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Abstract. An equation of state is presented for liquid iron based on published 
ultrasonic, thermal expansion, and enthalpy data at 1 bar and on pulse-heating and 
shock wave compression and sound speed data up to 10 Mbar. The equation of state 
parameters, centered at 1 bar and 1811 K (the normal melting point of iron), are 
density, P0 = 7019 kg/m 3 isentropic bulk modulus K so - 109 7 GPa, and the first- 

and second-pressure derivatives of Ks, K•0 = a4s ß 66 and K'}0 = - 0.043 GPa- 1. A parameterization of the Gr•neisen parameter 3' a function of density p and specific 
internal energy E is •/= •/o + •/' (P/Po) n (E - EO) where 3•0 = 1.735, 3/ = -0.130 
kg/MJ, n = - 1.87, and E0 is the internal energy of the liquid at 1 bar and 1811 K. 
The model gives the temperature dependence of 3' at constant volume as 

(O•//OT)vllbar, 1811K = --8.4 X 10 -5 K -1. The constant volume specific heat of liquid Fe 
at core conditions is 4.0-4.5 R. The model gives excellent agreement with measured 
temperatures of Fe under shock compression. Comparison with a preliminary reference 
Earth model indicates that the light component of the core does not significantly affect 
the magnitude of the isentropic bulk modulus of liquid Fe but does decrease its 
pressure derivative by --• 10%. Pure liquid Fe is 3-6% more dense than the inner core, 
supporting the presence of several percent of light elements in the inner core. 

Introduction 

Liquid iron, which in impure form makes up the outer 

core, is one of the most abundant and important phases in 

Earth's interior. An accurate description of its properties at 

high pressure is therefore of great interest for theoretical 

studies of Earth's interior. In this study, experimental data 

are used to constrain the thermodynamic behavior of liquid 

Fe and to compare its properties with those of Earth's core. 

Several previous studies have considered the equation of 

state of liquid iron but were limited by the available data. 

Jeanloz [1979] used the then available shock wave data for 

porous and nonporous samples to develop a general pres- 

sure-volume-temperature equation of state (EOS) for both 

liquid and solid iron. Stevenson [1980, 1981], employing 

liquid state theory to develop a simple model, demonstrated 

the general trends of properties for liquid Fe at high pres- 

sures. Anderson [1986] presented equations of state for the 

various phases of Fe based on theory and experimental data, 

concentrating primarily on the solid phases. 

More recently, $vendsen et al. [1989] presented an equa- 

tion of state for liquid iron, constraining parameters for a 

Yukawa pair potential by assuming that liquid structure is 

constant along the liquidus and applying their analysis to the 

melting curve of Fe from Williams et al. [1987] to determine 

the values of adjustable EOS parameters. Most recently, 

Grover [1990] presented a theoretical two-phase solid-liquid 

EOS with parameters constrained by theory and by fitting 

shock wave data from porous and nonporous samples. 
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Constraints on the Equation of State 

Reference Condition and Properties 

Traditionally, equations of state used in geophysics are 

referenced to normal ambient conditions (1 bar, 298 K). We 

choose instead to use the normal melting point of pure Fe (P 

= 1 bar, T m = 1811 K) for the present model, because the 
properties of the liquid phase at the melting point can be 

measured directly, whereas the properties at 298 K cannot. 

Hence for this discussion the reference pressure and tem- 

perature are P0 = 1 bar (0.1 MPa) and To = 1811 K. 
Density and thermal expansion coefficient. Numerous ex- 

perimental studies have examined the density of liquid Fe at 

1 bar [Drotning, 1981; Basin et al., 1979; Lucas, 1972; 

Ivakhnenko and Kashin, 1976]. They find densities at the 

melting point P0 ranging from 7015 to 7150 kg/m 3, with most 
recent results falling in the range from 7015 to 7070 kg/m 3. 
Drotning [1981] studied the density and thermal expansion to 

above 2300 K and presented an assessment of sources of 

error. Analyses by Drotning [1981] and Basin et al. [1979] 

suggest that the most reliable data are those of Drotning 

[1981] and Lucas [1972] (Figure 1). We fit these data to 

V(m3/kg) = 1/p = 1.4247(+--0.0004) x 10 -4 

+ 1.3105(+-0.0195) x 10-8(T - To). (1) 

This fit gives P0 = 7019 +- 2 kg/m 3 and (Op/OT)•,11811K = 
-0.646 +- 0.010 kg m -3 K -1 . The corresponding value of the 
volume thermal expansion coefficient is a = (0 In V/OT)•, = 
9.20 (+- 0.14) x 10 -5 K -• at the reference point. 

We note here the pulse-heating experiments of Hixson et 

al. [1990]. They measure p at P = 0.2 GPa over the 

temperature range from 2125 K to 3950 K, obtaining P0 = 
6994 kg/m 3 and (Op/OT) = -0.64985 kg m -3 K -1 with a 
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Figure 1. Density data of Lucas [1972] and Drotning [1981] 
for liquid Fe at 1 bar, with the best fit curve assuming that 
volume varies linearly with T. 

linear fit of p versus T. Within the stated uncertainties, these 

data are consistent with the adopted expression for V. 

Reference heat capacity and transition energy. The ther- 

modynamic functions of Fe have been extensively studied at 

atmospheric pressure [e.g., Desai, 1986]. We choose Desai's 

[1986] preferred value of the specific heat: C•, = 835 +_ 54 
J kg- ] K-1 at 1 bar and 1811 K. The pulse-heating data of 
Hixson et al. [1990] for enthalpy H versus T give C•, = 
815.4 J kg -1 K -1, in good agreement with Desai [1986]. 

