C OLLOQUIUM MATHEMATICUM

VOL. LXIII 1992 FASC. 1

AN EQUATIONAL BASIS IN FOUR VARIABLES FOR THE THREE-ELEMENT TOURNAMENT

By
G. GRÄTZER,A. KISIELEWICZ, and B. WOLK (WINNIPEG)

1. Introduction. As in E. Fried [1] and H. L. Skala [3], we can associate with a tournament $\langle T ;<\rangle$ (T with a binary relation $<$ such that for all $a, b \in T$ exactly one of $a=b, a<b$, and $b<a$ holds) an algebra $\langle T ; \wedge, \vee\rangle$ by the rule: if $x<y$, then $x=x \wedge y=y \wedge x$ and $y=x \vee y=y \vee x$, and $x=x \wedge x=x \vee x$ for all x.

In this algebra $\langle T ; \wedge, \vee\rangle$, neither \wedge nor \vee is associative unless $\langle T ;<\rangle$ is a chain, that is, $<$ is transitive. However, the two operations are idempotent, commutative; the absorption identities hold, and a weak form of the associative identities holds. In E. Fried and G. Grätzer [2], such algebras were named "weakly associative lattices."

More formally, following E. Fried [1] and H. L. Skala [3], an algebra $\langle A ; \wedge, \vee\rangle$ is called a weakly associative lattice (WA-lattice) iff it satisfies the following set of identities:

$$
\begin{array}{ll}
x \wedge x=x, & \tag{1}\\
x \vee x=x & \text { (idempotency); } \\
x \wedge y=y \wedge x, & \\
x \vee y=y \vee x & \text { (commutativity); } \\
x \wedge(x \vee y)=x, & \text { (absorption identities); } \\
x \vee(x \wedge y)=x & \\
((x \wedge z) \vee(y \wedge z)) \vee z=z, & \text { (weak associativity). }
\end{array}
$$

$$
\text { (2) } \quad x \wedge y=y \wedge x
$$

Define "dual" to mean interchanging \wedge and \vee. The dual of a WA-lattice is a WA-lattice. The set of identities (1)-(4) is self-dual (i.e., the dual of

[^0]every identity in the set (1)-(4) is in the set). For a polynomial p, we denote by \widetilde{p} its dual.

The smallest example of a nontransitive tournament is the three-element cycle $\langle\{0,1,2\} ;<\rangle$ in which $0<1,1<2$, and $2<0$. In the corresponding algebra Z, neither \wedge nor \vee is associative.
Z plays the same role for tournaments as the two-element lattice does for distributive lattices. A tournament (algebra) $\langle T ; \wedge, \vee\rangle$ is not a chain iff it contains Z as a subalgebra.

Let \mathbf{Z} be the variety generated by Z. Note that \mathbf{Z} is self-dual: if an algebra is in \mathbf{Z}, so is its dual.

Let L be a WA-lattice, $a, b \in L$. We denote by $\Theta(a, b)$ the smallest congruence relation in L under which a and b are congruent. The following is a description of $\Theta(a, b)$ in any $L \in \mathbf{Z}$ (E. Fried and G. Grätzer [2, Theorem 1]):

Characterization Theorem of $\Theta(a, b)$ in Z. Let $L \in \mathbf{Z}$, let a, b, c, d $\in L$, and let $a \leq b, c \leq d$. Then $c \equiv d(\Theta(a, b))$ iff the following two equations hold:

$$
a \wedge(c \wedge b)=a \wedge(d \wedge b), \quad(a \vee c) \vee b=(a \vee d) \vee b
$$

One of the main results of E. Fried and G. Grätzer [2] is a characterization of \mathbf{Z} in terms of $\Theta(a, b)$; we will need this in our proof:

Characterization Theorem of \mathbf{Z}. Let \mathbf{K} be a variety of W-lattices in which for any $A \in \mathbf{K}, a, b, c, d \in A, a \leq b, c \leq d$, and $c \equiv d(\Theta(a, b))$ imply that $a \wedge(c \wedge b)=a \wedge(d \wedge b)$, and $(a \vee c) \vee b=(a \vee d) \vee b$. Then $\mathbf{K} \subseteq \mathbf{Z}$.

In E. Fried and G. Grätzer [2], a finite set of identities was exhibited that form an equational basis of \mathbf{Z}. The identities are in five variables; so from this result we can conclude that if every five-generated subalgebra of an algebra belongs to \mathbf{Z}, then so does the algebra. The question was raised whether "five" could be improved to "four." ("Three" is obviously impossible, since every three-variable identity that holds in \mathbf{Z} also holds in any tournament.) In this paper, we answer this question in the affirmative.
2. The identities. We build our identities from the following polynomial:

$$
r(x, y, z)=(x \wedge y) \wedge((x \vee y) \wedge z)
$$

and its dual. We consider the following identities:

$$
\begin{align*}
r(x, y, z \wedge t)= & (r(x, y, z) \wedge \widetilde{r}(x, y, t)) \wedge(r(x, y, t) \wedge \widetilde{r}(x, y, z)), \tag{5}\\
r(x, y, z \vee t)= & {[(r(x, y, z) \vee \widetilde{r}(x, y, t)) \wedge(r(x, y, t) \vee \widetilde{r}(x, y, z))] } \\
& \wedge(r(x, y, z) \vee r(x, y, t)),
\end{align*}
$$

and their duals (7) and (8), respectively.

Lemma. Identities (5)-(8) hold in Z.
Proof. These identities were checked with a computer program. For the reader's convenience, we show a quick way to check them by hand. Let a, b, and c be three distinct elements of Z. It is easily verified that

$$
a \wedge(b \wedge c)=a \vee(b \vee c)=a
$$

Therefore, if $a \neq b$ in Z, then $a \wedge b<a \vee b, r(a, b, z)=a \wedge b$, and $\widetilde{r}(a, b, z)=$ $a \vee b$, for all values of z in Z. This reduces the identities to relations involving only the two elements $x=a$ and $y=b$, which are easily verified.

