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An Equalized Margin Loss for Face Recognition
Jingna Sun, Wenming Yang, Jing-Hao Xue, and Qingmin Liao

Abstract—In this paper, we propose a new loss function, termed
the equalized margin (EqM) loss, which is designed to make
both intra-class scopes and inter-class margins similar over all
classes, such that all the classes can be evenly distributed on
the hypersphere of the feature space. The EqM loss controls
both the lower limit of intra-class similarity by exploiting hard-
sample mining and the upper limit of inter-class similarity by
assuring equalized margins. Therefore, using the EqM loss,
we can not only obtain more discriminative features, but also
overcome the negative impacts from the data imbalance on
the inter-class margins. We also observe that the EqM loss is
stable with the variation of the scale in normalized Softmax.
Furthermore, by conducting extensive experiments on LFW, YTF,
CFP, MegaFace and IJB-B, we are able to verify the effectiveness
and superiority of the EqM loss, compared with other state-of-
the-art loss functions for face recognition.

Index Terms—Face recognition; equalized margin (EqM) loss;
intra-class scope; inter-class margin; deep learning

I. INTRODUCTION

C
ONVOLUTIONAL neural networks (CNNs) have

achieved great success in many fields [1]–[5], of which

the most significant one is arguably face recognition [6]–

[13], [13]–[20]. Face recognition contains two tasks: face

identification and face verification. Face identification is to

identify which person a face image belongs to, while face

verification focuses on whether two face images belong to

a same person. For face identification or face verification,

there are two scenarios of evaluation [21], [22]. One scenario

is called closed-set face recognition, where the identity of a

test face has been predefined in the training set so that we

can obtain the recognition accuracy by predicting the label

of the test image and then comparing the predicted label to

the true label. Closed-set face recognition has a defect that

the training set usually cannot cover all possible face labels.

In the other scenario called open-set face recognition, the

identity of a test face has not necessarily been predefined

in the training set, and we achieve face recognition through

measuring the similarity of two faces between their features

obtained by a face-recognition network. Due to the limit of

the closed-set evaluation, recent studies often adopt the open-

set face recognition. In this paper, we also apply the open-set

face recognition to verify the effectiveness of different loss

functions.

Therefore, to improve the accuracy of face recognition,

we want to find a feature space in which the features from
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images of the same person (i.e. the intra-class features) are as

close to each other as possible, while the features for different

persons are as far away from each other as possible. This leads

to two objectives that we aim to achieve while developing

a face recognition network: enhancing intra-class similarity

and reducing inter-class similarity. Many studies [3], [14],

[17]–[19], [23]–[25] have achieved promising face recognition

performances by pursuing the above two objectives. Here

we review their achievement in face recognition from four

methodological aspects, metric learning, hard-sample mining,

margin enlarging, and data-imbalance mitigating, as follows.

Metric learning methods [12], [14], [23] mainly focus on

reducing intra-class distance and enlarging inter-class distance

through optimizing the distance metric of features. There

are two metrics often used, the Euclidean distance and the

cosine distance. When the facial features are normalized, the

Euclidean distance can be regarded as the cosine distance.

Metric learning can promote face recognition accuracy, how-

ever it was highly dependent on how to choose suitable face

image pairs or triplets to constrain the learning. Additionally,

its efficiency was very low compared with other methods,

especially when the amount of training data is enormous.

To some extent, the identification of hard samples can be

a reasonable measure for the capacity of a face recognition

system. [26], [27] paid more attention to the hard samples

by giving them heavier punishments. Hard-sample mining

methods usually contain two steps: first, define what hard

samples are; and second, give more severe penalties to the

hard samples. In this way, the face recognition network can

learn more discriminative features.

Recently, margin-based methods have become the main-

stream to improve the performance of face recognition. Many

methods [17]–[19], [24], [25] had achieved start-of-the-art face

recognition performance. These methods optimized the angle

between features and added a constant margin between classes

to obtain discriminative features. [28] found that the l2-norm

of features can correspond to the quality of face images, and

thus to eliminate the influence of different quality images, they

proposed to constrain the l2-norm of features to a constant and

achieved great improvement in recognition. SphereFace [21]

was proposed to normalize the wights of the classifier and

added a margin between classes. NormFace [29] normalized

both the weights and the features. [17]–[19] also normalized

the wights and the features and put forward a constant margin

additionally to make sure a reasonable inter-class distance.

There are also some studies [30]–[32] focusing on mitigat-

ing the harms brought by the data imbalance. These studies

paid more attention to the people with few images (i.e. the

minority class) to avoid the undesirable bias of the face

recognition network toward the people with many images

(i.e. the majority class).
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The four approaches discussed above improve the face

recognition accuracy from different aspects. In this paper,

we aim to exploit their advantages while avoiding their de-

fects. We observe that margin-based methods only constrain

a margin between classes while no considering intra-class

discrepancy. This can be undesirable when data are imbal-

anced, because the majority classes can occupy much more

space in the hypersphere as their size and diversity are much

larger than those of the minority classes, while margin-based

methods adopt a constant margin regardless of specific classes.

We provide a simple illustration in Fig. 1(a), where the red

dots represent the samples from the majority class while the

green dots for the minority class. It is clear that there are

two main problems which will affect the performance of face

recognition. Firstly, the network will bias toward the majority

class. Secondly, it is hard for margin-based methods to get a

compact majority class.

Therefore, in our EqM loss, while absorbing the strength of

margin-based methods to constrain the inter-class distance, we

also exploit the superiority of hard-sample mining to obtain

a small intra-class scope. Moreover, we constrain the intra-

class scope to overcome the adverse effect of imbalanced data.

