
An Equational Object-Oriented Data Model
and its Data-Parallel Query Language∗

Susumu Nishimura†

nisimura@kurims.kyoto-u.ac.jp

Research Institute for Mathematical Sciences
Kyoto University

Atsushi Ohori‡

ohori@kurims.kyoto-u.ac.jp

Research Institute for Mathematical Sciences
Kyoto University

Keishi Tajima
tajima@in4wolf.in.kobe-u.ac.jp

Department of Computer and Systems Engineering
Kobe University

Abstract

This paper presents an equational formulation of an
object-oriented data model. In this model, a database is
represented as a system of equations over a set of oid’s,
and a database query is a transformation of a system
of equations into another system of equations. During
the query processing, our model maintains an equiva-
lence relation over oid’s that relates oid’s corresponding
to the same “real-world entity.” By this mechanism, the
model achieves a declarative set-based query language
and views for objects with identity. Moreover, the query
primitives are designed so that queries including object
traversal can be evaluated in a data-parallel fashion.

1 Introduction

A major advantage of object-oriented databases
over traditional relational databases is that they
directly support complex objects with complicated
object sharing relations through the mechanism
of object identity. Unfortunately, however, this

∗This is an authors’ version of the paper appeaered in
ACM Proc. OOPSLA Conference, pages 1–16, 1996.

†Partly supported by International Information Science
Foundation, Tokyo Japan.

‡Partly supported by the Japanese Ministry of Education
Grant-in-Aid for Scientific Research on Priority Area: “Ad-
vanced databases,” area no. 275.

mechanism makes it difficult to develop a set-based
declarative query language and a view mechanism.
It also conflicts with parallel processing of database
queries. The purpose of this work is to develop
a simple yet powerful formulation of an object-
oriented data model that overcomes these two
difficulties and define a data-parallel declarative
query language based on the formalism.

Let us first examine the problem of developing a
declarative query language for objects with identi-
ty. In the relational data model, the unit of data
manipulation is a relation, i.e. a set of tuples, and a
database query is simply a relation transformation
constructed from a small set of primitive operations
on relations. This property provides a clean declar-
ative semantics to database queries and is the ba-
sis of query decompositions and optimization. This
structure also supports database views: since the re-
sult of a query is another relation, a view can simply
be a query expression which is to be evaluated lazily
when needed. This is in sharp contrast with object-
oriented data models. An object-oriented database
consists of sets of mutually dependent objects in-
terconnected by object identifiers, and queries cru-
cially depend on navigation, i.e. traversing object-
identifiers. This structure does not immediately
yield a set-based declarative query language. To
see the problem, consider the following simple ob-
ject types and sets of objects:

type Empl=[Name:string, Salary:int,
Department:Dept, Boss:Empl]

type Dept = [Name:string, Manager:Empl]
Empl : {Empl}

1

Dept : {Dept}
where {T} denotes the set type whose element type
is T and [`1:τ1,. . .,`n:τn] denotes a type of object
containing the set of fields `1:τ1,. . .,`n:τn. One
typical query against this database would be to
transform the above two sets of objects into the
following different representation.

type Empl’ = [Name:string, Department:Dept’,
Boss:Empl’, Colleague:{Empl’}]

type Dept’ = [Name:string, Manager:Empl’]
Empl’ : {Empl’}
Dept’ : {Dept’}
In order for this transformation to be a database
query on objects, the results should at least be
sets of objects preserving the mutual dependency
of the original sets of objects. Furthermore, we
also expect that an object in Empl’ (Dept’) and
corresponding object in Empl (Dept, respectively)
denoting the same “real-world entity” share the
same identity, so that we should be able to perform
various other queries on objects through those sets
such as identity test for two objects taken from each
of the two sets Empl and Empl’, or computing the
intersection of two subsets of the sets.

