other racial/eth-

nic groups were represented by fewer than 10 samples.

Dataset 8: blood from African populations

We used blood methylation data from [42]. We studied

peripheral whole-blood DNA from a total of 256 sam-

ples (for which the chronological age at the time of

blood draw was available).

As detailed in Fagny et al. [42], the samples come from

seven populations located across the Central African

belt. These populations can be divided into two main

groups: RHG populations, historically known as “pyg-

mies,” who have traditionally relied on the equatorial

forest for subsistence and who live close to, or within,

the forest; and AGR populations, living either in rural/

urban deforested regions or in forested habitats in which

they practice slash-and-burn agriculture. Informed con-

sent was obtained from all participants and from both

parents of any participants under the age of 18 years.

Ethical approval for this study was obtained from the

institutional review boards of Institut Pasteur, France

(RBM 2008-06 and 2011-54/IRB/3).

Dataset 9: cord blood samples from African Americans and

Caucasians

These 216 cord blood samples from 92 African American

and 70 Caucasian participants come from a study that de-

scribed racial differences in DNA methylation levels [44].

Datasets 10 and 11

Saliva samples from Caucasians and Hispanics. The data

were generated by splitting the data from [74] by sex,

which reflected the use of these data in the development

of the epigenetic clock software [20]. Note that these

data were generated on the older Illumina platform

(27 K array). Some of the data were used as training data

in the development of the epigenetic clock, which might

bias the results. By contrast, the novel saliva data from

PEG (dataset 4) provide an unbiased analysis.

Dataset 12: lymphoblastoid cell lines from Han Chinese,

African Americans, and Caucasians

We clustered the samples based on the interarray correl-

ation. Since 51 samples were very distinct from the

remaining samples, they were removed as potential out-

liers. Disease status did not affect the estimates of DNAm

age, which is why we ignored it.

Description of brain datasets

We collected brain datasets from six independent stu-

dies to assess gender effect on epigenetic age acceler-

ation. We focused on Caucasian samples since there

were insufficient numbers of other racial/ethnic groups.

Study 1: brain DNA methylation data from a study of

Alzheimer’s disease study from [75], GEO accession

GSE59685. DNA methylation profiles of the cerebellum,

entorhinal cortex, prefrontal cortex, and superior

temporal gyrus were available from 117 individuals.

We ignored disease status since it was not associated

with age acceleration.

Study 2: brain DNA methylation data from neurologically

normal participants from [76], GEO accession GSE15745.

DNA methylation data of the cerebellum, frontal cortex,

pons, and temporal cortex regions from up to 148

neurologically normal participants of European

ancestry [76].

Study 3: cerebellar DNA methylation data from [77],

GEO GSE38873. DNA methylation data from the

cerebellum of 147 participants from a case-control

study (121 cases/32 controls) of psychiatric disorders.

Since disease status did not affect DNAm age, we

ignored it.

Study 4: prefrontal cortex samples from [78], GEO

GSE61431. We analyzed 37 Caucasian participants

(European ancestry).

Study 5: frontal cortex and cerebellum from neurologically

normal Caucasian participants from [79]. The DNA

methylation data and corresponding SNP data can be

found in dbGAP, http://www.ncbi.nlm.nih.gov/gap

(accession: phs000249.v2.p1). We only analyzed 209

Caucasian participants who met our stringent quality

control criteria. We excluded several putative outliers

from the original dataset including three individuals who

were genotyped on a different platform, six participants
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who were outliers according to a genetic analysis

(PC plot), and 13 participants who had the wrong

gender according to the gender prediction algorithm

of the epigenetic clock software.

Study 6: dorsolateral prefrontal cortex samples from 718

Caucasian participants from the Religious Order Study

(ROS) and the Memory and Aging Project (MAP). The

DNA methylation data are available at the following

webpage https://www.synapse.org/#!Synapse:syn3168763.

We focused on brain samples of Caucasian participants

from these two prospective cohort studies of aging

that include brain donation at the time of death [80].

Additional details on the DNA methylation data can

be found in [81]. We were not able to evaluate the

effect of race/ethnicity on epigenetic age acceleration

since the dataset contained only 12 Hispanic samples

(which did not differ significantly from Caucasians in

terms of epigenetic age). Further, we found no association

between disease status and epigenetic age acceleration,

which is why we ignored disease status in our analysis.

Preprocessing of Illumina Infinium 450 K arrays

In brief, bisulfite conversion using the Zymo EZ DNA

Methylation Kit (ZymoResearch, Orange, CA, USA) as

well as subsequent hybridization of the HumanMethyla-

tion450k Bead Chip (Illumina, San Diego, CA, USA), and

scanning (iScan, Illumina) were performed according to

the manufacturers’ protocols by applying standard set-

tings. DNA methylation levels (β values) were determined

by calculating the ratio of intensities between methylated

(signal A) and unmethylated (signal B) sites. Specifically,

the β value was calculated from the intensity of the meth-

ylated (M corresponding to signal A) and unmethylated

(U corresponding to signal B) sites, as the ratio of fluores-

cent signals β =Max(M,0)/[Max(M,0) +Max(U,0) + 100].