As shown in Fig. 1(b), we control the majority class and the

minority class with the same intra-class range. With constraints

to make all classes alike on both the intra-class scope and the

inter-class margin, we aim to achieve a fair distribution of

features for all classes, and thus to relieve the negative effect

of data imbalance. In our experiments, not only is observed

the superior recognition accuracy from applying our proposed

EqM loss, but also we find that the EqM loss is stable when

the dataset is class-imbalanced and the s in Eq.(1) changes.

In short, main contributions of this paper are threefold.

1) We propose an equalized margin (EqM) loss to improve

the performance of face recognition. Using the EqM loss, we

can appropriately reduce the intra-class distance and expand

the inter-class margin, through setting balanced intra-class and

inter-class scopes over all classes. The EqM loss exploits the

advantages of hard-sample mining and margin controlling, and

addresses the data imbalance issue, in face recognition.

2) We find that our EqM loss is stable with the change of s

in Eq.(1), a parameter adopted by the margin-based methods

to make the network easier to converge. We also verify that the

two hyper-parameters of the EqM loss can adequately control

the intra-class scope and the inter-class scope. That is, the

EqM loss can be more flexible and stable compared with other

state-of-the-art loss functions for face recognition.

3) Through extensive experiments on LFW, YTF, CFP,

MegaFace and IJB-B to evaluate the performance of different

loss functions for face recognition, we observe that our EqM

loss performs better than or is comparable to other state-of-

the-art loss functions.

II. RELATED WORK

Margin-Based Methods. There are many studies [17]–[19],

[21] focus on enlarging the margin between different classes.

The form of these loss functions can be summarized as

Lmargin = − log(p), (1)

(a) (b)

Fig. 1. (a) The distributions of a majority class and a minority class in
margin-based methods. (b) The target distributions of the majority class and
the minority class by the limit of our EqM loss. The red dots represent the
samples from the majority class and the green dots are the samples from the
minority class.The blue arrows are the corresponding class weights in the
classifier. The class scopes are marked by the dotted lines.

in which

p =
1

1 +
PC

j 6=yi
esφ( ewj ,exi, ewyi

)
,

where s is the parameter in the scale layer in [29] and C

represent the the number of classes, respectively; exi indicates

the ith normalized sample feature whose label is yi; ew is the

normalized weights of the network, with ewj the jth column

of the weights ew for the jth class.

The difference among the loss functions in studies [17]–

[19], [21], [33] is mainly with the form of φ( ewj , exi, ewyi
):

φ( ewj , exi, ewyi
) = cos θi,j − cos(mθi,yi

), (2)

φ( ewj , exi, ewyi
) = g(θi,j)− g(mθi,yi

), (3)

φ( ewj , exi, ewyi
) = cos θi,j − cos(θi,yi

+m), (4)

φ( ewj , exi, ewyi
) = cos θi,j − cos θi,yi

+m, (5)

in which θi,j and θi,yi
represent the angles between exi and ewj ,

and exi and ewyi
, respectively. Eq.(2) is for the angular softmax

(A-Softmax) loss [21], which adds a hyper-parameter m (m ≥

1) to produce different decision boundaries for different classes

and thus enlarge the inter-class margin. Eq.(3) is called GA-

Softmax, where g(·) can be a function in the form of linear,

cosine and sigmoid [33]. Eq.(4) shows the idea of ArcFace

in [19], which adds a fixed angular margin m between classes

to attain a better convergence than Eq.(2). The motivation of

the additive margin (AM) loss in [17], [18] can be written

as Eq.(5), in which the margin m represents the fixed cosine

margin between classes. The difference of the scale s in Eq.(1)

between the studies [17]–[19], [21] is that the s of the A-

Softmax loss is the l2-norm of xi, while the s of the other

loss functions is a constant.

In short, these studies all introduce a margin to expand

the inter-class margin, although from different perspectives.

However, these margin-based methods focus on the large

inter-class distance while ignoring the difference in the class

characteristics.

Hard-Sample Mining Methods. As the name suggests,

hard-sample mining methods pay more attention to hard

samples, by punishing hard samples distinctively from easy

samples through rescaling their corresponding weights. It
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can help the network extract more discriminative features by

increasing the importance of hard samples. For hard-sample

mining methods, a classical approach is the focal loss [26]:

Lfocal = (1− p)γ log(p), (6)

with p as in Eq.(1) and

φ( ewj , exi, ewyi
) = cos θi,j − cos θi,yi

.

The focal loss determines the hard samples according to

the value of p and designs a hyper-parameter γ to modulate

the relative importance of easy samples and hard samples.

The smaller the p, the heavier the punishment. A recent

work [27] also punishes hard samples more, in which the hard

samples are defined as the samples which satisfy the following

condition: cos θi,yi
< cos θi,j . Hard-sample mining methods

are conducive to promote the capability of the network. In [26],

[27], the hard samples are defined by considering both the

intra-class distance and inter-class variance; in our work, we

define the hard samples by only considering the intra-class

distance for compact individual classes.

Imbalanced Data Problem. It is well known that imbal-

anced data can hamper the network to learn more discrimina-

tive features. Many studies [30]–[32] apply various measures

to mitigate the imbalanced data problem. [30] alleviates the

influence of the long tail of the data by reducing intra-personal

variance and enlarging inter-personal differences within a

mini-batch. [31] optimizes the network by metric learning of

clusters, which can draw balanced class boundaries. [32] pays

more attention to the minority classes in a mini-batch from

several aspects. All the methods above-mentioned relieved

the harms caused by imbalanced data and obtained improved

recognition accuracy. In this paper, we also consider the

influence of imbalanced data, in particular the impact of the

majority class on the value of m in the margin-based methods.