This sort of transformation is routinely done in
the relational model, and is the basis for view defini-
tions. Unfortunately, however, none of existing pro-
posals of object-oriented database query languages
allow us to perform such a query processing. The
apparent difficulty is the preservation of object i-
dentity while performing transformation of struc-
tures of objects. In most of object-oriented da-
ta models, the identity of an object is determined
based on an oid attached to a record representing
the object, and therefore a record in Empl and one
in Empl’ cannot share the same identity. A sim-
ple approach to get around this difficulty is to re-
strict queries to be those that can be constructed
by navigation and selection [BKK88], disallowing
any query that changes the structures of object-
s such as the example above, and eliminates the
possibility of flexible view definitions. In [Bee95],
Beeri discussed several desireble features in a for-
mal model of an object-oriented databases. The
query languge sketched in his proposal is, howev-
er, based on the approach similar to [BKK88], and

does not contain proper query mechanism for i-
dentity preserving transformation of object struc-
tures. O2 [LRV88, BCD89] allows queries that
construct new structures by distinguishing “values”
from objects and insisting that the results of such
queries should be values. The drawback of this ap-
proach is that a structure transforming query does
not preserve properties of objects including shar-
ing relations and object identity. In some lan-
guages, so called “object-creating queries” are al-
lowed [AK89, Day89, SZ89, Kim89, Cat94]; the re-
sult of an object-creating query is new objects inde-
pendent of any existing ones. Of course, creation of
new objects is sometimes necessary, but this mech-
anism can not be a substitute for the ability to
transform the structures of existing objects while
preserving their identity.

In order to obtain a sufficiently expressive query
language for objects with identity, we need to
develop a general mechanism for writing identity
preserving queries. There are some attempts
[SS90, AB91, Run92] to support identity preserving
queries and views. However, their approach is
just to support primitives for dropping or adding
methods to the classes to which objects belong, and
there seems to be no general mechanism to write
identity preserving object transformation such as
the example above. We believe that the source of
the difficulty is the lack of a proper formalism for
manipulating complex objects with identity. As is
done in the relational model, one way to solve the
problem is to construct a proper semantic domain
together with a set of primitive operations to form a
sufficiently rich algebra to represent databases and
queries.

Let us turn to the second issue of parallel
processing of object-oriented database queries. A
database consists of a large collection of data
elements. One of the most promising paradigms
for parallel processing on such a large collection
of data is data-parallelism, which is based on the
mechanism of applying the same operation to each
data item simultaneously. This paradigm works
well for relational databases in which each relation
is represented as a collection of independent tuples,
and several parallel databases [DG92, YCWT93]
have been developed based on this paradigm.
However, object-oriented databases seem to be

2

difficult to be integrated with the paradigm of data-
parallelism because of the existence of navigation.
For example, suppose a database of the ancestry
trees of viruses is defined as a set of objects of the
following type.

type Virus = [Code:string, Ancestor:Virus]

The Ancestor field contains an oid for the immediate
ancestor. Now consider the problem of transforming
the set into the following form

type Virus = [Code:string, Origin:Virus]

by finding the origin of each virus. To perform such
a transformation, all the ancestors for each virus ob-
ject must be traversed, until the origin is reached.
The current practice in object-oriented database
programming is to combine a database query lan-
guage with a programming language with recur-
sion and to resort to general recursive program-
ming. This rather crude approach loses the ben-
efit of set-based declarative query processing and
yields complicated programs. More seriously, re-
cursively traversing oid’s (in Ancestor field in this
example) sequentializes the oid dereference oper-
ations, and requires the time proportional to the
maximum height of the ancestry trees. However,
as we shall show later, there is a data-parallel algo-
rithm that performs such traversals in logarithmic
parallel steps. To achieve an object-oriented query
language supporting data-parallel queries, we must
develop a mechanism for parallel object transforma-
tion including navigation.

The goal of this paper is to develop an object-
oriented data model that achieves identity-preserving
object transformation and data-parallel query with
navigation. There are other important features in
object-oriented databases such as inheritance. Al-
though the present paper does not consider such
features, we believe that the basic framework for
representing objects with indetity will be extended
with those other features. We will briefly comment
on this issue in Section 7.