We also want the internal energy Etr required to transform 

Fe from the a phase at 1 bar and 298 K to the liquid at P0 and 

To 

Etr = Eliq,lbar,1811K- Ea, lbar,298 K (2) 

Desai [1986] presents preferred values of enthalpy changes 

across phase transitions and the heat capacity as a function 

of temperature in the solid, so that the value of the enthalpy 

difference AHtr between the liquid Fe at the reference point 
and a-Fe at 1 bar and 298 K can be obtained from 

f2 •ø AHtr -- C•, d T + AH• _, • + AH • _, s + AH s -o liq 
98K 

(3) 

From the relation between enthalpy and internal energy, we 
have 

Etr-- AHtr + PAV (4) 

At 1 bar, PAV is negligible, so Etr = AHtr. Thus from the 

values of Cp and AH from Desai [1986], Etr - 1.3007 (+- 
0.0118) x 10 6 J/kg. 

Bulk modulus. Although we can use shock wave equa- 

tion of state (SWEOS) data to get the reference point 

isentropic bulk modulus Kso = -V(OV/OT)sl•oo,ro, mea- 
surements of the bulk sound speed Vo give K so more 
directly and with greater accuracy from 

(Ks/p) •/2 (5) 

Kdita et al. [1982] obtain V0 = 3912 m/s and (OVo/OT)•, = 
-0.22 m s -• K -• at the melting point, whereas Casas et al. 
[1984] obtain V• = 4052 +- 134 m/s at the melting point. 
Fillipov et al. [ 1966] find an anomalously high value of Vo = 
4400 m/s. We combine the data of Kurz and Lux [1969] and 

Tsu et al. [1985] to cover a range of -•140 K. These data are 

shown in Figure 2 together with a straight-line fit (similar to 

previous studies) of Vo0 = 3954 +- 24 m/s and (0V•/0T)•, = 
-0.54 +_ 0.21 m s -• K -• at the reference point. Shaner et 
al. [1988] suggest that Vo would be better represented as a 
linear function of p for most liquid metals. However, the 

density variation over this temperature range is so close to 

linear that a linear fit in T gives the same results. With (5) and 

P0, we get K so = 109.7 +- 0.7 GPa at 1 bar and 1811 K 
which is also consistent with the data of Hixson et al. [ 1990]. 

High Pressure Quantities 

Shock Hugoniot of iron. The shock Hugoniot is described 

by a polynomial giving the velocity of the shock wave Us as 

a function of the particle velocity of the shocked material up 
in the rest frame of the unshocked material 

, 2+... (6) U s= C o+ sup+ s up 

The shock state pressure P n, density pn, and specific 

internal energy En are obtained via the Rankine-Hugoniot 
equations for conservation of mass, momentum, and energy 

PH- Po = POOUsUp (7) 

pu/poo = Us/(Us- Up) (8) 

• (Pn + Po)(Voo VH) • 2 Eu- Eo = • - = • Up (9) 

where the subscript 00 refers to the sample before being 

shocked. The principal Hugoniot curve describes shocks 

from the equilibrium state at P0 = 1 bar and T = 298 K in 
a sample having no porosity. 

Three sets of parameters for the principal Hugoniot curve 

of Fe from McQueen et al. [1970], Al'tshuler et al. [1981], 

and Brown and McQueen [1986] have found widespread use 

in the literature. However, these parameters are based on 

data in the stability field of solid Fe. To avoid possible 

systematic errors arising from use of Hugoniot curves con- 

strained by solid state data, we fit (6) to the available data 

from that portion of the principal Hugoniot of Fe that falls in 

the liquid stability region, as delineated by the sound speed 

data of Brown and McQueen [1986]. The data are listed in 

Table 1, although we exclude the highest pressure point 

(1351 GPa) from the fit because it seems to fall away from the 

trend established by the other data. In cases where authors 

do not give uncertainties for their data, we use the analysis 

of Al'tshuler et al. [1981] to estimate the uncertainties. The 

resulting fit (Figure 3) gives Co = 3861 +- 839 m/s, s = 

o •i • 
• I ß Kurz and Lux [1969] 
::• I ß Tsu et al. [1985] 

to I 

• iT m 
d , . , I , , , , I , , , , I . ß I I 

1.8 1.85 1.9 1.95 

Temperature (103K) 

Figure 2, Sound speed data for liquid Fe at 1 bar, with a 
linear fit as a function of T. 
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Table 1. Data for the Liquid Phase Portion of the Iron Principal Hugoniot 

Po, kg/m3 U s, m/s up, m/s Pu, kg/m3 Pu, GPa 

7851 10200 ñ 102 4050 ñ 41 13021 ñ 177 324.3 ñ 6.1 

7851 10350 ñ 104 4070 ñ 41 12939 ñ 173 330.7 ñ 6.2 

7850 17740 ñ 176 9700 ñ 24 17317 ñ 566 1351 ñ 97 

7850 9980 ñ 100 3830 ñ 24 12740 ñ 112 300 ñ 6.2 

7850 10450 ñ 105 4200 ñ 42 13130 ñ 125 344 ñ 7.2 

7850 10670 ñ 107 4320 ñ 43 13190 ñ 127 362 ñ 7.5 

7850 11100 ñ 111 4590 ñ 46 13380 ñ 133 400 ñ 8.3 

7850 11320 ñ 113 4830 ñ 48 13690 ñ 144 429 ñ 8.9 

7850 12000 ñ 120 5170 ñ 52 13790 ñ 148 487 ñ 10.1 

7850 15500 ñ 155 7710 ñ 77 15622 ñ 547 938 ñ 33 

7850 15150 ñ 151 7520 ñ 75 15582 ñ 545 894 ñ 32 

7850 15100 ñ 151 7340 ñ 73 15284 ñ 535 870 ñ 32 

Marsh [ 1980] 
Marsh [ 1980] 

Al'tshuler et al. [1981] 

Al'tshuler et al. [1958] 
Al'tshuler et al. [1958] 
Al'tshuler et al. [1958] 

Al'tshuler et al. [1958] 

Al'tshuler et al. [1958] 

Al'tshuler et al. [1958] 

Krupnikov et al. [1963] 
Krupnikov et al. [1963] 
Al'tshuler et al. [1962] 

1.656 ñ 0.309, ands' = -1.945 (ñ 2.66) x 10 -5 s/m. The 
fit from Al'tshuler et al. [1981] is similar to the present result 

but has a much greater slope at the low up end than is 
justified by the liquid state data. It should be noted that the 

quadratic term is not statistically significant with the present 

data set, but results presented later in this discussion justify 

retaining the quadratic term. 

