COLLOQUIUM MATHEMATICUM

VOL. LXIII

1992

AN EQUATIONAL BASIS IN FOUR VARIABLES FOR THE THREE-ELEMENT TOURNAMENT

ВY

G. GRÄTZER, A. KISIELEWICZ, AND B. WOLK (WINNIPEG)

1. Introduction. As in E. Fried [1] and H. L. Skala [3], we can associate with a *tournament* $\langle T; \langle \rangle$ (T with a binary relation \langle such that for all $a, b \in T$ exactly one of $a = b, a \langle b, and b \langle a holds$) an algebra $\langle T; \wedge, \vee \rangle$ by the rule: if $x \langle y$, then $x = x \wedge y = y \wedge x$ and $y = x \vee y = y \vee x$, and $x = x \wedge x = x \vee x$ for all x.

In this algebra $\langle T; \wedge, \vee \rangle$, neither \wedge nor \vee is associative unless $\langle T; < \rangle$ is a chain, that is, < is transitive. However, the two operations are idempotent, commutative; the absorption identities hold, and a weak form of the associative identities holds. In E. Fried and G. Grätzer [2], such algebras were named "weakly associative lattices."

More formally, following E. Fried [1] and H. L. Skala [3], an algebra $\langle A; \wedge, \vee \rangle$ is called a *weakly associative lattice* (WA-lattice) iff it satisfies the following set of identities:

(1)	$x \wedge x = x,$	
	$x \lor x = x$	(idempotency);
(2)	$x \wedge y = y \wedge x,$	
	$x \vee y = y \vee x$	(commutativity);
(3)	$x \wedge (x \vee y) = x,$	
	$x \lor (x \land y) = x$	(absorption identities);
(4)	$((x \wedge z) \lor (y \wedge z)) \lor z = z,$	
	$((x \lor z) \land (y \lor z)) \land z = z$	(weak associativity).

Define "dual" to mean interchanging \land and \lor . The dual of a WA-lattice is a WA-lattice. The set of identities (1)–(4) is self-dual (i.e., the dual of

¹⁹⁹¹ Mathematics Subject Classification: Primary 08B05; Secondary 05C20.

 $Key\ words\ and\ phrases:$ tournament, identity, equational basis, weakly associative lattice.

This research was supported by the NSERC of Canada.

G. GRÄTZER ET AL.

every identity in the set (1)–(4) is in the set). For a polynomial p, we denote by \tilde{p} its dual.

The smallest example of a nontransitive tournament is the three-element cycle $\langle \{0, 1, 2\}; \langle \rangle$ in which 0 < 1, 1 < 2, and 2 < 0. In the corresponding algebra Z, neither \wedge nor \vee is associative.

Z plays the same role for tournaments as the two-element lattice does for distributive lattices. A tournament (algebra) $\langle T; \wedge, \vee \rangle$ is not a chain iff it contains Z as a subalgebra.

Let \mathbf{Z} be the variety generated by Z. Note that \mathbf{Z} is self-dual: if an algebra is in \mathbf{Z} , so is its dual.

Let *L* be a WA-lattice, $a, b \in L$. We denote by $\Theta(a, b)$ the smallest congruence relation in *L* under which *a* and *b* are congruent. The following is a description of $\Theta(a, b)$ in any $L \in \mathbb{Z}$ (E. Fried and G. Grätzer [2, Theorem 1]):

CHARACTERIZATION THEOREM OF $\Theta(a, b)$ IN **Z**. Let $L \in \mathbf{Z}$, let $a, b, c, d \in L$, and let $a \leq b, c \leq d$. Then $c \equiv d$ ($\Theta(a, b)$) iff the following two equations hold:

$$a \wedge (c \wedge b) = a \wedge (d \wedge b), \quad (a \vee c) \vee b = (a \vee d) \vee b.$$

One of the main results of E. Fried and G. Grätzer [2] is a characterization of **Z** in terms of $\Theta(a, b)$; we will need this in our proof:

CHARACTERIZATION THEOREM OF **Z**. Let **K** be a variety of WA-lattices in which for any $A \in \mathbf{K}$, $a, b, c, d \in A$, $a \leq b$, $c \leq d$, and $c \equiv d$ ($\Theta(a, b)$) imply that $a \wedge (c \wedge b) = a \wedge (d \wedge b)$, and $(a \vee c) \vee b = (a \vee d) \vee b$. Then $\mathbf{K} \subseteq \mathbf{Z}$.

In E. Fried and G. Grätzer [2], a finite set of identities was exhibited that form an equational basis of \mathbf{Z} . The identities are in five variables; so from this result we can conclude that if every five-generated subalgebra of an algebra belongs to \mathbf{Z} , then so does the algebra. The question was raised whether "five" could be improved to "four." ("Three" is obviously impossible, since every three-variable identity that holds in \mathbf{Z} also holds in any tournament.) In this paper, we answer this question in the affirmative.

2. The identities. We build our identities from the following polynomial:

$$r(x, y, z) = (x \land y) \land ((x \lor y) \land z),$$

and its dual. We consider the following identities:

(5)
$$r(x, y, z \wedge t) = (r(x, y, z) \wedge \widetilde{r}(x, y, t)) \wedge (r(x, y, t) \wedge \widetilde{r}(x, y, z)),$$

(6)
$$r(x,y,z \lor t) = [(r(x,y,z) \lor \widetilde{r}(x,y,t)) \land (r(x,y,t) \lor \widetilde{r}(x,y,z)) \land (r(x,y,z) \lor r(x,y,t)),$$

and their duals (7) and (8), respectively.

LEMMA. Identities (5)-(8) hold in Z.