Otherwise, $x=y$. If $\{x, z, t\}$ is contained in a two-element subset of Z, then the result follows easily since we work in a distributive lattice. Let $\{x, z, t\}=\{0,1,2\}$. Since the 3 -cycle $0 \rightarrow 1 \rightarrow 2 \rightarrow 0$ is an automorphism of Z, we can assume that $x=0$. Each identity is symmetric in z and t; therefore, it suffices to take $z=1$ and $t=2$. A check of this single case completes the proof.

Let \mathbf{K} be the class of weakly associative lattices satisfying the identities (5)-(8). Then the Lemma can be restated as follows: $\mathbf{Z} \subseteq \mathbf{K}$.
3. The Theorem. Our main result is the following:

Theorem. Identities (1)-(8) define \mathbf{Z}.
Proof. Let $A \in \mathbf{K}$ and $a, b \in A$. Consider a binary relation \sim on A defined as follows: for $c, d \in A$, let $c \sim d$ iff

$$
\begin{equation*}
r(a, b, c)=r(a, b, d) \quad \text { and } \quad \widetilde{r}(a, b, c)=\widetilde{r}(a, b, d) \tag{*}
\end{equation*}
$$

This is clearly an equivalence relation, and $a \sim b$ holds. We show that \sim has the Substitution Property. Indeed, if $c \sim d$, then for all $e \in A$,

$$
\begin{array}{ll}
r(a, b, c \wedge e)=r(a, b, d \wedge e), & \widetilde{r}(a, b, c \wedge e)=\widetilde{r}(a, b, d \wedge e), \\
r(a, b, c \vee e)=r(a, b, d \vee e), & \widetilde{r}(a, b, c \vee e)=\widetilde{r}(a, b, d \vee e) .
\end{array}
$$

To prove the first equation, compute:

$$
\begin{aligned}
& r(a, b, c \wedge e)= \\
& (r(a, b, c) \wedge \widetilde{r}(a, b, e)) \wedge(r(a, b, e) \wedge \widetilde{r}(a, b, c))= \\
& (r(a, b, d) \wedge \widetilde{r}(a, b, e)) \wedge(r(a, b, e) \wedge \widetilde{r}(a, b, d))= \\
& r(a, b, d \wedge e)
\end{aligned}
$$

The other three proofs are similar. Thus, \sim is a congruence relation on A.
Now let $c \equiv d(\Theta(a, b))$. Since $a \sim b$ and \sim is a congruence relation, it follows that $c \sim d$; therefore, $(*)$ holds. If, in addition, $a \leq b$ and $c \leq d$, then $(*)$ simplifies to $a \wedge(b \wedge c)=a \wedge(b \wedge d)$ and $b \vee(a \vee c)=b \vee(a \vee d)$.

Thus, in view of the Characterization Theorem of \mathbf{Z}, quoted in $\S 2$, this proves that $\mathbf{K} \subseteq \mathbf{Z}$; since by the Lemma, $\mathbf{K} \supseteq \mathbf{Z}$, this completes the proof of the Theorem.

Corollary 1. Let A be an algebra. If every four-generated subalgebra of A belongs to \mathbf{Z}, then so does A.

The identities (1)-(8) correspond closely to the identities defining distributive lattices. The identities (1)-(4) define WA-lattices, and (5)-(8) are the distributive identities. One difference shows up in (1)-(4): for lattices, we have three identites for \vee, the three dual ones for \wedge, and these two sets of identities are connected by the two absorption identities. For WA-lattices, weak associativity involves both operations. We can remedy this situation for \mathbf{Z}.

Consider the identities:

$$
\begin{align*}
& (x \wedge z) \wedge(x \wedge(y \wedge z))=(x \wedge z) \wedge((x \wedge y) \wedge z)), \\
& (x \vee z) \vee(x \vee(y \vee z))=(x \vee z) \vee((x \vee y) \vee z)) .
\end{align*}
$$

It is easy to see that $\left(4^{\prime}\right)$ holds in Z, and therefore in \mathbf{Z}. The role of (4) is to ensure that $a \vee b$ is the least upper bound of a and b (in the sense that $a \leq a \vee b, b \leq a \vee b$, and if $a \leq d$ and $b \leq d$, then $a \vee b \leq d$); and dually. This readily follows also from (4').

Corollary 2. The identities (1)-(3), (4'), (5)-(8) define \mathbf{Z}.
Finally, we would like to point out a curiosity. The set of identities in [2] characterizing \mathbf{Z} is equivalent to the identities (1)-(8) in this paper. The proof of the equivalence uses the Characterization Theorem of \mathbf{Z} from [2], a result that cannot be proved without some form of the Axiom of Choice. It would be interesting to find a direct equational theoretic proof of the equivalence. The existence of such a proof is known.

REFERENCES

[1] E. Fried, Tournaments and nonassociative lattices, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 13 (1970), 151-164.
[2] E. Fried and G. Grätzer, A nonassociative extension of the class of distributive lattices, Pacific J. Math. 49 (1973), 59-78.
[3] H. L. Skala, Trellis theory, Algebra Universalis 1 (1971), 218-233.
DEPARTMENT OF MATHEMATICS AND ASTRONOMY
UNIVERSITY OF MANITOBA
WINNIPEG, MANITOBA
CANADA R3T 2N2

[^0]: 1991 Mathematics Subject Classification: Primary 08B05; Secondary 05C20.
 Key words and phrases: tournament, identity, equational basis, weakly associative lattice.

 This research was supported by the NSERC of Canada.