III. PROPOSED METHOD

A. The EqM Loss

In this paper, we propose a new loss function named the

equalized margin (EqM) loss for face recognition, which

exploits the advantages of both hard-sample mining methods

and margin-based methods, and relieves the harms caused by

imbalanced data. Mathematically, the novelty of the EqM Loss

is with a new definition of function φ( ewj , exi, ewyi
):

φ( ewj , exi, ewyi
) = cos θi,j − cos θi,yi

+ |cos θi,yi
− t1|+ |cos θi,j − t2|+ t1 − t2,

(7)

where t1 and t2 are two hyper-parameters. As cos θi,yi
can

be regarded as the measure of intra-class similarity (the larger

the better) and cos θi,j as inter-class similarity (the smaller

the better), t1 represents the lower limit that we expect the

intra-class similarity not to be lower (i.e. we expect the intra-

class compactness to be sufficiently large), and t2 expresses the

upper limit that we expect the inter-class similarity not to be

higher (i.e. we expect the inter-class margin to be sufficiently

large). This intuition also leads to different signs of t1 and t2
in the offset term t1 − t2. Although we can treat t1 and t2 as

lower/upper limits, using the absolute value in |cos θi,yi
− t1|

and in |cos θi,j − t2| actually allows for some relaxation.

To obtain a deep understanding of the EqM loss, we can

analyze Eq.(7) in four scenarios by considering the differ-

ent intervals of cos θi,j and cos θi,yi
. Recall that we expect

cos θi,yi
to be as large as possible in order to obtain compact

intra-class features, and we expect cos θi,j to be as small as

possible to attain a large inter-class margin.

1) cos θi,yi
≥ t1, cos θi,j ≥ t2. In this case, Eq.(7) is

transformed as

φ( ewj , exi, ewyi
) = 2(cos θi,j − t2). (8)

That is, the EqM loss is now irrelevant to cos θi,yi
and

minimising the loss is focused on reducing the value of cos θi,j
to the expected limit t2; in other words, it is to increase the

inter-class margin such that φ goes down to zero.

2) cos θi,yi
≥ t1, cos θi,j ≤ t2. In this situation, we find

that

φ( ewj , exi, ewyi
) = 0. (9)

This is the desirable case that the intra-class similarity is

sufficiently large (cos θi,yi
> t1) and the inter-class similarity

is sufficiently small (cos θi,j < t2), hence Eq.(9) makes sense.

3) cos θi,yi
≤ t1, cos θi,j ≥ t2. In this case, we have

φ( ewj , exi, ewyi
) = 2(cos θi,j − cos θi,yi

+ t1 − t2). (10)

In contrast to the case 2 above, this case is undesired, as both

cos θi,yi
and cos θi,j do not satisfy the limits that we expect.

Hence in this case, the EqM loss suggests for optimization

of both the intra-class distance and inter-class margin. For

example, an ideal result from the training is to make cos θi,yi

and cos θi,j reach t1 and t2, respectively, such that φ goes

down to zero.

4) cos θi,yi
≤ t1, cos θi,j ≤ t2. This is the opposite case of

case 1, hence we have

φ( ewj , exi, ewyi
) = 2(− cos θi,yi

+ t1), (11)

and minimizing the EqM loss is focused on increasing the

value of cos θi,yi
to its expected limit t1, i.e. on increasing the

intra-class similarity, such that φ goes down to zero.

Based on the analysis above, we can make two remarks.

Firstly, the aim of minimizing Eq.(7) is to ensure the intra-

class similarity to be close to or above the limit t1, as well

as to ensure the inter-class margin to be close to or above

the limit t2. These two hyper-parameters of limits provide

an equal control on the intra-class scopes and the inter-class

scopes, unbiased for all classes. That is, the use of t1 and t2
demonstrates that we treat every class fairly to circumvent the

negative influence of data imbalance. Because of this, we call

the proposed loss function the equalized margin (EqM) loss.

A schematic diagram of the EqM loss is shown in Fig. 2.

Secondly, the EqM loss pays attention to different points in

different scenarios. In case 1 and case 4, the EqM loss only

focuses on either enlarging the inter-class margin or increasing

the intra-class similarity. In case 3, the EqM loss optimizes the

inter-class margin and the intra-class compactness simultane-

ously. This adaptive scheme to different situations of cos θi,j
and cos θi,yi

is different from those of [17]–[19], [21], and is

expected to be more flexible and powerful for face recognition.
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Fig. 2. A schematic diagram of the EqM loss. The orange solid arrows
represent the samples xi that satisfy the intra-class limit t1; and the blue
solid arrows indicate the jth class weights wj that satisfy the inter-class limit
t2 for xi. The green dotted arcs illustrate the inter-class margin between xi

and wj , controlled by the inter-class limit t2. The orange arc illustrates the
intra-class scope of the samples and the blue arc presents the corresponding
range of the weights, controlled by the intra-class limit t1.

(a) (b)

Fig. 3. The influence of hard-sample mining. The yellow solid dots and the
green solid dots represent the easy samples and the hard samples, respectively.
The blue solid arrow indicates the weights of class yi. (a) The origin
distribution of class yi. (b) The distribution of class yi after penalizing
hard-samples more heavily.The dotted red line is the boundary between easy
samples and hard samples.

B. The superiority of the EqM loss

Easy Sample vs. Hard Sample. In this paper, hard samples

are defined as the samples satisfying cos θi,yi
< t1. As usual,

we punish the hard samples more heavily to compensate the

quantitative advantage of the easy samples. The degree of

punishment should be modest because excessive punishment

will make the weights overly bias toward hard samples, which

may reduce the recognition accuracy of easy samples. We

illustrate this in Fig. 3. This phenomenon can be intuitively

explained from the perspective of back-propagation. When the

Softmax loss is employed to train a face recognition network,

the updating of wyi
can be expressed as

∂L

∂ ewyi

= −
1

N

NX

i=1

sexi(1− p), (12)

where N is the number of samples in a mini-batch. From

Eq.(12), we can find that the updating of wyi
is based on a

weighted sum of samples from class yi. When the punishment

on hard samples is too severe, wyi
will be biased toward the

hard samples heavily and the easy samples will be negligible.