The basis of our development is to regard an
object-oriented database as a system of equation-
s over object identifiers. This general idea is not
entirely new. In IQL [AK89], a database is repre-
sented by a set of oid’s associated with a function

that maps oid’s to the associated values. A similar
structure is used in ILOG [HY90]. The structures
used in these models can be seen as representation-
s of system of equations. Indeed, representing an
object-oriented database as a system of equations
is just a way to represent a set of objects intercon-
nected by oid’s, and this alone does not solve the
problems mentioned above. Our proposal is based
on the following two key observations:

1. A database query is an operation to compute a
new system of equations from a given system of
equations.

2. An object identity corresponds not to a single
oid in a system of equations but to an equiva-
lence class of oid’s induced by queries. The oid’s
belonging to an equivalent class all correspond
to the same “real-world entity.”

This first feature enables us to recover the desir-
able closure property of database queries: the re-
sult of a query remains the same semantic domain
of databases. By combining some of the authors’
recent results [NO95], we can also overcome the se-
quentiality of traversing object identifiers and de-
velop a data-parallel evaluation scheme for database
queries. A database can now be regarded as a collec-
tion of equations, each equation can be transformed
in parallel.

The second feature enables us to develop an
identity preserving query language. In most of
the existing object-oriented data models, object
identity is regarded as an oid itself. We observe that
this is the source of the difficulties in developing
a query algebra for objects mentioned above. In
contrast to those existing ones, object identity in
our model is up to an equivalence relation between
oid’s induced by queries: two objects have the
same identity if the oid’s of the two objects belong
to the same equivalence class. When a query
generates a new system of equations over a new
set of oid’s from a given system of equations, the
equivalence relation is extended to relate each new
oid in the new system with the corresponding oid in
the source system. The general idea of maintaining
equality among multiple objects corresponding to
one “real-world entity” was also exploited in several
proposals in the context of versions of objects

3

[CK86, KSW86], and views or roles of objects
[HZ90, ABGO93]. However, in these proposals,
the maintenance mechanism of equivalence relation
between oid’s is designed for specific purposes, and
is not an integrated part of a query language. In
[KC86], various forms of equality relations among
objects are discussed, but none of them can be
applied to express the correspondence between
different views of the same entity discussed above.
To our knowledge, there is no query language
that systematically maintains object identity during
general query processing.

Based on these two features, we develop an
object-oriented data model and its data-parallel
query language, which allows us to write data-
parallel queries to transform complex (possibly mu-
tually dependent) structures to another structures
while maintaining identity of objects. For example,
the object set Empl mentioned at the beginning of
this paper is represented by a system of equations
over a set of oid’s. Transformation of this set into
a new set Empl’ of objects is done by generating a
new system of equations from the system of equa-
tion over the oid’s in Empl by a data-parallel trans-
formation. In this transformation, the equivalence
relation is generated to relate each oid in Empl and
the corresponding oid in Empl’.

The rest of the paper is organized as follows.
In Section 2, we explain the semantic domain
of our object-oriented data model. Section 3
develops a language to define and manipulate
object-oriented databases. Section 4 demonstrates
its usefulness by examples. In particular, we show
that our model support identity preserving queries
and object-oriented views. Section 5 shows that
the query language supports data-parallel query
processing involving navigation. In Section 6,
we briefly describe both sequential and parallel
implementation strategies of the language. Finally,
Section 7 concludes this paper.

2 Semantic Structure of the Data
Model

This section describes a semantic structure underly-
ing the object-oriented data model proposed in this
paper. The operations for writing database queries
will be given in the next section by defining a lan-

guage to create and manipulate the structure de-
scribed in this section.

The top level semantic structure is a database,
which is a triple (S,O, C) where S is a schema
describing the type structure of the database, O is
a schema instance representing object structures,
and C is an oid classification into classes. In what
follows, we explain each of these components.

