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Abstract

Individuals of the same chronological age exhibit disparate rates of biological ageing. Consequently, a number of

methodologies have been proposed to determine biological age and primarily exploit variation at the level of DNA

methylation (DNAm). A novel epigenetic clock, termed ‘DNAm GrimAge’ has outperformed its predecessors in predicting

the risk of mortality as well as many age-related morbidities. However, the association between DNAm GrimAge and

cognitive or neuroimaging phenotypes remains unknown. We explore these associations in the Lothian Birth Cohort 1936

(n= 709, mean age 73 years). Higher DNAm GrimAge was strongly associated with all-cause mortality over the eighth

decade (Hazard Ratio per standard deviation increase in GrimAge: 1.81, P < 2.0 × 10−16). Higher DNAm GrimAge was

associated with lower age 11 IQ (β=−0.11), lower age 73 general cognitive ability (β=−0.18), decreased brain volume

(β=−0.25) and increased brain white matter hyperintensities (β= 0.17). There was tentative evidence for a longitudinal

association between DNAm GrimAge and cognitive decline from age 70 to 79. Sixty-nine of 137 health- and brain-related

phenotypes tested were significantly associated with GrimAge. Adjusting all models for childhood intelligence attenuated to

non-significance a small number of associations (12/69 associations; 6 of which were cognitive traits), but not the association

with general cognitive ability (33.9% attenuation). Higher DNAm GrimAge associates with lower cognitive ability and brain

vascular lesions in older age, independently of early-life cognitive ability. This epigenetic predictor of mortality associates

with different measures of brain health and may aid in the prediction of age-related cognitive decline.

Introduction

The rapid ageing of the global population has resulted in an

increase in the personal and societal burden of age-associated

disease and disability [1]. Consequently, there is an urgent

need to identify those individuals at high risk of age-related

morbidities and mortality. Recently, a number of methods for

determining biological age have been developed which

leverage inter-individual variation in physiological and

molecular characteristics [2–6]. Primarily, these measures of

biological age have focussed on variation at the level of

DNA methylation (DNAm). DNAm is a commonly-studied

epigenetic mechanism typically characterised by the addition

of a methyl group to a cytosine-phosphate-guanine (CpG)

nucleotide base pairing, thereby permitting regulation of

gene activity [7]. Crucially, these biological age predictors,

also referred to as ‘epigenetic clocks’, correlate strongly with

chronological age; furthermore, for a given chronological

age, an advanced epigenetic age is associated with increased

mortality risk and many age-related morbidities [8–12].

A novel epigenetic clock, termed ‘DNAm GrimAge’ has

been developed to predict mortality [13]. To derive DNAm

GrimAge, an elastic net Cox regression model was used to

These authors contributed equally: Robert F. Hillary, Anna J.

Stevenson

* Riccardo E. Marioni

riccardo.marioni@ed.ac.uk

Extended author information available on the last page of the article.

Supplementary information The online version of this article (https://

doi.org/10.1038/s41380-019-0616-9) contains supplementary

material, which is available to authorized users.

1
2
3
4
5
6
7
8
9
0
()
;,
:

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-019-0616-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-019-0616-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-019-0616-9&domain=pdf
http://orcid.org/0000-0002-0435-3562
http://orcid.org/0000-0002-0435-3562
http://orcid.org/0000-0002-0435-3562
http://orcid.org/0000-0002-0435-3562
http://orcid.org/0000-0002-0435-3562
http://orcid.org/0000-0003-4036-3642
http://orcid.org/0000-0003-4036-3642
http://orcid.org/0000-0003-4036-3642
http://orcid.org/0000-0003-4036-3642
http://orcid.org/0000-0003-4036-3642
http://orcid.org/0000-0002-4941-5106
http://orcid.org/0000-0002-4941-5106
http://orcid.org/0000-0002-4941-5106
http://orcid.org/0000-0002-4941-5106
http://orcid.org/0000-0002-4941-5106
http://orcid.org/0000-0002-9812-6642
http://orcid.org/0000-0002-9812-6642
http://orcid.org/0000-0002-9812-6642
http://orcid.org/0000-0002-9812-6642
http://orcid.org/0000-0002-9812-6642
http://orcid.org/0000-0002-4110-3589
http://orcid.org/0000-0002-4110-3589
http://orcid.org/0000-0002-4110-3589
http://orcid.org/0000-0002-4110-3589
http://orcid.org/0000-0002-4110-3589
http://orcid.org/0000-0002-0198-4588
http://orcid.org/0000-0002-0198-4588
http://orcid.org/0000-0002-0198-4588
http://orcid.org/0000-0002-0198-4588
http://orcid.org/0000-0002-0198-4588
mailto:riccardo.marioni@ed.ac.uk
https://doi.org/10.1038/s41380-019-0616-9
https://doi.org/10.1038/s41380-019-0616-9