Grfineisen parameter. The thermodynamic Grfineisen 

parameter y is defined by 

y = V(OP/OE) v (10) 

Recently, new data for liquid Fe have become available 

which allow y to be studied in greater detail than before. Let 

us begin by examining the available data for y. 

Data for y at P0 and To. The value of y at the reference 
point is obtained from other properties via 

aKs aKT 
3, - - (11) 

pCe pCv 

Using the values of P0, a0, Kso, and Cp0, we get Y0 = 1.723 
ñ 0.116. We will use this value as a datum but only require 

the final fit to fall within its limits of uncertainty. 

Pulse-heating experiments. Recently, Hixson et al. [1990] 

& Kr'upnik(•v et 41. [19631 
ß Artshuler et al. [1958] 
• Al'tshuler et al. [1962] 
OMarsh [1 , 

g I , I , 

4 6 

o 
o 

0.06 0.07 0.08 

up (103m/s) Volume (m3/Mg) 

Figure 3. Principal Hugoniots for nonporous Fe compared 

with data in the liquid Fe stability region. (a) Us - up 
projection. (b) P - V projection. 

reported pioneering data from experiments in which vol- 

umes, enthalpies, sound speeds, and temperatures were 

measured in iron wire which had been pulse Joule-heated to 

temperatures in the range from 2125 K to 3950 K at a 

pressure of 0.2 GPa in argon gas. They give empirical 

expressions for p, Ce, and V0, which allow an expression 
for 3/to be obtained 

(0.5905728p - 792.7509) 2 
y = (12) 

815.37p 

for p in kg/m 3. Hixson et al. [1990] assign uncertainties of 
20% to values of y thus obtained. 

Hugoniot sound speed measurements. Brown and Mc- 

Queen [1986] report high-quality data for the compressional 

sound speed Ve in shocked iron. For liquids, Vp = V0, so 
that (OE/OP) v is also obtained 

(OE/OP)v - 
Poo 

[1 + U',/ + R*2(U',/ - 1)] -1= V/T 

(13) 

where R* = pVp/PooUs, rl = up/Us, and U' = dUs/dup. 
We have used our new values for Co, s, and s' to reevaluate 
the sound speeds and the resulting values of y (Table 2) 

reported by Brown and McQueen [1986]. 

Shock wave equation of state data. SWEOS experiments 

yield measurements of p, P, and E along the shock Hugoniot 

curve. Usually, Etr, T, and K s and its pressure derivatives 
are fit to the data by equating the energy increase during the 

shock process with that obtained via a transformation from 

Table 2. High-Pressure Sound Speeds and 
Grtineisen Parameters 

P0, kg/m3 P, GPa Vb, m/s y 

12643 ñ 353 278.3 ñ 8.5 

(12540 ñ 110) (275 ñ 8) 
13015 ñ 81 331.2 ñ 2.4 

(12920 ñ 40) (333 ñ 2) 
13417 ñ 84 396.7 ñ 2.8 

(13280 ñ 40) (400 ñ 2) 

9546 ñ 82 1.419 ñ 0.272 

(920 ñ 70) (1.564 ñ 0.123) 
9985 ñ 87 1.401 ñ 0.265 

(10190 ñ 40) (1.580 ñ 0.065) 
10622 ñ 86 1.303 ñ 0.269 

(10910 ñ 40) (1.506 ñ 0.060) 

Both the original values presented by Brown and Mc- 
Queen [1986] (in parentheses) and the reevaluated values are 
presented. 
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Figure 4. Data for thermodynamic GrQneisen parameter 
compared with a fit using the assumption of 7 oc p-n. 

the experimental initial state to the phase on the Hugoniot, 

followed by isentropic compression to the shocked state 

volume V/• and isochoric heating to the Hugoniot pressure. 
Assuming that the initial pressure is negligible, this is ex- 

pressed as 

•PH( -- VH) = Es + Err + VH -- dP (14) • Voo 
s 7 

where the subscripts H and S refer to states on the Hugoniot 

and reference isentrope at volume V H, respectively. 

Unfortunately, the fit is relatively insensitive to 7, since a 

number of other parameters are also being fit. Also, 7 only 

enters the fit as an integral quantity, so any one experiment 

gives only a weighted average of 7 over a range of condi- 

tions. Although data from initially porous samples (i.e., with 

a larger V00) are sometimes used to get results which are 
more sensitive to 7, this approach still yields only an integral 

quantity. In addition, the general quality of data from porous 

samples makes the fitting process rather subjective, as 

illustrated by the results for 7 obtained by McQueen et al. 
[1970] and Jeanloz [1979], who used the same data set to 

arrive at rather different conclusions concerning the behav- 

ior of 7. Finally, the phase on the porous Hugoniot is not 

well known, so there is a danger of including solid state 

results. Given these problems, we have chosen to exclude 

SWEOS data from our fit for 7 and rely on the other types of 

data already discussed. 

Fitting of •/. Often the assumption is made that 7 o• p-n. 
However, a number of authors (see, for example, Mulargia 

[1977], Stacey [1981], Falzone and Stacey [1981]) have been 

critical of this assumption. Examination of Figure 4 shows 

that this assumption, which does not allow the sign of d7/dp 
to change, does not accurately describe the available data. 

We have chosen to evaluate several different functional 

forms for 7 with a maximum of three adjustable parameters 

and using p, E, and P as independent variables. Data used 

for the fit (Table 3) are values of 7 calculated from (12) for p 

= 5500, 6000, and 6500 kg/m3 to represent the data of Hixson 
et al. [1990], along with the values of 7 obtained from the 

reference state properties and the reevaluated data of Brown 

and McQueen [1986]. 