Proof. These identities were checked with a computer program. For the reader's convenience, we show a quick way to check them by hand. Let a, b, and c be three distinct elements of Z. It is easily verified that

$$a \wedge (b \wedge c) = a \vee (b \vee c) = a$$
.

Therefore, if $a \neq b$ in Z, then $a \wedge b < a \vee b$, $r(a, b, z) = a \wedge b$, and $\tilde{r}(a, b, z) = a \vee b$, for all values of z in Z. This reduces the identities to relations involving only the two elements x = a and y = b, which are easily verified.

Otherwise, x = y. If $\{x, z, t\}$ is contained in a two-element subset of Z, then the result follows easily since we work in a distributive lattice. Let $\{x, z, t\} = \{0, 1, 2\}$. Since the 3-cycle $0 \rightarrow 1 \rightarrow 2 \rightarrow 0$ is an automorphism of Z, we can assume that x = 0. Each identity is symmetric in z and t; therefore, it suffices to take z = 1 and t = 2. A check of this single case completes the proof.

Let **K** be the class of weakly associative lattices satisfying the identities (5)-(8). Then the Lemma can be restated as follows: $\mathbf{Z} \subseteq \mathbf{K}$.

3. The Theorem. Our main result is the following:

THEOREM. Identities (1)-(8) define **Z**.

Proof. Let $A \in \mathbf{K}$ and $a, b \in A$. Consider a binary relation \sim on A defined as follows: for $c, d \in A$, let $c \sim d$ iff

(*)
$$r(a, b, c) = r(a, b, d)$$
 and $\tilde{r}(a, b, c) = \tilde{r}(a, b, d)$

This is clearly an equivalence relation, and $a \sim b$ holds. We show that \sim has the Substitution Property. Indeed, if $c \sim d$, then for all $e \in A$,

$$\begin{split} r(a,b,c\wedge e) &= r(a,b,d\wedge e)\,, \quad \widetilde{r}(a,b,c\wedge e) = \widetilde{r}(a,b,d\wedge e)\,,\\ r(a,b,c\vee e) &= r(a,b,d\vee e)\,, \quad \widetilde{r}(a,b,c\vee e) = \widetilde{r}(a,b,d\vee e)\,. \end{split}$$

To prove the first equation, compute:

$$r(a, b, c \land e) =$$
(by (5))

$$(r(a, b, c) \land \widetilde{r}(a, b, e)) \land (r(a, b, e) \land \widetilde{r}(a, b, c)) =$$
(by (*))

$$(r(a, b, d) \land \widetilde{r}(a, b, e)) \land (r(a, b, e) \land \widetilde{r}(a, b, d)) =$$
(by (5))

$$r(a, b, d \land e) .$$

The other three proofs are similar. Thus, \sim is a congruence relation on A.

Now let $c \equiv d$ ($\Theta(a, b)$). Since $a \sim b$ and \sim is a congruence relation, it follows that $c \sim d$; therefore, (*) holds. If, in addition, $a \leq b$ and $c \leq d$, then (*) simplifies to $a \wedge (b \wedge c) = a \wedge (b \wedge d)$ and $b \vee (a \vee c) = b \vee (a \vee d)$.

Thus, in view of the Characterization Theorem of \mathbf{Z} , quoted in §2, this proves that $\mathbf{K} \subseteq \mathbf{Z}$; since by the Lemma, $\mathbf{K} \supseteq \mathbf{Z}$, this completes the proof of the Theorem.

COROLLARY 1. Let A be an algebra. If every four-generated subalgebra of A belongs to \mathbf{Z} , then so does A.

The identities (1)-(8) correspond closely to the identities defining distributive lattices. The identities (1)-(4) define WA-lattices, and (5)-(8) are the distributive identities. One difference shows up in (1)-(4): for lattices, we have three identities for \lor , the three dual ones for \land , and these two sets of identities are connected by the two absorption identities. For WA-lattices, weak associativity involves both operations. We can remedy this situation for **Z**.

Consider the identities:

(4') $(x \wedge z) \wedge (x \wedge (y \wedge z)) = (x \wedge z) \wedge ((x \wedge y) \wedge z)),$ $(x \vee z) \vee (x \vee (y \vee z)) = (x \vee z) \vee ((x \vee y) \vee z)).$

It is easy to see that (4') holds in Z, and therefore in **Z**. The role of (4) is to ensure that $a \vee b$ is the least upper bound of a and b (in the sense that $a \leq a \vee b$, $b \leq a \vee b$, and if $a \leq d$ and $b \leq d$, then $a \vee b \leq d$); and dually. This readily follows also from (4').

COROLLARY 2. The identities (1)-(3), (4'), (5)-(8) define Z.

Finally, we would like to point out a curiosity. The set of identities in [2] characterizing \mathbf{Z} is equivalent to the identities (1)–(8) in this paper. The proof of the equivalence uses the Characterization Theorem of \mathbf{Z} from [2], a result that cannot be proved without some form of the Axiom of Choice. It would be interesting to find a direct equational theoretic proof of the equivalence. The existence of such a proof is known.

REFERENCES

- E. Fried, Tournaments and nonassociative lattices, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 13 (1970), 151–164.
- [2] E. Fried and G. Grätzer, A nonassociative extension of the class of distributive lattices, Pacific J. Math. 49 (1973), 59–78.
- [3] H. L. Skala, Trellis theory, Algebra Universalis 1 (1971), 218–233.

DEPARTMENT OF MATHEMATICS AND ASTRONOMY UNIVERSITY OF MANITOBA WINNIPEG, MANITOBA CANADA R3T 2N2

Reçu par la Rédaction le 30.8.1990