regress time-to-death due to all-cause mortality on chron-

ological age, sex and DNAm-based surrogates for smoking

pack years and 12 plasma proteins. The model selected

chronological age, sex and methylation-based surrogates for

smoking pack years and for 7/12 plasma proteins. The

linear combination of these variables allows for an estima-

tion of DNAm GrimAge. As with other epigenetic clocks, if

an individual’s DNAm GrimAge is higher than their

chronological age, then this provides a measure of accel-

erated biological ageing. Lu et al. [13] comprehensively

demonstrated that an accelerated DNAm GrimAge (also

known as AgeAccelGrim) is associated with a number of

peripheral, lifestyle and cardiometabolic traits and outper-

forms predecessor clocks in predicting death. However, the

relationship between an accelerated GrimAge and cognitive

as well as neuroimaging phenotypes remains unexplored.

As brain structure and cognitive function show mean

declines with age, and associate with disability and disease

burden, the discovery of molecular correlates of neurolo-

gical and neurostructural aberrations may be of particular

benefit in gerontology [14, 15]. In this study we test the

hypothesis that, in a large narrow age-range population

cohort of older adults (Lothian Birth Cohort 1936

(LBC1936)), an accelerated DNAm GrimAge is cross-

sectionally associated with poorer cognitive performance,

structural neuroimaging measures and neurology-related

proteins.

In addition, higher childhood intelligence (as defined by

age 11 IQ) is associated with a lower risk of mortality across

the life course [16–18]. Furthermore, childhood intelligence

associates with a healthier lifestyle and less morbidity in

middle age, as well as a lower allostatic load in older age

[19–21]. Intelligence in early life is related to variability in

cortical thickness, white matter macro- and micro-structure,

as well as cognitive ability, fewer vascular lesions and lower

risk of stroke in later life [22–27]. Notably, adjustment for

age 11 IQ was recently shown to attenuate associations

between another epigenetic clock measure, DNAm Pheno-

Age, and a wide range of phenotypes including cognitive

traits in LBC1936 [28]. Therefore, we also test the

hypothesis that controlling for childhood intelligence

attenuates associations between DNAm GrimAge and mor-

tality, cognitive and neuroimaging measures, as well as

neurology-related proteins in older age.

Materials and methods

The Lothian Birth Cohort 1936

The LBC1936 comprises Scottish individuals born in 1936,

most of whom took part in the Scottish Mental Survey 1947

at age 11. Participants who were living within Edinburgh

and the Lothians were re-contacted ~60 years later. Of these

participants, 1091 consented and joined the LBC1936.

Upon recruitment, participants were ~70 years of age (mean

age: 69.6 ± 0.8 years) and subsequently attended four

additional waves of clinical examinations about every 3

years. Detailed genetic, epigenetic, physical, psychosocial,

cognitive, neuroimaging, health and lifestyle data are

available for members of the LBC1936. Recruitment and

testing of the LBC1936 have been described previously

[29, 30].

Methylation preparation in the Lothian Birth Cohort
1936

DNA from whole blood was assessed using the Illumina

450 K methylation array at the Edinburgh Clinical Research

Facility. Details of quality control procedures have been

described elsewhere (see Supplementary Methods) [31, 32].

Derivation of DNAm GrimAge

DNAm GrimAge was calculated using the online age cal-

culator (https://dnamage.genetics.ucla.edu/) developed by

Horvath [33]. LBC1936 methylation data were used as

input for the algorithm and data underwent a further round

of normalisation by the age calculator. The DNAm

GrimAge biomarker was calculated using a method

developed by Lu et al. [13] and is based on a linear com-

bination of age, sex, DNAm-based surrogates for smoking,

and seven proteins (adrenomedulin (DNAm ADM), beta-2-

microglobulin (DNAm B2M), cystatin C (DNAm cystatin

C), growth differentiation factor 15 (DNAM GDF15),

leptin (DNAm leptin), plasminogen activation inhibitor

1 (DNAm PAI1), and tissue inhibitor metalloproteinaise

(DNAm TIMP1)). Supplementary Fig. 1 shows the corre-

lation between all methylation-based surrogates. All pre-

dictors, with the exception of DNAm Leptin (r2=−0.29),

were positively correlated with DNAm GrimAge (absolute

range= [0.24: 0.82], median= 0.25 and mean of correla-

tion coefficients= 0.25). The difference between DNAm

GrimAge and chronological age (an accelerated DNAm

GrimAge) provides a measure of biological ageing. In a

previous study, for a given chronological age, individuals

with higher DNAm GrimAge had a higher risk for mor-

tality than individuals of the same chronological age with a

lower DNAm GrimAge [13].

Phenotypic data

Our phenotypic analyses were divided into four sections.