Table 4 gives the functional forms evaluated and the 

results of the fitting process. In most cases the forms are 

simple parametric expressions not chosen because of any 

special physical significance. The expressions which allow 

explicit dependence on only one variable are less satisfac- 

tory than the majority of the two-variable fits. A dependence 

on P alone is not studied, since the data of Hixson et al. 

[1990] showed a definite variation in 7 at constant pressure. 

Most of the two-variable fits give values of X 2 in the range 
0.5 to 0.6. One form, namely 

7 = 70 + 7'(P/po)n( E - Eo) (15) 

where 70 = 1.732 _ 0.111, 7' = -0.136 - 0.082 kg/MJ, and 
n - -1.642 - 0.917, gives a significantly better fit (X 2 = 
0.13) than any other form. 

The last form presented in Table 4 derives from the 

equation of state proposed by Tillotson [1962] for metals in 

the high-pressure and high-temperature regime associated 

with hypervelocity impact. Aside from (15), this expression 

gives the best fit to the data. While it might be argued that the 

equation of state proposed by Tillotson [1962] should be 

adopted here, it still gives a worse fit than the expression in 

(15), which we will retain as the preferred form for 7. 

There is also a question of whether it is appropriate to use 

a single expression for 7 in both the compressed and 

expanded states represented by the data, especially since the 

liquidus solid phase at high pressure is different from that at 

low pressure. However, phase changes in the solid arise 

because of the detailed energetics of atomic spacings in 

different periodic lattice configurations with a given inter- 

atomic potential. A solid phase change occurs because the 

average interatomic distance has changed enough that a 

different lattice is more energetically favorable. The absence 

of periodicity in the structure of liquids precludes such 

sudden changes of state. Liquid state structural changes do 

occur and are reflected in our calculations (see Appendix A), 

but the change is smooth and continuous, justifying the use 

of a single functional form for 7 and also for the specific heat. 

Equation (15) implies a temperature dependence for 7. 

Table 3. Experimentally Constrained Values of the Thermodynamic GrQneisen Parameter 

P, GPa p, kg/m 3 E- E 0, MJ/kg 7 

10 -4 7019 - 2 0 1.723 - O. 116 
0.2 5500 1.8116 - 0.0634 1.344 +-- 0.269 

0.2 6000 1.1876 +- 0.0511 1.547 +- 0.309 

0.2 6500 0.5631 - 0.0391 1.751 +- 0.350 

277.4 +- 18.4 12643 - 353 5.419 - 0.333 1.419 +-- 0.272 

331.5 - 9.4 13015 - 81 7.071 - 0.070 1.401 - 0.265 

397.1 - 10.2 13417 - 84 9.184 -0.084 1.303 -0.269 

this work 

Hixson et al. [1990] 
Hixson et al. [1990] 

Hixson et al. [1990] 

Brown and McQueen [1986] 
Brown and McQueen [1986] 
Brown and McQueen [1986] 
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Table 4. Functional Forms and Fitting Results for •, 

Form Fit Parameters X 2 

,)/o(p/po ) n 

¾o + ¾'(E- Eo) 

To + T'(P/po)n( E -Eo) 

¾0 q- ¾'(P/Po) nP 

(p/po)n[')t o q- ¾'(E - Eo)] 

(p/po)n( To q- 

TO(p/pO) n q- ¾'(E- Eo) 

To(p/po) n q- 

yo + yiP + y• (E- Eo) 

¾o + ¾1(P/Po) + ¾•(E- Eo) 

'/o + ¾1(P/Po)+ 

a+(¾o- E - E o ] a) (p0/p) 2 + 1 
A 

-2 

¾0 = 1.619 --- 0.089 3.02 
n = -0.196 ___ 0.176 

¾0 = 1.684 ___ 0.101 1.21 
¾' = -0.0454 ___ 0.0255 kg/MJ 
¾0 = 1.732 --- 0.111 0.13 
¾' = -0.136 --- 0.082 kg/MJ 
n = -1.642 ___ 0.917 

¾0 = 1.657 ___ 0.097 1.90 
¾' = -5.52(---87.09) x 10 -5 GPa -1 
n = 4.33 --- 24.99 

¾0 = 1.707 --- 0.105 0.62 
¾' = -0.0747 ___ 0.0441 kg/MJ 
n = 0.278 --- 0.384 

¾o = 1.703 --- 0.104 0.70 
¾' = -0.00216 ___ 0.00110 GPa -1 
n = 0.567 --- 0.534 

¾0 = 1.715 ___ 0.107 0.51 
¾' = -0.0898 --- 0.0617 kg/MJ 
n = 0.277 -+ 0.318 

¾0 = 1.709 ___ 0.106 0.59 
¾' = -0.00343 --- 0.00294 GPa-1 
n = 0.640 ___ 0.587 

¾0 = 1.715 ___ 0.108 0.49 
¾• = 0.00235 ___ 0.00277 GPa -1 
•/• = -0.155 + 0.131 kg/MJ 
¾o = 1.287 + 0.497 0.55 
¾i = 0.425 + 0.522 
'/i = 0.425 _+ 0.522 
T• = -0.0957 _ 0.0667 kg/MJ 
¾o = 0.580 + 0.980 0.66 
¾i = 1.128 + 1.020 
T• = -0.00383 _ 0.00275 GPa-1 
'/o = 1.730 _+ 0.115 0.29 
a = -3.665 _ 181.3 

A = 68.69 + 2435 MJ/kg 

Mulargia [1977] pointed out that there are good reasons to 

expect that ,/ will vary as a function of temperature at 
constant volume, and from (15) we can see that 

(O¾/OT)v= T'(p/po)nCv (16) 

Pressure derivatives of K s . To fit the pressure derivatives 

of Kso (K•o = (OKs/OP)sl•o,ro and K'•o = (02Ks / 
op2)slo,ro), we can employ any of several compression 
curve formulations [Anderson, 1967; Stacey et al., 1982; 