Hence we should be able to adjust the penalty for hard samples

Fig. 4. The quantity distribution (in blue) of each class in CASIA-WebFace.
The x-axis indexes the class and the y-axis is the quantity of each class. The
red dotted line indicates that “quantity = 80”.

to reach an appropriate balance point between easy samples

and hard samples.

In the EqM loss, we implement t1 to adjust the relation

between easy samples and hard samples. When the intra-class

similarity cos θi,yi
for a sample exi is lower than t1, we treat

it as a hard sample and punish the samples more heavily. In

contrast, for an easy sample with intra-class similarity cos θi,yi

higher than t1, from Eq.(8) and Eq.(9), we can see the easy

sample is not involved in the optimization. In Section IV-C, we

will also find that the recognition accuracy is not always better

with a larger value of t1, which demonstrates that a balance

point is needed between easy samples and hard samples.

Imbalanced Data. In Fig. 4, we show the quantity of each

class in CASIA-WebFace [34]. [30] focused on the long tail

of the data and demonstrated that the long tail affects the

performance of the recognition network. In the paper, we pay

more attention to the “heavy head” of Fig. 4 and discuss

the influence of the “heavy head” on the inter-class margin.

In the experiments, the “heavy head” refers to the majority

classes, which will limit the increase of m in the margin-

based methods. Take the AM loss in Eq.(5) as an example

and apply the experimental settings for CASIA-WebFace in

Section IV-B. To illustrate the influence of the “heavy head”,

we randomly select 80 face images from each class who has

more than 80 image to form a balanced training dataset, as

indicated by the red dotted line in Fig. 4. In the experiments,

we train the network using the original CASIA-WebFace

dataset and the balanced CASIA-WebFace dataset (i.e. the

new dataset with each class having less than or equal to 80

images), respectively, and obtain various test accuracy with an

increasing m.

The test accuracy on LFW [35] with different m by using

AM loss in Eq.(5) is shown in Fig. 5. From the figure, we can

observe that the turning point of the orange curve (using the

network trained with the original CASIA-WebFace dataset) is

smaller than the blue line (for the balanced CASIA-WebFace

dataset), which demonstrates that the “heavy head” in the

original dataset hinders the increase of m, although in general

we prefer a larger m (i.e. a larger inter-class margin). In

Table I, we also present the test accuracies on four test datasets

(details in Sec IV-A). From the table, we can observe that the

network trained with the balanced dataset obtains better test
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Fig. 5. The test accuracy on LFW with an increasing m. The orange curve
is for the accuracy obtained from a network trained with the original CASIA-
WebFace dataset, and the blue curve is for the balanced CASIA-WebFace
dataset with each class has less than or equal to 80 images.

(a) LFW (b) YTF(1)

(c) YTF(avg) (d) CFP

Fig. 6. Four test accuracies (%) obtained from the networks trained with two
different training datasets. The red curve is for the original CASIA-WebFace,
and the blue curve is for the balanced CASIA-WebFace.

results on all the four test sets than the network trained with

the original imbalanced dataset.

TABLE I
THE TEST RESULTS WITH DIFFERENT TRAINING DATASETS. YTF(1) IS

THE TEST RESULTS FROM THE FIRST FRAME OF THE VIDEO. YTF(AVG) IS

THE TEST RESULT BY USING THE AVERAGE FEATURES OF ALL THE VIDEO

FRAMES.

Training dataset m LFW YTF(1) YTF(avg) CFP

original CASIA-WebFace 0.4 99.30 92.42 94.06 92.49

balanced CASIA-WebFace 0.6 99.33 93.08 94.24 92.49

We illustrate the situation in Fig. 1(a) and intuitively specu-

late that this is because the AM loss in Eq.(5) only constrains

a stable inter-class margin while not limiting the intra-class

scopes for the majority classes. In Fig. 1(a), the majority class

occupies more space than the minority class, and the large

scope of the majority class hinders the expansion of inter-class

margin m and leads to an imbalanced spatial distribution.

In contrast, our EqM loss constrains both the intra-class

scope and the inter-class scope, which will reach a more

uniform distribution for the majority and minority classes, as

illustrated in Fig. 1(b). We also apply the EqM loss under the

same experimental settings as for Table I, and show the results

in Fig. 6. From Fig. 6, we can find that the trend of accuracy

versus t2 is almost the same for the imbalanced and balanced

training datasets, which demonstrates that the EqM loss is not

much affected by the negative influence of the “heavy head”

on the inter-class margin. Moreover, from our experiments,

we find that, when t1 = 0.9 and t2 = 0.3, the best results

are obtained by using the balanced CASIA-WebFace dataset

for training; when t1 = 0.8 and t2 = 0.3, the best results are

attained by using the original CASIA-WebFace for training;

and these best results are comparable, unlike the results of the

AM loss in Table. I where using the balanced training data

performs consistently better. From the above discussion, we

can state that the EqM loss mitigates the harms on the inter-

class margin caused by the “heavy head” of imbalanced data.

C. Optimization

In this subsection, we verify that the EqM loss is easy

to optimize with the stochastic gradient descent algorithm.