Firstly, we examined the association between age-adjusted

DNAm GrimAge and mortality in the LBC1936 over

9 years of follow-up. For our survival models (and later
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longitudinal cognitive analyses), we aimed to determine

whether DNAm GrimAge at Wave 1 of the LBC1936 study

(n= 906; age: 70 years) could predict mortality (or cogni-

tive decline) over all four waves of available data (to age

79 years). For all other phenotypic analyses, we examined

cross-sectional associations with age-adjusted DNAm

GrimAge at Wave 2 (age: 73 years). This is because com-

plete proteomic, brain imaging, DNAm and phenotypic data

were available at this time point only (n= 709 individuals).

For cross-sectional analyses, we did not wish to determine

whether Wave 1 (age: 70 years) epigenetic data associated

with Wave 2 (age: 73 years) phenotypic data in order to

limit the potential issue of retrocausality. In this first sec-

tion, we also investigated the cross-sectional association of

an accelerated DNAm GrimAge with a number of physical

(body mass index, height, grip strength, lung function and

weight) and blood traits (albumin, C-reactive protein, cho-

lesterol, creatinine, ferritin, interleukin-6 and iron; at Wave

2; age 73 years) that have been related to mortality and

frailty in older age [34–42].

Secondly, we tested the association between an acceler-

ated DNAm GrimAge and cognitive traits (n= 18 pheno-

types). Cognitive tests taken at Wave 2 (age: 73 years)

included six Wechsler Adult Intelligence Scale-III UK

(WAIS-III) non-verbal subtests (matrix reasoning, letter

number sequencing, block design, symbol search, digit

symbol, and digit span backward). Principal component

analysis (PCA) was performed using these cognitive tests

and scores on the first un-rotated principal component

(general cognitive ability, g) were extracted which

explained 51% of variance. Individual test loadings ranged

from 0.65 to 0.75. Wechsler Memory Scale-III items as well

as measures of crystallised intelligence and reaction time

were also examined in relation to DNAm GrimAge. In

addition, we examined whether an accelerated DNAm

GrimAge associated with APOE ε4 carrier status. Similar to

our survival analyses, we used Wave 1 epigenetic data to

determine whether DNAm GrimAge (at age 70 years) could

predict decline in general cognitive ability across all four

waves of the LBC1936 study. For this analysis, we used the

lmerTest package in R to fit mixed-effects models to regress

general cognitive ability onto sex and an interaction term

between DNAm GrimAge at Wave 1 and chronological

age, all as fixed effects [43]. In addition, participant ID was

fitted as a random effect on the intercept.

Thirdly, we tested the association between an accelerated

DNAm GrimAge and neuroimaging phenotypes at Wave 2

(age: 73 years, see Supplementary Methods). The brain

MRI acquisition and processing pipeline has been made

available in an open access protocol paper [44]. Total brain,

normal-appearing white matter, grey matter and white

matter hyperintensity volumes were segmented using

a semi-automated multi-spectral technique [45]. These

volumes were then expressed as a proportion of intracranial

volume (ICV), which controls for the confounding effect of

head size. The resultant ratios were tested for associations

with age-adjusted DNAm GrimAge. Diffusion-tensor ima-

ging-derived measures of fractional anisotropy (FA) and

mean diffusivity (MD) were obtained for participants at

Wave 2 (age: 73 years). Prior to conducting region-specific

analyses, general factors of FA (gFA) and MD (gMD) were

derived by entering the left and right FA and MD values

of each tract separately into a PCA. Scores from the first

un-rotated principal component were extracted and labelled

as gFA (variance explained: 52%, loadings: 0.46–0.95) or

gMD (variance explained: 48%, loadings: 0.47–0.88),

respectively. These general factors reflect common micro-

structural properties across main white matter pathways and

capture the common variance in white matter integrity [46].

Fourthly, we tested the association between an acceler-

ated DNAm GrimAge and the levels of 92 neurological

protein biomarkers (Olink® neurology panel). The neurol-

ogy panel represents proteins with established links to

neuropathology as well as exploratory proteins with roles in

processes including cellular communication and immunol-

ogy. Plasma was extracted from 816 blood samples col-

lected in citrate tubes at mean age 72.5 ± 0.7 years (Wave 2;

Supplementary Methods). Protein levels were transformed

by rank-based inverse normalisation. Normalised protein

levels were regressed onto age-adjusted DNAm GrimAge.

Descriptive statistics for phenotypes are presented in

Supplementary File 1. Data collection protocols have

been described fully previously and are described in Sup-

plementary Note 1 [47].

Statistical analyses

DNAm GrimAge was regressed onto chronological age for

all LBC1936 participants. These residuals were defined as

an accelerated DNAm GrimAge (also known as AgeAc-

celGrim). Linear regression models were used to investigate

relationships between continuous variables and an acceler-

ated DNAm GrimAge, as well as age-adjusted methylation-

based surrogates for smoking pack years and the plasma

proteins that feed into DNAm GrimAge. Logistic regression

was used to test the association between methylation-based

predictors and APOE ε4 carrier status. An accelerated

DNAm GrimAge, age-adjusted DNAm Pack Years or age-

adjusted DNAm plasma protein levels were the independent

variable of interest in each regression model and all vari-

ables were scaled to have a mean of zero and unit variance.