Hofrneister, 1991], each giving the variation of P as a 

function of density. The variations between different expres- 
sions are equivalent to differences in the form assumed for 

the interatomic potential. Because the Birch-Murnaghan 
finite strain equation of state is very successful in describing 
the compression of a large number of materials, we use it in 

this study. The pressure on the reference isentrope is given 
by 

3 Kso(X 7 Ps =7 - xS)[1 + Sel- selX2 + •:2(x2 - 1)2] (17) 

x = (p/p 0) 1/3 (18) 

3(4 - K•o)/4 (19) 

3 3 143 

•2 = • KsoK'•o + • K•o(K•o- 7) + 24 (20) 

where V0 is the specific volume at P0 and T o. The form 

given is fourth order in strain or, if •2 = 0, third order. The 

change in the internal energy E s along the isentrope 
[Ahrens, 1979] is 

9 [ (•_• x 2 •)(•_• x 4 1-•) = ----q- --gl ---q- Es • VoKso (sel + 1) 2 4 

q-•2 2 4 2 (21) 

K•0 and K'•o are obtained by fitting the shock Hugoniot data 

to a rearrangement of (14), supplying the (already con- 

strained) values of E tr, Kso, Po, and the results for % 

Use of (15) for ¾ complicates evaluation of the integral in (14) 

somewhat. Let us rearrange dE = V dP/¾ to ¾ dE = V dP 
so that 
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_ •r"••,••• _1_.0 Mg/rn 3 • -- ..... .•' .......... .--...--.. ---- 

a::: . / ......... 3 

CXl - 

C) I • I I • . , , I .... 
5 10 15 

Ternperoture (103K) 

Figure 5. Constant volume specific heat as a function of 
temperatm;e predicted by the present model for three differ- 
ent densities. The decrease at high temperatures [or the 
lowest density reflects the essentially uniform spatial distri- 
bution at those conditions. 

y dE = [3'0 + Y'(P/Po) nE] dE = V dP 
I I I 

(22) 

Evaluating the integrals, we get 

1 

3/o(E2 - E]) + • 7'(p/po)n(E• - E•) = V(P2 - P]) (23) 

Assuming P o is negligible, we can write this in terms of 
known quantities by setting E2 = E/• - Err, E1 -- ES, P 1 

1 p•/(V00 = Ps, P2 = P H, and V = V H. SinceEH = • - 
V H) we get 

VH(PH- Ps) -' 'Yo[21-pH(Voo - VH) - Etr- ES] 

1 n 1 

+ • 'Y'(P/Po) {[•PH(VOO- VH) - Etr] 2 - E•} (24) 

This can be rearranged to give 

-b - (b 2 - 4ac)1/2 
P• = (25) 

2a 

K'•o requires us to test the significance of the fourth-order 
Birch-Murnaghan fit. Initial fits with the original parameters 

for 3' give X 2 = 29.3 and 20.3 for the third- and fourth-order 
fits, respectively, so that the standard F statistic is 3.55. 
Application of the F test for significance of the fourth-order 
term shows that F > 3.23 indicates that the extra term is 

justified at the 95% confidence level. The uncertainty in K'•o 
is simply a result of its covariance with K •0. The final model 
gives a 0 = 9.27 (-+ 0.85) x 10 -5 K -1 and (07/OT) v lbar,1811K 
= -8.4 (-+ 5.2) x 10 -5 K -1. 

Specific heat. The constant volume specific heat C v = 
(OE/OT) v is required to complete the equation of state. 
Reliable data are lacking for the behavior of C v at high 

pressures, so we must appeal to theoretical techniques. The 
specific heat may be expressed as the sum 

C V = C k + Cpo t + C e (29) 

where the subscripts k, pot, and e denote the kinetic 
contribution from thermal motion of the ionic cores, the 

potential energy contribution from the ionic cores, and the 
energy due to the electronic density of states, respectively. 
For Ck we use the high temperature limit Ck = 1.5R/ix, 
where Ix is the atomic weight and R is the ideal gas constant. 

Development of Cpot and C e, however, is more involved. In 
Appendix A we describe liquid structure calculations used to 

obtain Cpot and use a parameterization of the results of 
Boness et al. [1986] for e-Fe to model C e. Figure 5 shows 

results of our C v model. The upper limit to C v for liquid Fe 
is about 5.3 R, with C v • 4.0 R to 4.5 R for p - T conditions 
of geophysical interest. 

Discussion and Comparison With Other 
Equations of State 

Appendix C summarizes the final EOS parameters. The 

principal Us - Up Hugoniot given by these parameters 
requires a quadratic expression with Co = 3694.5 m/s, s - 
1.7254, and s' = -2.571 x 10 -5 s/m. Figure 6 shows the 
principal shock Hugoniot predicted by the present model 

I • n( _ 2 a = • 7 (P/Po) Voo V•) (26) 

b = 7[70- y'(p/po)nEtr](Voo- V H) - V H (27) ,- 

C = [17 Tt(p/po)n(Etr- ES) - To](Etr q- ES) q- PsVH (28) 

K•0 and K'•o enter the solution through Es and Ps in the 
coefficient c. 