To define the structure of a schema, we need to
define the set of types in the model. Here, we
consider the set of types given by the following
grammar:

τ ::= t | b | [` : τ, . . . , ` : τ] | {t} | class(t)

t stands for a denumerable set of type variables,
which are used for types of oid’s. Intuitively, a
type variable corresponds to a class name in usual
object-oriented systems. b stands for a given set
of atomic types for various atomic values such as
integers. [`1 : τ1, . . . , `n : τn] is a record type we
have already explained. {t} is a set type whose
element type is type variable t. This implies that
sets are restricted to be those of oid’s. A set of
values of atomic or structured type, however, can be
expressed as a set of oid’s by using the mechanism of
schema and schema instance which will be explained
below. class(t) is a class type whose element is oid’s
of type t. A set of oid’s of type {t} is called a class
and has class type class(t), if it satisfies a particular
condition which will be given later when we define
typing relation. Note that class(t) is a subtype of
{t} and therefore that a set of type class(t) also has
type {t}.

A schema S is then defined as a system of type
equations of the form:

{t1 = τ1, . . . , tn = τn}

with an associated equivalence relation ∼=S on the
set of type variables {t1, . . . , tn}. We require that
the set of type equations is closed, i.e. t1, . . . , tn
are pairwise distinct and all the type variables
occurring in τ1, . . . , τn belong to the set {t1, . . . , tn}.
Each equation ti = τi describes the fact that an
oid of type ti has the associated value of type
τi, and determines the type structure of class(ti).
Since t1, . . . , tn may appear in any of τ1, . . . , τn,
the entire schema definition represents the structure

4

• Schema

S =





Empl = [Name:string, Salary:int, Department:Dept, Boss:Empl],
Dept = [Name:string, Manager:Empl]
Empl ′ = [Name:string, Department:Dept′, Boss:Empl′, Colleague:{Empl′}],
Dept ′ = [Name:string, Manager:Empl′]





Type equivalence: Empl ∼=S Empl ′, Dept ∼=S Dept ′

• Schema instance

O =





mary = [Name=“Mary”, Salary=6850, Department=director, Boss=mary],
john = [Name=“John”, Salary=3770, Department=account, Boss=mary],
judy = [Name=“Judy”, Salary=3120, Department=account, Boss=john],
director = [Name=“Director”, Manager=mary],
account = [Name=“Account”, Manager=john],

mary ′ = [Name=“Mary”, Department=director′, Boss=mary′, Colleague={}],
john ′ = [Name=“John”, Department=account′, Boss=mary′, Colleague={judy ′}],
judy ′ = [Name=“Judy”, Department=account′, Boss=john′, Colleague={john ′}],
director ′ = [Name=“Director”, Manager=mary′],
account ′ = [Name=“Account”, Manager=john′],





Oid equivalence: mary ∼=O mary ′, john ∼=O john ′, judy ∼=O judy ′,
director ∼=O director ′, account ∼=O account ′,

• Oid classification:

C(Empl) = {mary , john, judy}, C(Dept) = {director , account},
C(Empl ′) = {mary ′, john ′, judy ′}, C(Dept ′) = {director ′, account ′}

Figure 1: A Well-Typed Database

of mutually dependent classes of objects. The
associated equivalence relation ∼=S denotes the
property that if t1 ∼=S t2 then t1 and t2 represent
two different classes that correspond to the same
set of “real-world entities”. How this relation is
maintained will be given later when we define query
primitives.

To define schema instances, we first define the set
of possible object values (ranged over by O) by the
following grammar:

O ::= o | a | [` = O, . . . , ` = O] | {o1, . . . , on}
where o stands for a denumerable set of oid’s and a
for a given set of atomic constants. As mentioned
above, we restrict sets to be those of oid’s. A

set of values of atomic or structured type, such
as a set of integers, are expressed as a set of oid’s
{o1, o2, . . . , on} with the following set of equations
over oid’s:

{o1 = 3, o2 = 5, . . . , on = 38}

The type of this set is expressed as {t} with a
type equation t = int in S. Representing sets of
values in such an indirect way, though it seems to be
somewhat inefficient, enables a uniform treatment
of ordinary sets of values and sets of objects.

A schema instance O is defined as a system of
closed oid equations of the form:

{o1 = O1, . . . , on = On}

5

associated with an equivalence relation ∼=O on the
set of oid’s {o1,on}. A schema instance O
represents a set of mutually dependent objects. The
intended meaning of the equivalence relation ∼=O is
that if o1

∼=O o2 then o1 and o2 are the different
views of the same “real-world entity.”