Thus, β values range from 0 (completely unmethylated) to

1 (completely methylated) [82]. The epigenetic clock

software implements a data normalization step that

repurposes the BMIQ normalization method from

Teschendorff [83] so that it automatically references

each sample to a gold standard based on type II probes

as detailed in [20].

Estimating blood cell counts based on DNA methylation

levels

We estimate blood cell proportions using two different

software tools. Houseman’s estimation method [84], which

is based on DNA methylation signatures from purified

leukocyte samples, was used to estimate the proportions of

cytotoxic (CD8+) T cells, helper (CD4+) T, natural killer, B

cells, and granulocytes. The software does not allow us to

identify the type of granulocytes in blood (neutrophil, eo-

sinophil, or basophil) but we note that neutrophils tend to

be the most abundant granulocyte (~60 % of all blood cells

compared with 0.5–2.5 % for eosinophils and basophils).

The advanced analysis option of the epigenetic clock soft-

ware [20] was used to estimate the percentage of exhausted

CD8+ Tcells (defined as CD28-CD45RA-) and the number

(count) of naïve CD8+ T cells (defined as (CD45RA +

CCR7+) as described in [31].

Flow cytometric data from the Long Life Study of the WHI

While our DNA methylation data from the WHI were

assessed at baseline, the flow cytometric data were mea-

sured 14.6 years after baseline. Between March 2012 and

May 2013, a subset of WHI participants were enrolled in

the Long Life Study (LLS) and additional biospecimens,

physiometric, and questionnaire data were collected. All

surviving Hormone Trial participants followed through

2010 and all African American and Hispanic/Latino

participants from the SNP Health Association Resource

(WHI-SHARe) sub-cohort were included if CVD bio-

marker from WHI baseline exam and genome-wide

genotyping (GWAS) data were available and if they

were at least 63 years old by 1 January 2012. Women

who were either unable to provide informed consent

(e.g. dementia) or those residing in an institution (e.g.

skilled nursing facility) were excluded. Of a total of 14,081

eligible WHI participants, 9242 women consented to par-

ticipate, 7875 were enrolled, and 7481 underwent success-

ful blood draws. Blood was collected at locations across

the US using a standardized protocol between March

2012 and May 2013 (Examination Management Services,

Inc.) Fresh peripheral blood samples were packaged in

Styrofoam with cold packs and were sent overnight to a

central testing facility in Seattle.

A random sample of 600 residual fresh peripheral blood

specimens (single tube, following CBC analysis) was trans-

ported to the University of Washington Medical Center’s

(UWMC’s) flow cytometry laboratory and high-sensitivity,

multi-parameter flow cytometry was performed utilizing a

modified four-laser, multi-color Becton-Dickinson (BD;

San Jose, CA, USA) LSRII flow cytometer. All of the flow

cytometry studies were performed within 72 h of sample

collection between June 2012 and February 2013. A single

tube was used to evaluate T lymphocyte subsets: CD45

(KO), CD8 (BV), CD45RA (F), CCR7 (PE), CD5 (ECD),

CD56 (PC5), CD3 (APC-H7), CD4 (A594), CD28 (APC),

CD27 (PC7). A second tube evaluated B lymphocyte sub-

sets: CD45 (APC-H7), CD20 (V450), kappa (F), lambda

(PE), CD23 (ECD), CD5 (PC5.5), CD19 (BV650), CD38

(A594), CD10 (APC), CD27 (PC7), CD3 (APC-A700).

Categories of circulating cells were quantified using a

predefined population-based gating strategy based on

established gating strategies for both T lymphocyte [85]

and B lymphocyte [86] subsets.
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Flow cytometric data from the MACS cohort