Knowledge of K•0 and K'•o allows the U• - Up Hugoniot 
curve to be calculated as well. Since we wish our final model 

to be internally consistent the new Us - Up relation is used 
to refine the analysis of the Hugoniot sound speed data and 
obtain a refined estimate of parameters for 7, which in turn 

may be used with the SWEOS data to refine K•0 and K'•o. 
We iterate this process until convergence is achieved, pref- 
erentially minimizing X 2 for the P - V Hugoniot data, since 
the available data constrain the P - V Hugoniot better than 

they constrain 3'. The final model gives 3'0 = 1.735 -+ 0.111, 
3/ = -0.130 --- 0.080 kg/MJ, n = -1.870 --- 0.974, K•0 = 

4.661 __ 0.040, and K'•o = -0.043 -- 15.3 GPa -• with X 2 
= 0.13 for 3' and ?(2 = 18.72 for Pu. The large uncertainty in 

&Kmpnikov et ai. [1963] 

lArtshuler et al. [1958] .l 
•Al'tshuler et al. [1962] /' 
•'Al'tshuler et al. [1981]// 
- 

f I • I , I , 

4 6 8 10 

up (103m/s) 

o o 
o_ o 
o o 

o 
o 

0.06 0.07 

Volume (m3/Mg) 

0.08 

Figure 6. Principal Hugoniot of nonporous Fe predicted by 
final EOS model and compared with existing data in liquid 

Fe stability region. (a) Us - Up projection. (b) P - V 
projection. 
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280 300 320 340 360 

Pressure ((;Pc:]) 

Figure 7. Predicted P - T Hugoniot for Fe with data from 
Yoo et al. [1993]. 

EOS compared with all available data. Agreement with the 

data is quite good, even falling within the uncertainty of the 

highest pressure datum, which had been excluded because of 

its apparent disagreement with the trend established in Us - 

u•, space by the other data. 
Although we chose not to constrain our model with data 

for temperatures T H on the Hugoniot of Fe, we do wish to 

compare values of Tu predicted by our model with the data. 
For temperatures in the liquid Fe stability region the only 
data set is that of Yoo et al. [1993]. Ahrens et al. [1990] have 

shown that the other data set, that of Bass et al. [1987], does 

not extend to high enough pressures to give data for com- 

pletely liquid Hugoniot states. Figure 7 shows the calculated 

P - T Hugoniot with the data from Yoo et al. [1993]. Our 

model predicts values of Tu which are in excellent agree- 
ment with the data. 

Previous EOS Results and Shock Compression of Porous Fe 

Figures 8 and 9 compare the data of McQueen et al. [ 1970] 
to Hugoniot curves calculated for porous Fe by using the 

present equation of state. The predicted curves are in 

excellent agreement with the data. The agreement at lower 

pressures is somewhat surprising, since the Hugoniot states 

in these regions are not completely liquid. Also shown are 

Hugoniot curves predicted by McQueen et al. [1970] and 

Jeanloz [1979]. Both of these previous efforts used SWEOS 

data for all but the most porous samples to constrain 3/, 

assuming 3/ oc p-n. For the high-pressure/high-velocity 

portions of the Hugoniot curves, where we expect the liquid 

to be the stable phase, the present model compares favor- 

ably with the previous models. The present model exhibits 

interesting behavior on the Hugoniot curve for the most 

porous samples (average P00 • 3368 kg/m3). Below P • 38 
GPa the solution of (25) is complex, indicating that states in 

liquid Fe for P < 38 GPa cannot be reached via a steady 

shock wave from an initial density of 3368 kg/m 3. The 
present model still gives thermodynamic states for this 

pressure range, but they cannot be achieved via the Rankine- 

Hugoniot equations from a very low initial density. In any 

case, the lower pressure data are probably not in the 

completely liquid stability region, so that the present model 

is not appropriate for calculating these states. 

Implications for Earth's Core 

Figure 10 shows temperatures, densities, isentropic bulk 

moduli, and sound velocities computed from the present 

model for isentropes having temperatures of 5000 K, 6000 K, 

7000 K, and 8000 K at the inner core boundary (ICB) 

pressure of 329 GPa [Dziewonski and Anderson, 1981]. 

Comparison with the preliminary reference Earth model 

(PREM) [Dziewonski and Anderson, 1981] provides infor- 

mation on both the behavior of alloying elements in the 

core and the sensitivity of core composition models to 

assumptions. 

The first important note concerns the sensitivity of the 

density of liquid Fe to the temperature. The four isentropes 

.... I .... I ' ' ' ]' I ' ' ' ' / 
Poo=3.368Mg/m 3 •"'/ 

1 

•' Present model I 

/.•.• McQueen et al. [1970] • 
.... I .... I . ß a • I • • a a I 

1 2 3 4 

up 

Figure 8. 

Poo=5.982Mg/m• ß .' 

1 2 3 

up (km/s) 

ß . , , i , . , . i .... i i i i i 

0 4 0 1 2 :5 4 

up (km/s) 

Us - %, Hugoniot curves for initial porous Fe. Data are from McQueen et al. [1970]. 



4280 ANDERSON AND AHRENS: EQUATION OF STATE OF LIQUID IRON 

I Poo--4'743Mg/m:3 

,t 

. 

ß 

ß 

•ll I ß ß . ß I .. ' 

0,15 0.2 

volurn, (m•/u.) 

-'- ,?, o 
n • 

Eo 

'.• I ' I ß I ' I 
ß Poo '=5'982Mg/m:3 

I , 1•!1 ß I ß I --. 
-- 

0.1 0.12 0.14 0.16 0.18 

Volume (m3/Ug) 

o o 

0.08 0.08 

I ' I ' I 
Poo--6.972Mg/m 3 

0.1 0.12 0.14 

Volume (m3/Mg) 

Figure 9. As in Figure 8 but P - V Hugoniot curves are shown. Lower pressure regions are not in liquid 
Fe stability field. 

range from 5% to 10% more dense than the PREM outer 
core. We also note that the PREM inner core is also 3-6% 

less dense than pure liquid Fe, lending support to the 

assertion by Jephcoat and Olsen [1987] that the inner core 

must also have a significant light element component. 