An oid classification C is a finite map from type
variables to sets of oid’s. For each type variable
t ∈ domain(C), C(t) indicates the set of all the oid’s
of type t.

A database, represented by a triple (S,O, C)
consisting of the above structures, must be type
consistent. To define the type consistency, we first
define typing relation O : τ of object values by the
following set of rules:

• a : b whenever a is an atomic value of an atomic
type b.

• o : t whenever o ∈ C(t).
• [`1 = O1, . . . , `n = On] : [`1 : τ1, . . . , `n : τn] if

O1 : τ1, . . . , On : τn.

• {o1, . . . , on} : {t} if {o1, . . . , on} ⊆ C(t).
• {o1, . . . , on} : class(t) if {o1, . . . , on} = C(t) and

o ∼=O oi for some oi for all o ∈ C(s) s.t. s ∼=S t.

The first four express natural typing condition for
each structure. The last rule describes the condition
for a set of oid’s of type t to be a class of type
class(t): the set must contain all the oid’s of type t
and every oid in the set must has an equivalent oid
of type s for all s such that s ∼=S t.

The well typing condition of a database (S,O, C)
is now given by the following conditions:

• t ∈ domain(C) iff t = τ ∈ S for some τ .

• If o = O ∈ O then there exists t = τ ∈ S such
that o ∈ C(t) and O : τ .

• If C(t) ∩ C(s) 6= ∅ then t ≡ s.

• If o1, o2 ∈ C(t) and o1
∼=O o2 then o1 ≡ o2.

• If o1
∼=O o2 and o1 ∈ C(t) and o2 ∈ C(s), then

t ∼=S s.

Databases of the form (S,O, C) satisfying the
well typing conditions form the semantic domain

of our data model. As we noted in the beginning
of this section, the semantic structures presented
in this section only describes a “snapshot” of the
state of a database. Our major contribution is
to show that a declarative query language can be
constructed for creating and manipulating these
semantic structures.

We show in Figure 1 an example of a well-typed
database state. This is a database of employees
and departments we considered in Section 1. The
database consits of four classes: {mary , john, judy}
of type class(Empl), {director , account} of type
class(Dept), {mary ′, john ′, judy ′} of type class(Empl ′),
and
{director ′, account ′} of type class(Dept ′). The lat-
ter two are the classes that would be derived from
the former ones by an identity preserving query,
and the query induces the equivalence relations over
type variables and oid’s.

3 The Query Language

We are now in position to define a query language
for object-oriented databases whose models are
described in the previous section. In this section,
we describe the syntax of each construct, its typing
constraint, and its semantics as the effect on a given
database state.

We use the following operations on records and
oid’s: [`1=v1,...,`n=vn] defines a record with vi for
the value of each field `i, as seen in the examples.
X.` selects the value contained in the filed ` of X.
If o denotes an oid, then value(o) returns the value
associated with the oid. As a convention, we usually
omit value if it is combined with a field selection
operation. That is, o.Field is an abbreviation for
value(o).Field. We also assume the availability of
standard primitive operations on atomic types such
as integer arithmetic operations.

The constructs of the language falls into five cat-
egories: class creation, set operations, identity pre-
serving transformation, oid operations, and reduc-
tion operation.

3.1 Class Creation
The query language provides two ways to define

classes of objects. The first is to define a set of
mutually dependent classes by enumerating all the
objects in each class using the following construct:

6

class
Empl = {mary=[Name=“Mary”,Salary=6850,Department=director,Boss=mary],

john=[Name=“John”,Salary=3770,Department=account,Boss=mary],
judy=[Name=“Judy”,Salary=3120,Department=account,Boss=john]}

and Dept = {director=[Name=“Director”,Manager=mary],
account=[Name=“Account”,Manager=john]}

end

Figure 2: A Class Creation Example

class
Name1={o1,1=O1,1,. . . ,o1,n(1)=O1,n(1)}

and Name2={o2,1=O2,1,. . . ,o2,n(2)=O2,n(2)}
...