As part of Additional file 2, we validated imputed blood

cell counts using flow cytometric data and DNA methy-

lation data collected from men of the Multi-Center

AIDS Cohort Study (MACS). The data were generated

as described in [87]. Briefly, human peripheral blood

mononuclear cell (PBMC) samples were isolated from

fresh blood samples and either stained for flow cytome-

try analysis or used for genomic DNA isolation. DNA

was isolated from 1 × 106 PBMC using Qiagen DNeasy

blood and tissue mini spin columns. Quality of DNA

samples was assessed using Nanodrop measurements

and accurate DNA concentrations were measured using a

Qubit assay kit (Life Technology). Cryopreserved PBMC

obtained from the repository were thawed and assayed for

viability using trypan blue. The mean viability of the sam-

ples was 88 %. Samples were stained for 30 min at 4 °C

with the following antibody combinations of fluorescently

conjugated monoclonal antibodies using the manufacturers

recommended amounts for 1 million cells: tube 1: CD57

FITC (clone HNK-1), CD28 phycoerythrin (PE, L293),

CD3 peridinin chlorophyll protein (PerCP,SK7), CD45RA

phycoerythrin cyanine dye Cy7 tandem (PE-Cy7, L48),

CCR7 Alexa Fluor 647 (AF647, 150503), CD8 allophyco-

cyanin H7- tandem (APC-H7, SK1) and CD4 horizon

V450 (V450, RPA-T4); tube 2: HLA-DR FITC (L243),

CD38 PE (HB7), CD3 PercP, CD45RO PE-Cy7 (UCHL-1),

CD95-APC(DXZ), CD8 APC-H7, and CD4 V450); tube 3:

CD38 FITC (HB7), IgD PE (1A6–2), CD3 PerCP, CD10

PE-Cy7 (HI10a), CD27 APC (eBioscience, clone 0323, San

Diego, CA), CD19 APC-H7 (SJ25C1) and CD20 V450

(L27). Antibodies were purchased from BD Biosciences,

San Jose, CA (BD) except as noted. Stained samples were

washed twice with staining buffer and run immediately on

an LSR2 cytometer equipped with a UV laser (BD, San

Jose, CA, USA) for the detection of 4′,6-diamidino-2-phe-

nylindole dihydrochloride (DAPI) which was used as a

viability marker at a final concentration of 0.1 ug/mL.

Lineage gated isotype controls to measure non-specific

binding were run and used CD3, CD4, and CD8 for T-cells

or CD19 for B-cells. Fluorescence minus one controls

(FMO) were also utilized to assist gating and cursor setting.

A range of 20,000–100,000 lymphocytes were acquired and

analyzed per sample using the FACSDiva software package

(BD, San Jose, CA, USA).

Additional files

Additional file 1: Lymphoblastoid cell lines from Han Chinese, Caucasians,

and African Americans. A Gray line corresponds to a natural spline regression

through Caucasian samples. Age acceleration was defined as residual with

respect to this line. B Marginally significant evidence that African American’s

are younger than other ethnic groups. (PDF 33 kb)

Additional file 2: Accuracy of imputed blood cell counts. Here we used an

independent dataset, which was not used to develop estimators of blood cell

counts based on DNA methylation data, to evaluate the accuracy of the

imputed blood cell counts. For each participant, both flow cytometric

measures and Illumina Inf450 data were available from 96 participants as

described in [88]. A-G The scatter plots depict the predicted abundance of

blood cell count (based on DNA methylation levels) versus the corresponding

observed flow cytometric measurement (y-axis). Each panel reports a robust

correlation coefficient (biweight midcorrelation) and a corresponding p value.

The Houseman method was used to impute (A) CD8+ T cells, (B) CD4+ T, (C)

B cells. The epigenetic clock software was used for imputing (D) naïve CD8+ T

cells, (E) naïve CD4 + T cells, (F) plasma blasts, and (G) exhausted CD8+ T cells.

H, I Another flow cytometric dataset was used to test for ethnic differences in

naïve CD4+ T cells. The y-axis shows the log transformed flow cytometric

measurement of naïve CD4+ T cells (adjusted for age). Specifically, the y-axis

reports the residual resulting from regressing log(naïve CD4+ T cell

abundance) on chronological age. H Findings for HIV– participants (198

Caucasians versus 34 Hispanics). I Findings for HIV+ participants (101

Caucasians, 58 Hispanics). Stouffer’s meta-analysis across the two strata

(HIV+ and HIV– strata) shows that Hispanics have significantly fewer

naïve CD4+ T cells (Stouffer’s p = 0.030, Stouffer’s Z = (1.75 + 1.31)/sqrt(2)).

(PDF 130 kb)

Additional file 3: Epigenetic age acceleration in Hispanics versus country

of residence in the WHI. Each column corresponds to different measure of

age acceleration: (A, D) age acceleration residual, (B, E) IEAA (C, F) EEAA.

(A-C, first row) results for “country of birth” (x-axis). (D-F, second row) results

for “country of residence” at age 35 years, which was defined by combining

two variables country of birth and “living in the US at age 35.” The left-most

bar corresponds to Hispanic women who were born outside the US and

lived outside the US at age 35 years, the middle bar corresponds to Hispanic

women who were born outside the US but lived already in the US at the

age of 35 years; the right-most bar reports results for women who were

born in the US and lived in the US at age 35 years. Incidentally, all of these

postmenopausal Hispanic women lived in the US at the age of the blood

draw. As a caveat, we mention the relatively small group sizes (small gray

numbers underneath the bars). (PDF 3 kb)

Additional file 4: Educational level versus age acceleration in the WHI.