The EqM loss is different from the Softmax loss in the

formulation of φ( ewj , exi, ewyi
), so we rewrite their difference

in the optimization process as follows:

∂Lmargin

∂w
=

∂Lmargin

∂p

∂p

∂φ( ewj , exi, ewyi
)

∂φ( ewj , exi, ewyi
)

∂w
,

∂Lmargin

∂xi

=
∂Lmargin

∂p

∂p

∂φ( ewj , exi, ewyi
)

∂φ( ewj , exi, ewyi
)

∂xi

;

for the EqM loss, we have

∂φ( ewj , exi, ewyi
)

∂wyi

=

8
>><
>>:

0 cos θi,yi
> t1, cos θi,j > t2

0 cos θi,yi
> t1, cos θi,j < t2

−2xi cos θi,yi
< t1, cos θi,j > t2

−2xi cos θi,yi
< t1, cos θi,j < t2

(13)

∂φ( ewj , exi, ewyi
)

∂wj

=

8
>><
>>:

2xi cos θi,yi
> t1, cos θi,j > t2

0 cos θi,yi
> t1, cos θi,j < t2

2xi cos θi,yi
< t1, cos θi,j > t2

0 cos θi,yi
< t1, cos θi,j < t2

(14)

∂φ( ewj , exi, ewyi
)

∂xi

=

8
>><
>>:

2wj cos θi,yi
> t1, cos θi,j > t2

0 cos θi,yi
> t1, cos θi,j < t2

2wj − 2wyi
cos θi,yi

< t1, cos θi,j > t2
−2wyi

cos θi,yi
< t1, cos θi,j < t2;

(15)

and for the Softmax loss, we have

∂φ( ewj , exi, ewyi
)

∂wyi

= −xi, (16)

∂φ( ewyi
, exi, ewj)

∂wj

= xi, (17)

∂φ( ewj , exi, ewyi
)

∂xi

= wj − wyi
. (18)
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From these equations, we can observe that the EqM loss

only needs to optimize the parameters in certain intervals

where the gradient is nonzero, while the Softmax loss has

to always update the parameters over the whole ranges of

their potential values. The update scheme for the EqM loss

is reasonable and more precisely-targeting. In Eq.(13) and

Eq.(14), the weights wyi
are updated when the intra-class

compactness is lower than the threshold t1 and the updating

of wj is only required when the inter-class similarity is

higher than the threshold t2. Additionally, as Eq.(15) shows,

the updating of xi is different in the four intervals. These

formulae also indicate the effect of t1 and t2: t1 decides

the lower limit of intra-class similarity and t2 represents the

upper limit of inter-class similarity. That is, we decompose

the objective of “reducing intra-class distance and enlarging

inter-class variance” into two tasks and thus can control them

in a more explicit and flexible way than the AM loss.

IV. EXPERIMENTS

A. Datasets

Training Datasets. To avoid the bias due to a particular

training dataset, in the experiments, we use two different

training datasets. One is the CASIA-WebFace dataset [34],

which contains about 0.49 million face images from 10,575

subjects. The other is the MS-Celeb-1M dataset [36], which

has about 100k identities with 10 million face images. The

MS-Celeb-1M dataset contains a large number of noisy face

images; we clean the dataset and retain about 4.5 million face

images. In terms of the amount of data, CASIA-WebFace is a

small dataset and MS-Celeb-1M is a large dataset.

Test Datasets. To reach a relatively fair evaluation, in the

experiments, we test the loss functions presented in this paper

on three different types of datasets: LFW [35], CFP [37] and

YTF [38]. LFW [35] contains about 13,000 images and has a

list of 6000 pairs to verify. The face images in LFW [35]

have a higher resolution and many studies [17]–[19], [21]

have attained nearly perfect recognition accuracy. CFP [37]

have two protocols: one is to test frontal images vs. frontal

images, and the other is to test frontal images vs. profile

images. In the experiments, to distinguish from LFW, we use

the frontal vs. profile protocol, which contains 7,000 pairs

with 3,500 same pairs and 3,500 non-same pairs for 500

different subjects. YTF [38] is applied to test video face

images, and it has 5,000 video pairs. To obtain the recognition

accuracy for YTF, We adopt two ways: testing the features

after averaging all frames and testing the feature of the first

face image of the corresponding video. The two ways measure

the recognition performance from different aspects. We expect

that it is generally hard to correctly identify a person by using

only one video image. These three datasets focus on different

aspects of face recognition. In Fig. 7, we show some examples

of face images from the three datasets. It is clear that using the

three datasets is able to evaluate the performance of different

loss functions more comprehensively and fairly.

To further verify the effectiveness of our EqM loss, we ad-

ditionally list the results on two large and challenging datasets:

MegaFace [39] and IJB-B [40]. MegaFace [39] contains 1M

Fig. 7. Sample images from the three test datasets (LFW, YTF and CFP).
The first row (LFW): high-resolution faces. The second row (YTF): blurring
and low-resolution faces. The third and fourth rows (CFP): frontal vs. profile
faces.

distractors. In this paper, the probe set is Facescrub [41] and

we show the ‘Rank-1’ identification accuracies with training

datasets CASIA-WebFace [34] and MS-Celeb-1M [36]. The

IARPA Janus Benchmark-B face challenge (IJB-B) [40] con-

tains 67000 face images, 7000 face videos, and 10000 non-

face images, and there is no overlap between IJB-B and other

popular face datasets.

B. Experimental Settings

Data Enhancements. We detect and align faces using

MTCNN [42]. All face images are pre-whitened and resized

to 160 x 160. The face images are randomly flipped left and

right and rotated to obtain a more stable recognition network.

Train. There are two different settings for the training on

CASIA-WebFace [34] and MS-Celeb-1M [36], respectively.