...
and Namem={om,1=Om,1,. . . ,om,n(m)=Om,n(m)}
end

where each Namei is a program variable in the
language bound to a class of objects, Oi,j ’s are
object values, and oi,j ’s are oid descriptors for
the corresponding objects. The oid descriptors
can appear in any object value Oi,j to refer to
the corresponding oid, allowing mutually dependent
object definitions. The declaration works as an
operation that defines m new classes and registers
them in the database. It extends the schema S with
the set of type equations {t1 = τ1, · · · , tm = τm},
provided that the following typing relation holds:
Oi,j : τi for any i, j under the assumption that
ok,l : tk holds for all k, l, where each tk is a fresh type
variable introduced for each Namek. In accordance
with the extension of the schema, the schema
instance is extended as follows: First, for every i
(1 ≤ i ≤ m), a set of new oid’s {oi,1, . . . , oi,n(i)} is
created and the schema instanceO is expanded with
the set of oid equations {oi,j = Oi,j | 1 ≤ i ≤ m, 1 ≤
j ≤ n(i)} where each Oi,j is the value denoted by
Oi,j . Next, each program variable Namei is bound
to the set of oid’s {oi,1, . . . , oi,n(i)}. Finally, the
oid classification C is augmented so that each ti is
mapped to the set of oid’s {oi,1, . . . , oi,n(i)}. The
type of each Namei is therefore class(ti).

In Figure 2, we show an example of class
declaration which defines a part of the database of
employees and departments in the previous section.
The example declares mutually dependent two

classes denoted by Empl of type class(Empl) and by
Dept of type class(Dept). In the declaration, the oid
descriptors mary, john, ... denote new oid’s mary,
john, ..., respectively. This declaration bounds
program variable Empl to the set {mary , john, judy}
and Dept to {director , account}. It also adds type
equations for Empl and Dept to the schema S, and
oid equations for mary, john, judy, director, account
to the schema instance O. The oid classification C
is augmented so that Empl and Dept are mapped
to the corresponding sets of oid’s.

The other way to create a class is to use the
following construct:

class M from x1 in X1, ..., xn in Xn where P

where x1, . . . , xn may appear in M and P. This
construct works as follows. Let each Xi has type
{ti}. If M has type τ under the assumption that
x1 : t1, . . . , xn : tn, then the schema S is augmented
with the equation t = τ where t is a new type
variable introduced for the new class. Then this
expression has type class(t). The schema instance
is augmented as follows. First, the product is
generated from the sets of oid’s X1, . . . , Xn. Then,
for each product element (o1, . . . , on), the following
operation is simultaneously performed: each xi is
bound to oi, and under this binding, if the predicate
P holds, then M is evaluated to object value O, a
fresh oid o for O is created in the new class being
defined, and the schema instance O is augmented
with the equation o = O. The oid classification C
is augmented so that t is mapped to the set of the
new oid’s.

3.2 Set Operations
Set expression of the form:

7

{O1,O2,. . .,On}
defines a set of oid’s. If each Oi denotes an oid of
type t, then the expression returns the set of the
oid’s, and the result type is {t}. Otherwise, if each
Oi is a value of atomic or structured type τ , then
it returns a set of new oid’s {o1, . . . , on}, and the
schema instance O is augmented with the set of
oid equations {o1 = O1, . . . , on = On} where each
Oi is the value evaluated from Oi. The result type
is class(s) where s is a fresh type variable. The
schema S and the oid classification C is augmented
with the equation s = τ and the map from s to the
set {o1, . . . , on}, respectively.

The basic operations on sets are union and
intersection of two sets of oid’s written as X∪Y and
X∩Y, respectively, where both X and Y must have
the type either {t} or class(t). The type of the
result of intersection is {t}. The type of the result
of union is class(t) if either of the two sets has type
class(t); otherwise the result type is {t}.