The bulk moduli predicted by the present model agree well 

with that of the PREM outer core, indicating that alloying 

elements in the outer core have little effect on the compress- 

ibility of liquid Fe. The value of dKs/dP, however, is --• 10% 
greater for pure liquid Fe than for the outer core, indicating 

that the alloying elements decrease the pressure dependence 

of Ks in liquid Fe. The combination of a higher density and 
approximately equal Ks results in pure liquid Fe having 
compressional sound velocities about 3% lower than those of 

the PREM outer core. The pure Fe isentropes are nearly 

indistinguishable from one another in sound velocity, indi- 

D ' 
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ß o 

ß ! .... I .... I ' ' ' ' I ' ' ß ' I ' 

ß I .... I .... I .... I m a m A I I 
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, I ß ß ß ß I .... I .... I .... I ß 
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Figure 10. Properties of pure liquid Fe (solid lines) along isentropes having inner core boundary 
temperatures of (A) 5000 K, (B) 6000 K, (C) 7000 K, and (D) 8000 K. Curves for-the PREM core are 
presented as dashed lines. 
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cating that care must be taken when inverting seismic wave 

travel times for both Ks and p in the core. 

Summary 

We have combined a wide range of data and theoretical 

techniques to obtain the EOS parameters and functional 

form for 3' given in Appendix C. A notable result is a 

thermodynamic Grtineisen parameter 3' that depends explic- 

itly on both density and internal energy. The model also 

gives a0 = 9.27 x 10 -5 K -1 and (03'/OT)vllbar,1811K = -8.4 
(-+ 5.2) x 10 -5 K -1. 

Predicted Hugoniot curves show good agreement with 

shock wave equation of state data from porous Fe samples. 

The present equation of state model compares favorably in 

this respect with past models which have been developed 

assuming that 3' is solely density dependent. 

Isentropes calculated with this model can be compared 
with seismological Earth models such as PREM to obtain 

information on the properties of other elements alloyed with 

Fe in the core. However, a priori assumptions have a 

significant effect on the outcomes of such comparisons. The 
density deficit (and thus concentration of light elements) in 

the outer core is strongly dependent upon the assumed 

temperature of the core. The present results indicate that the 

outer core is 5% (T•c • = 8000 K) to 10% (T•c• = 5000 K) 
less dense than pure Fe. The inner core is 3-6% less dense, 

supporting arguments for a light component in the inner core 

as well. We find that alloying elements in the core do not 

significantly affect the magnitude of the bulk modulus of 

liquid Fe but may cause the pressure dependence of the bulk 
modulus to decrease. Combination of the calculated bulk 

modulus and density shows that sound speeds in liquid Fe 

are nearly independent of temperature at core pressures, 

suggesting that an important test for candidate core compo- 

sitions is the effects of alloying elements on the sound speed 

of liquid Fe, which is also one of the most directly observ- 

able properties of the outer core. 

Appendix A: Potential and Electronic Energy 
Contributions to Cv 

Electronic Energy Term 

The functional form of C e is probably similar for all 
condensed phases of Fe [Boness eta!., 1986; Weir eta!., 

1983], although Hausleitner and Hafner [1988] note that 

liquid transition metals seem to show more s-d hybridization 

than the solid phases. We use C e for e-Fe [Boness et al., 
1986], which we fit with a single analytic expression 

- + BT 3/5 (A1) Ce = A 1 •2 + 

A = Ao + A •Po/P (A2) 

B -- B 0 + Bl(Po/p) 2 (A3) 

0 = Oo(p/po) z (A4) 

whereA 0 = 248.92 J kg -• K -• A• = 289.48 J kg -• K -• 
B0 = 0.4057 J kg -• K -s/• B• = -1 1499 J kg -• K -s/• ©0 
= 1747.3 K, and z = 1.537. Jank et al. [1991] obtain a 

theoretical electronic density of states for liquid Fe which 

gives somewhat lower values for Ce but is otherwise in 

substantial agreement with the results of Boness et al. 

[1986]. The electronic contribution to the change in internal 

energy and entropy arising from a temperature change from 

T 1 to T 2 is 

•T •2 (E2 - E1)e = C e dT = A{T 2 - T 1 - O[tan -1 (T2/O) 
1 

5 T28'5 T18/5 ) - tan -1 (T1/O)]} + •B( - (AS) 

(S2-Si)e= , • dT=A In (T2/Ti) 

In LT•• + • 2 T•) + B(T•/5- T (A6) 
Potential Energy Term 

For a liquid of sphe•cal atoms having an interatomic 

potential q(r) with the distribution of atoms around a test 

atom desc•bed by a radial distribution function 9(r) and an 

atomic number density n, the total specific potential energy 

Evot is 

Epot = 2•n f• q(r)9(r)r 2 dr (A7) 
We separate qo(r) into an s-electron part qos(r) and d-band 
bonding and repulsion terms (qo0 (r) and qor(r), respectively): 

q•(r) = q• s(r) + q• l,(r) + q• r(r) (A8) 

According to Hausleitner and Hafner [ 1988] and Hafner and 

Heine [1986] 

qo(r) = -2Za(1 - Za/lO)(12/Nc)i/2(28.06/•)R•/r5 (A9) 

•r(r) = Za(450/•2)R•/r 8 (A10) 

q s(r) Z• H(r- 2Rc) +• H(r) +• H(r + 2Rc) F 

where Z a and Z• are the number of d and s electrons per 

atom, R c is the pseudopotential empty core radius, R a is the 

d state radius, Nc is the zero-point stable phase coordination 
number, and H(r) is the real space screening function. 

Numerical factors in (A9) and (A10) are for energies in 

Rydbergs (1 Ryd = 2.1797 x 10- •8 j) and distances in units 
of the Bohr radius, a0 = 5.29177 x 10-• m. H(r) is 
obtained using the treatment of Hafner and Heine [1986] 

with the Petrifor and Ward [1984] approximation to the 

normalized Lindhard susceptibility and the Ichimaru and 

Utsumi [1981] strongly coupled electron gas model. 