Height and smoking status were included as covariates in

the models for lung function (forced expiratory volume

FEV1; forced vital capacity: FVC; forced expiratory ratio:

FER; and peak expiratory flow: PEF). All models were

adjusted for chronological age and sex. Mixed-effects

3808 R. F. Hillary et al.



models were used to examine the longitudinal association

between an accelerated DNAm GrimAge and general cog-

nitive ability. To investigate possible statistical confounding

by childhood cognitive ability, all models were repeated

with adjustment for age 11 IQ scores. To correct for mul-

tiple testing, and given that the methylation-based pre-

dictors exhibited a high degree of inter-correlation, we

applied the false discovery rate (FDR; [48]) method to

phenotypic association analyses (n= 137 phenotypes),

separately for each predictor. Associations between age-

adjusted DNAm GrimAge and regional cortical volume

were conducted using the SurfStat toolbox (http://www.ma

th.mcgill.ca/keith/surfstat) for Matrix Laboratory R2018a

(The MathWorks Inc, Natick, MA), using the same cov-

ariates as above and FDR correction for multiple testing.

Results

Cohort characteristics

Details of LBC1936 participant characteristics at Waves 1

and 2 are presented in Supplementary File 1. Briefly, 47.6%

of participants in this study were female. At Wave 1

(relating to the mortality and longitudinal analyses), mean

chronological age for both males and females was 69.6

years (SD 0.8), whereas the mean DNAm GrimAge was

67.4 years (SD 5.2). At Wave 2 (relating to cross-sectional

analyses), mean chronological age for both males and

females was 72.5 years (SD 0.7), whereas the mean DNAm

GrimAge was 70.0 years (SD 4.9). The lower mean mea-

sure of epigenetic age when compared to chronological age

may reflect overall good health of the cohort. However, the

variance associated with DNAm GrimAge is much higher

than that of chronological age. When calculated across all

four available waves of the LBC1936 study, DNAm

GrimAge exhibits an intra-class correlation coefficient of

0.85. Mean age 11 IQ scores were 100.69 (SD: 15.37).

Notably, lower IQ scores at age 11 (β=−0.11, P= 0.02)

were associated with an accelerated DNAm GrimAge.

Associations between age 11 IQ and tested phenotypes are

presented in Supplementary File 2.

DNAm GrimAge predicts mortality and associates
with frailty factors in the LBC1936

Mortality in LBC1936 participants was assessed in relation

to an accelerated DNAm GrimAge as well as age-adjusted

DNAm-based surrogate markers for plasma protein levels

and smoking pack years. DNAm GrimAge was derived for

906 participants with methylation data (at Wave 1: age

70 years). There were 226 deaths (24.9%) over 9 years of

follow-up.

A higher DNAm GrimAge was significantly associated

with risk of all-cause mortality (Hazard Ratio (HR)= 1.81

per SD increase in DNAm GrimAge, 95% confidence

interval (CI)= [1.58, 2.07], P < 2.0 × 10−16). Furthermore,

higher levels of age-adjusted DNAm Pack Years were

associated with all-cause mortality in the LBC1936 (HR=

1.64 per SD, 95% CI [1.46, 1.86], P= 2.0 × 10−16). In

relation to methylation-based surrogates for plasma protein

levels, six of the seven DNAm protein surrogates (DNAm

ADM, B2M, Cystatin C, GDF15, PAI1 and TIMP1) were

significantly associated with all-cause mortality (see Sup-

plementary File 3; Fig. 1a). Following adjustment for age

11 IQ, there was very little change in the HRs and all of

the predictors remained significant. Indeed, HRs from all

survival models ranged from an attenuation of 2.4% to

an increase of 1.8% following adjustment for childhood

intelligence.

A Kaplan–Meier survival plot for an accelerated DNAm

GrimAge, split into the highest and the lowest quartiles, is

presented in Fig. 1b illustrating the higher mortality risk for

those with a higher DNAm GrimAge. Kaplan–Meier sur-

vival plots for methylation-based surrogates for smoking

pack years and plasma protein levels are presented in

Supplementary Fig. 2.