For the small dataset CASIA-WebFace [34], the batch size

is 90, and the weight decay is 0.0005. The learning rate is

initialized to 0.1 and divided by ten at 60k, 120k iterations,

and the training process stops after 140k iterations. For the

large dataset MS-Celeb-1M [36], the learning rate is initialized

to 0.05 and divided by ten after 80k and 140k iterations, and

we stop the training process after 180k iterations. It is worth

noting that we use the network Inception-ResNet-V1 [14],

[43], [44] as the base face recognition network.

Test. In the test stage, we compute the Euclidean distance

between normalized features of 512 dimensions. All the test

accuracy is obtained after ten-fold cross-validation. We ex-

tensively compare the performance of the loss functions by

using four types of evaluations: for high-resolution faces in

LFW [35], for the first images of faces with low resolution in

YTF [38], for the average set-based face features in YTF [38],

and for the faces with large pose variation in CFP [37].

We also list the Rank-1 identification accuracies in

MegaFace [39], and in IJB-B [40], we draw the ROC curves
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and use the AUC values to further discuss the effectiveness of

EqM loss.

C. The Influence of t1 and t2

In this subsection, we discuss the influence of parameters

t1 and t2 on the recognition accuracy. We use the case of

s = 64 as an example. The recognition network is trained

using CASIA-WebFace [34] and the values of t1 and t2 are

changed in steps of 0.1. We plot the changes in accuracy with

different values of t1 and t2 in Fig. 8, from which we can

observe the following two patterns.

1) The influence of inter-class similarity upper limit t2.

From Fig. 8, we can observe that, when t2 = 0.1, the

accuracies of the four test results (LFW, YTF(1), YTF(avg)

and CFP) are all among the lowest, regardless of the value

of t1. This demonstrates that an excessively large inter-class

margin can be harmful to obtain discriminative features. We

also observe that, when t2 > 0.3, with the increase of t2,

the accuracies for different test datasets change in slightly

different patterns, but nonetheless the accuracies in general

decrease when t2 is sufficiently large. All of these suggest

that a appropriate inter-class margin can be attained by using

a modest value of t2.

2) The influence of intra-class similarity lower limit t1. In

Fig. 8, when we fix t2, the largest t1 (t1 = 1.0) often does not

result in the best test accuracy, and a larger t1 often does

not necessarily bring better performance. This matches the

analysis of easy samples vs. hard samples in Section III-B. On

the other hand, when t1 sets a relaxed demand for the intra-

class compactness (e.g. t1 = 0.7), the accuracies are often

among the lowest. All of these elaborate that an adequate

intra-class compactness is preferred when we train the face

recognition network, and this can be implemented by using a

suitable value of t1.

In summary, we can adjust the values, and thus influences,

of t1 and t2 so as to achieve desirable test performance.

Actually from the experiments, the range in which the two

parameters are to adjust is reasonably small (often t1 > 0.5
and t2 ∈ [0.1, 0.5]). This indicates the flexibility and feasibility

for the proposed EqM loss in practice.

D. Results on LFW, YTF, CFP

Now we compare the EqM loss with state-of-the-art loss

functions [3], [17]–[19], [21], [24], [28], [45], [46] used in

the face recognition community.

1) Trained with CASIA-WebFace: We show the test re-

sults in Table II by using the network trained with CASIA-

WebFace [34]. Here, the normalized weights and features are

applied in the Softmax loss. From Table II, we can observe

that the EqM loss attains the highest accuracy on all the

four test protocols. This verifies the effectiveness and general

applicability of the EqM loss.

2) Trained with MS-Celeb-1M: There are many differences

between the CASIA-WebFace dataset [34] and the MS-Celeb-

1M dataset [36] used as the training sets in the experiments.

The first difference is with the quantity of classes: CASIA-

WebFace [34] contains 10,575 subjects while MS-Celeb-

1M [36] has about 79k classes. The second difference is with

TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS TRAINED WITH

CASIA-WEBFACE

LFW YTF(1) YTF(avg) CFP

Softmax loss 98.67 91.28 93.78 90.47

Center loss [3] 99.08 92.62 95.36 92.77

L2-constrained loss [28] 98.82 92.36 95.44 92.60

Ring loss [45] 98.98 92.18 94.72 91.61

ArcFace [19] 99.20 93.30 95.38 93.37

AM loss [17], [18] 99.28 93.28 95.40 93.27

SphereFace [21] 99.17 92.58 95.46 92.57

SphereFace+ [46] 99.20 92.58 95.30 92.43

L-Softmax [24] 99.02 92.42 95.46 92.41

EqM loss (t1 = 0.8, t2 = 0.3) 99.33 93.82 95.70 93.73

the degree of class imbalance. According to our statistics, the

maximum and minimum numbers of images in each class

are 806 and 1 in CASIA-WebFace [34], while in MS-Celeb-

1M [36] the numbers are 133 and 1. This demonstrates that the

imbalanced data problem in CASIA-WebFace [34] is severer

than in MS-Celeb-1M [36]. In the following, we will observe

the different performances between the uses of these two

datasets for training.

Comparing Table II and Table III, we can find that in

Table III, L2-constrained loss [28], Ring loss [45] and Ar-

cFace [19] obtain equivalent or better performances compared

with the AM loss [17], [18], while in Table II, their perfor-

mances are much worse than the AM loss [17], [18]. We

speculate that this is because the data of CASIA-WebFace [34]

is more unbalanced, which is harmful to obtain a better

performance. In Table III, the EqM loss achieves the best per-

formances on YTF(1) and obtains the second best performance

on LFW and CFP, which is comparable with the state-of-the-

art loss functions. This indicates the consistency of the EqM

loss in the cases of training with data of various degrees of

imbalance.

TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS TRAINED ON

MS-CELEB-1M

LFW YTF(1) YTF(avg) CFP

Softmax loss 99.28 94.18 95.66 91.33

Center loss [3] 99.32 94.00 96.04 92.36

L2-constrained loss [28] 99.47 94.68 96.74 92.61

Ring loss [45] 99.50 94.58 96.52 92.00

ArcFace [19] 99.58 94.64 96.60 92.20

AM loss [17], [18] 99.50 94.76 96.52 92.01

SphereFace [21] 99.52 94.70 96.66 92.44

SphereFace+ [46] 99.52 94.32 96.74 92.33

L-Softmax [24] 99.35 93.48 95.96 92.33

EqM loss (t1 = 1.0, t2 = 0.3) 99.55 94.76 96.38 92.33

E. Results on MegaFace and IJB-B

In Table IV, we show the results on MegaFace [39] obtained

by the state-of-the-art methods. With the training dataset

CASIA-WebFace [34], our method achieves the best result,

which indicates the superiority of EqM loss. With the training

dataset MS-Celeb-1M [36], our method obtains comparable

result with the best method.
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(a) LFW (b) YTF(1) (c) YTF(avg) (d) CFP

Fig. 8. The influence of t1 and t2 on the four types of test results.

TABLE IV
RESULTS ON THE MEGAFACE WITH TRAINING DATASET

CASIA-WEBFACE

Methods CASIA-WebFace MS-Celeb-1M

Softmax loss 56.4859 76.2512

Center loss [3] 64.4771 62.3003

L2-constrained loss [28] 64.1142 75.0621

L-Softmax [24] 64.6936 57.5016

Ring loss [45] 61.3447 77.7578

ArcFace [19] 73.8765 83.7656

AM loss [17], [18] 77.0413 86.2122

SphereFace [21] 64.1899 79.5068

SphereFace+ [46] 64.9571 79.8825

EqM loss 79.9838 85.9151

Fig. 9. Results on IJB-B with training dataset CASIA-WebFace.

Fig. 9 and Fig. 10 show the ROC curves on IJB-B [40]

with training datasets CASIA-WebFace [34] and MS-Celeb-

1M [36]. To better show the values in the figures, we list the

results in Table V and Table VI. In Fig. 9, the EqM loss gets

the best AUC value and almost the best ROC curve. With

the training dataset MS-Celeb-1M [36], the EqM loss gets a

comparable ROC curve.

V. DISCUSSION

In this section, we discuss the influence of scale s in Eq.(1)

on the performances of the EqM loss and the AM loss, and

show that the EqM loss is stable with the change of s. Many

previous studies, such as [17]–[19], [29], usually set the value

of s according to the experimental results. However, the range

Fig. 10. Results on IJB-B with training dataset MS-Celeb-1M.

TABLE V
ACCURACIES ON IJB-B WITH DIFFERENT FPR VALUES BY TRAINING

DATASET CASIA-WEBFACE.

Methods 1e-06 1e-05 0.0001 0.001 0.01 0.1

Softmax loss 23.01 43.59 63.80 78.79 90.25 97.01

Center loss [3] 28.76 46.35 64.12 79.91 91.93 97.72

L2-constrained loss [28] 24.49 41.70 62.12 79.31 91.79 97.96

Ring loss [45] 31.85 49.66 67.36 81.05 91.71 97.49

ArcFace [19] 11.11 43.83 69.35 84.15 93.30 98.00

AM loss [17], [18] 24.92 53.47 73.44 85.41 93.50 97.98

SphereFace [21] 30.63 52.84 69.35 82.46 92.71 97.90

SphereFace+ [46] 29.77 51.02 68.33 82.21 92.54 97.99

L-Softmax [24] 31.74 49.46 65.86 80.47 91.86 97.62

EqM loss 29.39 59.04 76.25 87.22 94.15 98.15

TABLE VI
ACCURACIES ON IJB-B WITH DIFFERENT FPR VALUES BY TRAINING

DATASET MS-CELEB-1M.

Methods 1e-06 1e-05 0.0001 0.001 0.01 0.1

Softmax loss 33.30 57.84 77.91 87.55 94.40 98.21

Center loss [3] 22.22 43.85 64.89 82.53 93.41 98.67

L2-constrained loss [28] 39.04 61.70 76.11 87.28 95.14 98.57

Ring loss [45] 38.21 67.10 80.45 89.08 95.11 98.42

ArcFace [19] 39.29 67.73 82.21 90.30 95.24 98.47

AM loss [17], [18] 36.94 62.79 82.66 91.04 95.54 98.34

SphereFace [21] 35.85 62.21 79.81 89.29 94.76 98.30

SphereFace+ [46] 33.32 64.48 80.78 89.26 95.09 98.36

L-Softmax [24] 19.45 40.91 61.66 80.56 93.09 98.50

EqM loss 35.77 66.57 82.73 90.83 95.57 98.36
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of s is too large to be exhaustively searched. Although [18]

proposed a lower limit on the value of s, [18] did not provide

a guide to users about how to choose a suitable s.

Firstly, we investigate the influence of s on the AM loss

in Eq.(5) together. For a fixed value of s (30, 64 or 100),

we change the value of parameter m in steps of 0.1 to

obtain the best result considering the four test accuracies

(LFW, YTF(1), YTF(avg) and CFP). All the experiments are

implemented with the training dataset CASIA-WebFace [34].

The recognition results are shown in Table VII, from which

we can observe that all the four accuracies are in a decreasing

pattern (although it is slight oscillating for LFW). That is,

a lower s is preferred. However, it is also known that the

network with the AM loss cannot converge if the value of s

is too small.