The structure of a liquid is described by a set of equations 

relating q(r) to the co,elation of atomic positions, which 
can be stated as 

h(r) = c(r) + n of dr' h( r- r'l)c(r') 
c(r) = h(r) - In [.q(r) exp (•p(r)/kT)] + B(r) 

(A12) 

(A13) 
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g(r) = 1 + h(r) (A14) 

where k is the Boltzmann constant [Rosenfeld and Ashcroft, 

1979]. The variable B(r) is generally not known a priori. The 

two basic approaches are to solve iteratively for a B(r) 

which results in thermodynamic self-consistency or to 

choose a B(r) that one has reason to believe is realistic for 

the case at hand. We take the second option, which is much 

simpler in practice. Rosenfeld and Ashcroft [1979], Lado et 

al. [1983], and Zerah and Hansen [1986] argue that B(r) is 

the same set of functions for all potentials. We appeal to a 

weakened form of this assertion in the following manner. 

When we set B = 0, we can reproduce the experimental g(r) 

of Waseda and Suzuki [1970] for liquid Fe at the correct 

density but at the wrong temperature. We obtain B(r) by 

taking the difference between qo(r)/kT at the correct temper- 

ature (1893 K at 6966 kg/m 3) and at the temperature (666.4 
K) required to give the observed first peak height and 

position in g(r). Defining this difference to be B(r) at 1893 K 

and 6966 kg/m 3, we require that B(r) have the same depen- 
dence on temperature and packing fraction as B (r) for a fluid 

of hard spheres with radii rhs = (r'qo(r) = q0rnin + 3kT/2). 
We solve (A12)-(A14) for g(r) using the approach sug- 

gested by Gillan [1979] with the Press et al. [1986] imple- 

mentation of the Newton-Raphson method. Energies are 

obtained by numerical integration of (A7). These energies 

are corrected for a baseline ambiguity, differentiated, and 

scaled to fit the observed values of Cpot (obtained by 
subtracting C k and C e from the published experimental 
result). The final results are fit with a simple analytic 

function of T and p to get Cpot 

AT + E0 

Cpot = (A15) 
O+T 

= =o(Po/P) 3/5 • = • (A16) 

A = [F(A0 + Alp/po) + A2](p/po) 2/5 (A17) 

1 

F = (p-o)/a (A18) l+e 

where 0 - 5000 K, A 0 = -325.23Jkg-l K-1 A1 = 302.07 
Jkg -1 K -1 A 2 = 30.45 Jkg -1 K -1 E0 = 282.67Jkg -1 
K-1 D = 7766 kg/m3 and A = 1146 kg/m3 The contribu- 
tion by this term to the change in internal energy and entropy 

with a temperature change from T1 to T 2 is 

(E2- E1)po t -- Cpo t dr = A(T 2 - rl) 
1 

+ 0 (E- A) In (A19) 
+ t 1 

(S2-S1)pot= • T dT=A In + Tl 

+ E In [tl(0 + t2)] (A20) 
Appendix B' Temperatures on the Reference 
Isentrope 

A quantity which is quite useful in models of core pro- 

cesses is the temperature on the reference isentrope cen- 

tered at 70 = 1 bar and To = 1811 K. Since 

(0 In T/O In P)s = Y (B1) 

we get 

Ts = To exp ('y/p) dp 
o 

(B2) 

The solution of (B2) is particularly simple under the assump- 

tion that •, is proportional to some power of p. Equation (B2) 

is still analytic and Es is given as a polynomial in p by (21). 
Thus 

Ts=Toexp[fp '•[Tø+T'(p/pø)nEs] o P 
dp (B3) 

or 

Ts= To exp [To ln (pl/Po) + T P•-n fi>l n ' p -1Es(p) dp 
o 

(B4) 

Evaluating the integral in (B4), we get 

27 [ al 3n+8 Ts = To exp T0 In (P/Po) + -•- T'VoKso 3n + 8 (x 

a2 3n+6 a3 
-- 1) (X -- 1)q- (X 3n+4-- 1) 

3n + 6 3n + 4 

where 

a4 

3n+2 a5 ]/ (X 3n+2-- 1) q- • (X 3n -- 1) 

a 1 = s c2/8 

SOl + 3sc2 
a2 = 

6 

(B5) 

(B6) 

(B7) 

a3 = 

1 + 2•1 + 3sc2 
(B8) 

a4-- (B9) 

a5-- 

6 + 4•c 1 + 3sc2 

24 
(B10) 

' I ' I 

-// Reference Isentrope 
• I • I 

200 400 

Pressure (GPo) 

Figure BI. Variation in temperature and density along 
reference isentrope used in the present final EOS model. 
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Figure B1 gives p and T as a function of P along this 

reference isentrope. 
D = 7766 kg/m 3 

A= 1146 kg/m 3 

Appendix C: Best Fit Equation of State 
Parameters for Liquid Iron 
Reference Conditions 

P0= 1 bar= 10 SPa 

T O = 1811 K 

P0 = 7019 - 2 kg/m 3 

Cio0 = 835 - 54 J kg -1 K -1 

Etr = E 0 - Ea, lbar,298 K 

= 1.3007(-0.0118) x 10 6 J/kg 

E0--0 

Reference Isentrope 

Centered at (P0, To)' 

Kso = 109.7 -0.7 GPa 

K•0 = 4.661 _ 0.040 

K'•o = -0.043 - 15.3 GPa -1 

Thermodynamic Grfineisen Parameter 

3/ = 3/0 + y'(p/po)n(E- Eo) 

•/o = 1.735 - 0.111 

•/' = -0.130 -+ 0.080 kg/MJ 

n = -1.870 -+ 0.974 

Constant Volume Specific Heat 

C V = C k q- Cpo t q- C e 

( o2) Ce= A 1- 02'•' T2 + BT 3/5 

A(J kg -1 K -1) = 248.92 + 289.48(Po/p) 

B(J kg -1 K -8/5) = 0.4057 - 1.1499(Po/p) 2 

O(K) = 1747.3(p/po) 1.537 

Ck = 223.32 J kg -1 K -1 

AT+ E0 

Cpot --- 
O+T 

0 = 5000 K 

E(J kg -1 K -1) = 282.67(po/p) 3/5 

A(J kg -1 K -1) = [F(302.07p/po- 325.23) 

+ 30.45](p/po) 2/5 

1 
F= 

1 + e(P-a)/a 
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