For the remainder of the results, only those associations

with an FDR-corrected significant P value ( < 0.05) are pre-

sented herein and in Fig. 2. Full results are presented in

Supplementary File 4. In relation to major mortality- and

frailty-associated physical traits in the LBC1936, an accel-

erated DNAm GrimAge was associated with increased levels

of interleukin-6 (β= 0.37, P= 2.3 × 10-18), C-reactive pro-

tein (β= 0.25, P= 2.8 × 10−8), creatinine (β= 0.16, P=

1.1 × 10−4), an increased body mass index (β= 0.16, P=

2.9 × 10−4), triglyceride concentration (β= 0.13, P= 5.0 ×

10−3) and body weight (β= 0.09, P= 0.04) (Fig. 2). The

relationship between accelerated DNAm GrimAge and tri-

glycerides was no longer significant after controlling for

childhood cognitive ability with the effect size decreasing

from 0.13 to 0.09 (32.5% attenuation) (Supplementary

File 4).

An accelerated DNAm GrimAge was negatively asso-

ciated with all four measures of lung function (β= [−0.16

to −0.27], P= [9.4 × 10−7 to 1.7 × 10−16]), iron levels

(β=−0.24, P= 7.2 × 10−7), low-density lipoprotein

cholesterol levels (β=−0.17, P= 1.1 × 10−4), total cho-

lesterol levels (β=−0.13, P= 1.1 × 10−4) and height

(β=−0.08, P= 0.01) (Fig. 2). Only the relationship

between accelerated DNAm GrimAge and height was

non-significant after controlling for childhood intelli-

gence, with the effect size attenuating from −0.08 to

−0.06 (% attenuation: 24.5%) (Supplementary File 4). On

average, associations were attenuated by 2.5% after con-

trolling for age 11 IQ [ranged from: 19.1% increase (total

An epigenetic predictor of death captures multi-modal measures of brain health 3809
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Fig. 2 Cross-sectional association between age-adjusted DNAm

GrimAge and cognitive, neuroimaging and physical traits in the

LBC1936. Cognitive: An accelerated DNAm GrimAge was negatively

associated with the general factor of cognitive ability, digit symbol

coding, symbol search and matrix reasoning tasks. DNAm GrimAge

was also associated with an increased mean four choice reaction time.

Neuroimaging: Age-adjusted DNAm GrimAge was negatively asso-

ciated with the ratios of white matter volume, brain volume and grey

matter volume to intracranial volume, and positively associated with

the ratio of volume of white matter hyperintensities to intracranial

volume. Physical: An accelerated DNAm GrimAge was negatively

associated with four measures of lung function: forced expiratory

volume in 1 s, forced vital capacity, forced expiratory ratio and peak

expiratory flow, as well as levels of iron, low-density lipoprotein

cholesterol and total cholesterol. Age-adjusted DNAm GrimAge was

positively associated with weight, levels of creatinine, body mass

index as well as levels of C-reactive protein and interleukin-6.

Horizontal lines indiciate 95% confidence intervals. BMI body mass

index, CRP C-reactive protein, FCRT four choice reaction time, FER

forced expiratory ratio, FEV forced expiratory volume, FVC forced

vital capacity, GM grey matter, ICV intracranial volume, IL6 inter-

leukin-6, LDL low-density lipoprotein, PEF peak expiratory flow, WM

white matter, WHM white matter hyperintensities

Fig. 1 DNAm GrimAge and its component surrogate markers predict

mortality in the LBC1936. a Forest plot showing hazard ratios and

95% confidence intervals (horizontal lines) from Cox proportional

hazard models for DNAm GrimAge and its constituent DNAm sur-

rogate markers in the LBC1936 (n= 906, no. of deaths= 226

following nine years of follow-up). All associations with the excep-

tions of DNAm Leptin were significant. b Kaplan–Meier survival

curve exhibiting the survival probabilities for the top (highest DNAm

GrimAge) and bottom quartiles (lowest DNAm GrimAge) for DNAm

GrimAge in the LBC1936 following 9 years of follow-up

3810 R. F. Hillary et al.



cholesterol) to 32.5% attenuation (triglycerides)]. All

associations between blood and physical traits and an

accelerated DNAm GrimAge in this study are presented in

Supplementary Fig. 3. Relationships between all pheno-

types tested in this study and age-adjusted DNAm Pack

Years as well as age-adjusted plasma protein levels are

presented in Supplementary File 5. Significant relation-

ships are further detailed in Supplementary Note 2.

DNAm GrimAge associates with lower cognitive
ability in the LBC1936

An accelerated DNAm GrimAge was significantly asso-

ciated with lower measures of general cognitive ability

(g: β=−0.18, P= 8.0 × 10−6; n= 709). Furthermore, an

accelerated DNAm GrimAge was negatively associated with

all six component tests for fluid intelligence from which g

was derived (see Section “Phenotypic data”; β= [−0.11 to

−0.16], P= [0.02 to 2.4 × 10−4]). In addition, an accelerated

DNAm GrimAge was associated with an increased four

choice reaction time mean (β= 0.16, P= 2.9 × 10−4). Lower

IQ scores at age 70 (which correlated 0.70 with age 11 IQ

scores) were associated with age-adjusted DNAm GrimAge

(β=−0.11, P= 0.02). An accelerated DNAm GrimAge

was also negatively associated with the following measures

of crystallised intelligence: the Wechsler Test of Adult

Reading (β=−0.13, P= 4.0 × 10−3) and the National Adult

Reading Test (β=−0.10, P= 0.03).