In the spirit of SQL and set comprehension in
programming languages, the language also support
general set selection whose syntax is:

select M from x1 in X1, ..., xn in Xn where P

where each Xi must be a set of oid’s and P is a
predicate. This corresponds to the mathematical
set comprehension notation {M | (x1 ∈ X1) ∧ · · · ∧
(xn ∈ Xn)∧P}. The evaluation proceeds as follows:
First, the product of the n sets of oid’s are created,
and then M (and P) is evaluated simultaneously for
each of the products. The resulting set has type {s}
if the type of Xi is {ti} for each i and M has type
s under the type assumption x1 : t1,. . . ,xn : tn. For
example,

select x from x in Empl where x.Salary>4000

returns the subset of Empl whose salary is greater
than 4000. The type of the resulting set is {Empl}.
3.3 Identity Preserving Transformation:

Parallel Map
Parallel map is the main feature of our language,
which allows us to transform a set of classes
of objects into another set of classes of possibly
different structure preserving the object identity up
to equivalence relation of oid’s. This operation is

derived from the mechanism developed in [NO95]
for data-parallelism on recursive data, and is the
main source of parallelism of the language. The
significance of data-parallel database query will be
discussed in Section 5.

The syntax for parallel map is given as follows:

map M foreach x in X

The intuitive meaning of this construct is to trans-
form the structure of a class X by simultaneously
applying an operation (represented by a function
λx.M) over the values of every objects in X. The
types of this expression is determined as follows.
Suppose X has either a set type {t} or a class type
class(t) such that t = τ ∈ S. A fresh type variable
s is introduced, and the type equivalence relation is
augmented by the equivalence t ∼=S s. If the type of
M is τ ′ under the type assumption x: τ , the schema
S is augmented with the type equation s = τ ′. The
resulting set has type {s} (class(s)) if X has type
{t} (class(t), respectively.) The execution of this
operation is as follows: suppose X is a set of oid’s
{o1, . . . , on} and oi = Oi ∈ O for each i. A set
of new oid’s {o′1, . . . , o′n} is first created, and the
equivalence relation is augmented with the equiva-
lences oi

∼=O o′i (1 ≤ i ≤ n). For each i (1 ≤ i ≤ n),
x is first bound to the corresponding object value
Oi and then the map operation M is evaluated to
a value O′

i of type τ ′. (In this step, the map op-
erations are executed simultaneously.) Finally, the
schema instance O is expanded with the set of e-
quations {o′1 = O′

1, . . . , o
′
n = O′

n}, and the set of
oid’s {o′1, . . . , o′n} is returned as the result. The oid
classification C is augmented so that s is mapped to
the set of the new oid’s {o′1, . . . , o′n}.

A simple parallel map example follows:

let Empl’ = map [Name=x.Name,
Department=x.Department]

foreach x in Empl

which creates another restricted “view” of the class
Empl. It is also possible to apply several parallel
maps to a set of mutually dependent classes and to
create another set of mutually dependent ones, as
shown in Section 4, with the following concurrent
let construct:

let X1 = map ...

8

and X2 = map ...
...

and Xn= map ...
end

3.4 Oid Operations
There are three oid operations:

value(o) oid dereference,
M=M’ equivalence checking, and
M as X oid coercion.

We have already introduced the oid dereference at
the beginning of this section.

M=M’ checks equivalence between arbitrary two
values. If M and M’ denote two oid’s, say o and
o′, respectively, then the expression returns true if
o ∼=O o′; it returns false otherwise. This equivalence
checking for oid’s is extended to that for arbitrary
values in the obvious way.

M as X is a powerful facility to coerce an oid
denoted by M to its equivalent oid in the set of oid’s
denoted by variable X. The type of this expression
is therefore the type of the oid’s belonging to X.
The program variable X can be the one being
defined in a concurrent let construct. This facility
makes it possible to update a class of objects while
preserving the dependencies between the objects.
Consider the following example:

let Empl’ = map [Name=x.Name,
Department=x.Department,
Boss=(x.Boss as Empl’)]

foreach x in Empl

x.Boss as Empl’ coerces the oid denoted by x.Boss
that belongs to Empl to the equivalent oid which will
belong to the new set Empl’ being defined. (If there
are multiple occurrences of the same name, the
inner-most binding of the form Empl’=... enclosing
the coercion operation is selected.) The resulting
set of oid’s has type {Empl ′} such that Empl ′ =
[Name:string, Department:Dept, Boss:