Each row relates educational level (x-axis) to three respective measures of

epigenetic age acceleration: (A-D) Age Accel., (E-H) IEAA, and (I-L) EEAA.

The columns correspond to different groups of women from the WHI.

The first, second, third, and fourth columns report findings for (A, E, I) all

women, (B, F, J) Caucasians, (C, G, K) African Americans, and (D, H, L)

Hispanics, respectively. Each bar plot reports the mean values, 1 standard

error, and the p value from a non-parametric group comparison test (Kruskal–

Wallis). Education was assessed using the form “Demographics and Study

Membership.” We find that education predicts future EEAA. (PDF 6 kb)

Additional file 5: Hypertension status versus age acceleration in the

Bogalusa study. Each row relates hypertension status (x-axis) to three

respective measures of epigenetic age acceleration: (A-C) Age Accel.,

(D-F) IEAA, and (G-I) EEAA. The columns correspond to different groups. The

first, second, and third columns report findings for (A, D, G) all participants, (B,

E, H) Caucasians, (C, F, I) African Americans, respectively. Each bar plot reports

the mean values, 1 standard error, and the p value from a non-parametric

group comparison test (Kruskal–Wallis). Hypertension status was defined as

meeting any of the three conditions: (1) blood pressure > =140/90; (2) taking

medication; or (3) having been diagnosed as having hypertension. (PDF 4 kb)

Additional file 6: Type II diabetes status versus age acceleration in the

Bogalusa study. Each row relates type II diabetes status (x-axis) to three

respective measures of epigenetic age acceleration: (A-C) Age Accel.,

(D-F) IEAA, and (G-I) EEAA. The columns correspond to different groups.

The first, second, and third columns report findings for (A, D, G) all

participants, (B, E, H) Caucasians, (C, F, I) African Americans, respectively.

Each bar plot reports the mean values, 1 standard error, and the p value

from a non-parametric group comparison test (Kruskal–Wallis). Type 2

diabetes status was defined as fasting glucose > =126 mg/dl or taking

diabetes medication. (PDF 3 kb)

Additional file 7: Educational level versus age acceleration in the

Bogalusa study. Each row relates educational level (x-axis) to three

respective measures of epigenetic age acceleration: (A-C) Age Accel.,
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(D-F) IEAA, and (G-I) EEAA. The columns correspond to different groups.

The first, second, and third columns report findings for (A, D, G) all

participants, (B, E, H) Caucasians, (C, F, I) African Americans, respectively.

Each bar plot reports the mean values, 1 standard error, and the p value

from a non-parametric group comparison test (Kruskal–Wallis). Education

was grouped as follows: group 1 = grades 1–7; group 2 = grades 8–9; group

3 = grades 10–12; group 4 = vocational/tech training; group 5 = college;

group 6 = postgraduate. (PDF 5 kb)

Additional file 8: Robustness analysis with respect to other epigenetic

biomarkers of aging in the WHI. A-C Results for the Horvath method when 47

out of 353 CpGs were removed from the epigenetic clock (because they are

in the vicinity of a SNP). Since none of the remaining clock CpGs are near a

SNP, the resulting age acceleration is not trivially related to race/ethnicity. A

DNA methylation age versus chronological age. B Ethnicity versus age

acceleration (defined as residual resulting from regressing DNAm age on

chronological age). C Intrinsic epigenetic age acceleration versus ethnicity. D,

E Alternative epigenetic biomarker of aging based on 589 age-related CpGs

from Teschendorff [13]. The biomarker was defined using the following steps.

First, the DNA methylation levels of each CpGs were standardized (to mean

zero and variance 1). Second, a weighted average was formed by multiplying

each CpG by the T test statistic from the chronological age relationship based

on the table from the original reference. Third, the weighted average was

regressed on chronological age to arrive at a residual. The resulting residual is

referred to as extrinsic measure of age acceleration since it was not adjusted

for blood cell counts. Fourth, the resulting measure was regressed on

estimated blood cell counts (analogous to those used for IEAA) in order

to arrive an intrinsic measure of age acceleration. F, G Epigenetic

measures of age acceleration using the Hannum method 71 CpGs [19].

D, F Results for intrinsic measures, i.e. measures of age acceleration that

adjust both for blood cell counts and chronological age. E, G reports

extrinsic measures, i.e. no adjustment for imputed blood cell counts.

Each bar plot depicts 1 standard error and reports the results from a

Kruskal–Wallis test. (PDF 55 kb)

Additional file 9: Demographic and physiologic characteristics of

women from the WHI. Case-control status refers to CHD. Two designs

were used to select samples: case/control and case-cohort. (DOC 48 kb)
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