Following adjustment for age 11 IQ, an accelerated

DNAm GrimAge remained significantly associated with

general cognitive ability (g: β=−0.12, P= 2.0 × 10−3;

33.9% attenuation). Three out of the six tests which con-

stitute the general intelligence factor remained significant

after adjustment for age 11 IQ (digit-symbol coding, symbol

search, and matrix reasoning). Furthermore, the association

between an accelerated DNAm GrimAge and an increased

mean four choice reaction time remained significant fol-

lowing adjustment for age 11 IQ (Fig. 2). On average,

associations between cognitive tasks and an accelerated

DNAm GrimAge were attenuated by 41.1% following con-

trolling for age 11 IQ (ranging from 21.7% attenuation [four

choice reaction time] to 77.4% attenuation [National Adult

Reading Test]). All associations between cognitive traits and

an accelerated DNAm GrimAge in this study are presented

in Supplementary Fig. 4. Finally, an accelerated DNAm

GrimAge was not associated with APOE ε4 carrier status—

the strongest genetic risk factor for Alzheimer’s disease

(odds ratio= 0.96, 95% CI= [0.93, 1.00], P= 0.06).

Accelerated DNAm GrimAge showed a borderline sig-

nificant association with faster cognitive decline (interac-

tion term between an accelerated DNAm GrimAge at Wave

1 and age: β=−0.018, P= 0.05; n= 906). This associa-

tion was attenuated following adjustment for age 11 IQ

(β=−0.015, P= 0.11, % attenuation: 16.7%). Secondly,

restricting the set of individuals to just those incorporated

into our cross-sectional design (n= 709), accelerated

DNAm GrimAge at Wave 1 was significantly associated

with decline in general cognitive ability across the eighth

decade (β=−0.020, P= 0.03; n= 709). After adjusting

for childhood cognitive ability, this association was

attenuated to non-significance (β=−0.017, P= 0.07, %

attenuation: 15%).

DNAm GrimAge is associated with gross
neurostructural differences in the LBC1936

An accelerated DNAm GrimAge was associated with lower

white matter volume (β=−0.28, P= 1.7 × 10−8), total

brain volume (β=−0.25, P= 1.4 × 10−7) and grey matter

volume (β=−0.22, P= 1.3 × 10−5). Furthermore, an

accelerated DNAm GrimAge was associated with an

increased volume of white matter hyperintensities (β=

0.17, P= 1.0 × 10−3) (Fig. 2). All associations remained

significant following adjustment for age 11 IQ (Supple-

mentary File 4). On average, these associations were

attenuated by 6.98% after adjusting for age 11 IQ. All

associations between neuroimaging traits and an accelerated

DNAm GrimAge in this study are presented in Supple-

mentary Fig. 5.

An accelerated DNAm GrimAge was not significantly

associated with general factors of white matter micro-

structural metrics i.e. fractional anisotropy (β=−0.009,

P= 0.89) or mean diffusivity (β=−0.001, P= 0.98), hence

additional regional analyses were not performed. However,

given that DNAm GrimAge was associated with grey matter

volume, we further tested whether there was regional cor-

tical heterogeneity in relation to the DNAm GrimAge-grey

matter association. The negative association between accel-

erated DNAm GrimAge and cortical volume showed a

degree of regional heterogeneity across the cortical surface

(Fig. 3). The strongest magnitudes were evident in lateral

and medial frontal and temporal regions, extending into

motor and somatosensory cortex as well as into the posterior

cingulate and precuneal areas. In contrast, associations in

occipital and inferior lateral and medial frontal regions

were non-significant. When the associations were addition-

ally corrected for age 11 IQ, the magnitude of the effect sizes

at the FDR-significant loci were weakly attenuated

(mean t-value attenuation= 3.36%; Supplementary Fig. 6).

Association of DNAm GrimAge with neurological
protein biomarkers

Forty of the 92 neurology-related Olink® proteins were

significantly associated with an accelerated DNAm

GrimAge at FDR-corrected P < 0.05 (n= 709). These
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proteins explained between 0.73% (β=−0.09, NC-Dase)

to 7.19% (β= 0.30, SKR3) of inter-individual variation in

an accelerated DNAm GrimAge (in a model which was not

adjusted for age and sex; Supplementary File 6). Following

adjustment for age 11 IQ, 36/40 associations (90%)

remained significant. After adjusting for age 11 IQ, asso-

ciations were, on average, attenuated by 3.03%.