Secondly, we explore the influence of s on the proposed

EqM loss in Eq.(7). The results are shown in Table VIII, where

the accuracies are obtained with varying the values of t1 and

t2 in steps of 0.1. Considering the factor ‘2’ in our EqM loss

(see Eqs.(8), (10), (11)), in Table VIII we also list the results

for s = 15, as it is equivalent to s = 30 in Table VII, to be fair

with both tables. We can clearly observe that, for each of the

four test protocols, the results from using different values of

s are very close to each other. That is, the proposed EqM loss

is more stable than the AM loss, and can obtain comparable

accuracies in a large range of s. As it is time-consuming to find

a suitable s through experiments, the insensitivity of the EqM

loss to s can help to largely reduce the time complexity of

network training in practice. Additionally, the best accuracies

in Table VIII are higher than the best accuracies in Table VII.

This also verifies that the EqM loss is more effective than the

AM loss.

TABLE VII
THE INFLUENCE OF s ON THE AM LOSS FUNCTION IN EQ.(5)

s m LFW YTF(1) YTF(avg) CFP

30 0.3 99.28 93.28 95.40 93.27

64 0.4 99.30 92.42 94.06 92.49

100 0.4 99.22 91.28 93.44 90.49

TABLE VIII
THE INFLUENCE OF s ON THE EQM LOSS IN EQ.(7)

s t1 t2 LFW YTF(1) YTF(avg) CFP

15 0.8 0.3 99.33 93.46 95.58 93.26

30 0.8 0.3 99.33 93.82 95.70 93.73

64 0.8 0.3 99.23 93.44 95.62 93.21

100 0.8 0.4 99.28 93.38 95.42 93.69

Now we start to explain the above patterns by examining

Eq.(1). To make the explanation more intuitive, we only

consider the average φ̄( ewj , exi, ewyi
) of the C classes, and

rewrite Eq.(1) as

Lmargin = − log
1

1 + (C − 1)esφ̄( ewj ,exi, ewyi
)
. (19)

Moreover, for simple illustration, we set C = 10001 and draw

the function of Eq.(19) into two panels in Fig. 11: Fig. 11(a) is

for φ̄( ewj , exi, ewyi
) ≤ 0 and Fig. 11(b) is for φ̄( ewj , exi, ewyi

) >

0; in each panel, there are two curves: one for s = 30 and

the other for s = 64. In Fig. 11(a), each curve can be further

divided into two parts: one part is the smooth area whose

slope is almost 0, and the other part is the steep area whose

slope is large and almost constant. We use P to denote the

demarcation point of φ̄ between the two areas. A smaller s

produces a smaller P , which is more conducive to extract

discriminative features. Fig. 11(b) shows constant slopes with

steep areas only.

The AM loss in Eq.(5) shifts the original curve of Eq.(19)

to the left by adding a positive margin m, as shown in Fig. 12

for the two optimal pairs (s = 30,m = 0.3) and (s = 64,m =
0.4) as listed in Table VII. From Fig. 12, we can observe the

followings. Firstly, using the AM loss enlarges the scope of the

steep area to obtain more discriminative features, as verified

by the results in Table VII. Secondly, The demarcation points

P of the two curves become almost same (to be precise, we

can adjust m to make the same P ), but the test accuracies for

s = 64 in Table VII are much lower than s = 30. In Fig 12, the

only difference between the two curves is that the red curve

(for s = 64) has a larger slope in the steep area than the blue

curve (for s = 30). If we treat the samples in the steep area as

hard samples (due to their large losses), then Fig 12 implies

that the larger s = 64 punishes the hard samples more severely

than the smaller s = 30. On the one hand, if Eq.(5) penalizes

much more the hard samples when the value of s is larger, the

face recognition network will bias toward optimizing the hard

samples, over-enlarge the space of each class and thus fail

to satisfy the inter-class margin m required by the AM loss;

this will leads to a drop in the recognition accuracy. On the

other hand, if we adjust the inter-class margin m to relieve the

problem above-mentioned, it may also result in the decline of

the recognition accuracy. This dilemma can only be addressed

if we can secure a suitable value of s.

For the EqM loss in Eq.(7), as we discussed in Section III-A

about the four cases, the minimization of the EqM loss will

lead to φ̄( ewj , exi, ewyi
) = 0. That is, the EqM loss makes

φ̄( ewj , exi, ewyi
) ≥ 0. In other words, the optimization of the

EqM loss has moved the whole curve to the steep area and

eliminated the smooth area of Eq. 1. Specifically, t1 adjusts the

intra-class compactness and make a suitable boundary between

hard samples and easy samples; t2 controls the inter-class

margin to avoid the overlarge margin; t1 and t2 jointly to

adjust the point P , making the EqM loss more flexible than

the AM loss when the value of s changes. Additionally, from

Eq.(11), we can see that the inter-class distance is irrelevant to

the hard samples, which ensures a proper inter-class distance.

VI. CONCLUSIONS

In this paper, we propose a new loss function called the

EqM loss, in order to ensure an appropriate balanced point

between reducing the intra-class distance and enlarging the

inter-class margin. The two hyper-parameters of the EqM loss

enable a flexible control to balance the penalization of hard

samples and the extraction of discriminative features. In the

experiments, we also find that the EqM loss can ease the harms

caused by imbalanced data, is more stable with the change of
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(a) φ̄( ewj , exi, ewyi ) ≤ 0 (b) φ̄( ewj , exi, ewyi ) > 0.

Fig. 11. The curve of Eq.(19). The red curve is for s = 64 and the blue
curve is for s = 30

Fig. 12. The curve of Eq.(5) when φ̄( ewj , exi, ewyi ) ≤ 0

s in Eq.(1), and performs better than other state-of-the-art loss

functions for face recognition.
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