Correlation between DNAm GrimAge and DNAm
Pack Years

We observed that DNAm GrimAge and DNAm Pack

Years were highly correlated (correlation coefficient:

0.82) and were cross-sectionally associated with many of

the same variables in our phenotypic analyses (Supple-

mentary File 7). Therefore, we carried out a follow-up

analysis to determine the difference in magnitude between

the effect sizes for DNAm GrimAge or DNAm Pack

Years in relation to phenotypes associated with both

predictors. Prior to adjusting for age 11 IQ, the effect sizes

had a correlation coefficient of 0.88. However, they were,

on average, 16.5% greater for DNAm GrimAge when

compared to DNAm Pack Years. Following adjustment

for age 11 IQ, the correlation coefficient was 0.84, and the

effect sizes were, on average, 23.1% greater for DNAm

GrimAge upon comparison to DNAm Pack Years. A plot

demonstrating the correlation between effect sizes for

DNAm GrimAge and DNAm Pack Years from our cross-

sectional phenotypic analyses is presented in Supple-

mentary Fig. 7.

Sex-specific differences in associations with DNAm
GrimAge

As a sensitivity analysis, we accounted for an interaction

between age-adjusted DNAm GrimAge and sex. Prior to

adjusting for age 11 IQ, there was evidence for a sex-specific

difference only in the relationships between an accelerated

DNAm GrimAge and all four measures of lung function

(FVC: βGrimAge ×males= 0.50, PGrimAge ×males= 5.6 × 10−39;

FEV: βGrimAge ×males= 0.39, PGrimAge ×males= 1.3 × 10−23;

PEF: βGrimAge ×males= 0.17, PGrimAge ×males= 1.2 × 10−4; FER:

βGrimAge ×males=−0.14, PGrimAge ×males= 0.049) (Supplemen-

tary File 8). The same interaction model was also rerun

accounting for age 11 IQ. Three of the lung function tests

(all but FER), as well as reading ability and general cognitive

ability, exhibited significant interactions between sex and

DNAm GrimAge (Supplementary File 9).

Adjustment for educational attainment

In a further sensitivity analysis, we found that an accelerated

DNAm GrimAge was significantly associated with years of

education (β=−0.12, P= 1.7 × 10−3). Models adjusted for

age 11 IQ were rerun with an additional adjustment for years

of education. Of the 57 relationships which remained sig-

nificant after adjusting for age 11 IQ, eight were attenuated to

non-significance when adjusting for education. These inclu-

ded associations with symbol search and weight (β=−0.10

to −0.08, % attenuation= 22.3%; β= 0.09 to 0.05, %

attenuation= 44.4%, respectively) and with six proteins

Fig. 3 Cross-sectional association between age-adjusted DNAm

GrimAge and regional cortical volume in the LBC1936. Left panel: t

values indicate the magnitude of the negative association (values have

been flipped for visualisation purposes). An accelerated DNAm

GrimAge was negatively associated with cortical volume. Right panel:

Corresponding FDR-corrected P values indicate the spatial distribution

of significant associations. FDR false discovery rate
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(THY 1, RGMA, CDH3, TNFRSF21, NEP and TMPRSS5,

mean attenuation: 8.8%) (Supplementary File 10).

Discussion

In this study, we found that a higher-than-expected DNAm

GrimAge strongly predicted mortality and was associated

with a number of mortality- and frailty-associated traits. This

provides the first external replication of the association

between DNAm GrimAge and survival. After controlling for

childhood cognitive ability, we found that an accelerated

DNAm GrimAge was cross-sectionally associated with lower

general cognitive ability as well as slower reaction time speed

and lower scores on processing speed and perceptual orga-

nisation tasks. There was tentative evidence to suggest that an

accelerated DNAm GrimAge measured at age 70 may predict

decline in general cognitive ability up to age 79. Furthermore,

an accelerated DNAm GrimAge was associated with gross

neuroanatomical differences and vascular lesions in older age.

Finally, a number of neurology-related proteins were asso-

ciated with an accelerated DNAm GrimAge.

DNAm GrimAge was developed using mortality as a

reference and consequently supplants its predecessors in

relation to mortality risk prediction. Indeed, in this study, we

observed a hazard ratio of 1.81 per standard deviation

increase in an accelerated DNAm GrimAge, which outper-

forms that of previous epigenetic clocks (Hannum Age HR:

1.22, Horvath Age HR: 1.19; DNAm PhenoAge HR: 1.17; all

applied to LBC1936) [8, 28]. In relation to mortality- and

frailty-associated traits, the strongest association was between

DNAm GrimAge and interleukin-6. Furthermore, DNAm

GrimAge was strongly associated with C-reactive protein

(whose production is stimulated by interleukin-6). Together,

this corroborates evidence for the “inflammaging” theory

which postulates that chronic, low-grade inflammation sig-

nificantly influences biological ageing and decline [49]. An

accelerated DNAm GrimAge was also associated with lower

low-density lipoprotein cholesterol and total cholesterol. In

older age, lower levels of these blood-based factors are also

associated with higher risk of mortality [50]. In addition,

DNAm GrimAge was associated with a higher body mass

index which does not agree with previous findings showing

that an increased body mass index is protective against

mortality risk [39]. However, this may be driven by a strong

association between DNAm Leptin and body mass index.

Indeed, leptin is an adipose tissue-derived hormone which

acts an appetite suppressant, and is strongly correlated with

body mass index and obesity [51, 52].

We observed a significant relationship between higher

childhood intelligence (as well as age 70 IQ) and a lower

DNAm GrimAge in older age. After controlling for child-

hood cognitive ability, associations between DNAm

GrimAge and tests of crystallised intelligence were atte-

nuated to non-significance. This finding is not surprising

given that crystallised intelligence remains stable through-

out adulthood [53], and that the National Adult Reading

Test strongly retrodicts childhood IQ in this sample [54].

However, relationships between DNAm GrimAge and

general cognitive ability, as well as fluid intelligence mea-

sures, remained significant after adjusting for age 11 IQ.

Nevertheless, these associations were attenuated by an

average of 41.4% following adjustment for age 11 IQ.

Therefore, blood-based methylation changes, as captured by

DNAm GrimAge, helps to explain additional variance in

late life cognitive ability and fluid intelligence.

An accelerated DNAm GrimAge was significantly

associated with gross neurostructural differences, including

reductions in total brain, grey matter and white matter

volumes and increases in white matter hyperintensity

volumes. There was also some heterogeneity in the associa-

tions with regional cortical volume, whereby effects were

strongest in frontal and temporal regions. These regions also

exhibit the largest annual decrease in middle and older age

[55], and are most informative for predicting chronological

age (albeit using cortical thickness rather than volume; [56]).

White matter hyperintensities, which associate with DNAm

GrimAge, have also been linked to cortical loss in temporal

and lateral frontal regions [57]. This may indicate that altered

methylation profiles could help explain mechanistic rela-

tionships between neurovascular lesions and cortical atrophy.

However, adjustment for vascular risk factors such as

hypercholesterolaemia, smoking and diabetes is merited in

this context. Furthermore, white matter hyperintensities are

also related to physical disability, processing speed and

cognitive decline [58, 59]. Additionally, the presence of white

matter hyperintensities doubles the risk of dementia, and

triples the risk of stroke, and is associated with clinical out-

comes in stroke [60, 61]. Therefore, DNAm GrimAge may

capture vital aspects of age-related alterations in neuro-

structural integrity and gross brain pathology.

Here, DNAm GrimAge associated with poorer cognitive

ability and neurostructural correlates of dementia. Dementia

encompasses strong psychiatric components and overlaps

with other psychiatric conditions [62]. In addition, there is a

significant genetic or phenotypic overlap between cognitive

ability and psychiatric conditions, such as schizophrenia and

depression [63, 64]. Furthermore, DNAm GrimAge captured

various deleterious aspects of brain health, including altered

brain structure and neurological protein biomarkers, which

relate to psychiatric disorders. Thus, this composite molecular

predictor of mortality should be measured in other large-scale
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cohorts with incident and prevalent neurological and neu-

ropsychiatric phenotype data to determine its utility in pre-

dicting clinically-defined disease.

We observed a very strong correlation between DNAm

GrimAge and DNAm Pack Years. Indeed, the associations

between smoking and mortality, cognitive decline and brain

pathology are well-documented [65–67]. However, the

larger effect sizes for DNAm GrimAge suggest that this

composite biomarker is supplemented by the inclusion of

methylation-based surrogates for plasma protein levels. We

identified associations with a number of neurology-related

proteins (n= 40 before adjustment for age 11 IQ; n= 36

after adjustment for age 11 IQ) which may further inform

the risk of mortality and age-related morbidities, particu-

larly in relation to neurological disease. Future studies are

necessary to define the biological relationships between

such proteins and their relevance to age-related pathologies

and cognitive decline.

The use of methylation-based proxies for smoking pack

years and proteomic data is advantageous as methylation-

based predictors are often more accurate than self-reported

phenotypes, and the cost of complex proteomic platforms is

negated [68]. One strength of this study is that rich data

were available across the eighth decade of life, a period in

which risk of cognitive decline and compromised brain

integrity increases significantly. However, LBC1936 com-

prises relatively healthy older adults, complicating the

generalisability of findings to at-risk clinical populations

and broader age ranges.

In conclusion, we demonstrated that an epigenetic pre-

dictor of mortality associates with cognitive ability, cogni-

tive decline and neuroimaging phenotypes in a cohort of

healthy older ageing adults. These associations were largely

independent of another well-known predictor of mortality,

childhood intelligence. Indeed, methylation alterations in

blood, as captured by DNAm GrimAge, could help provide

early indications towards mortality prediction and decline in

brain health.
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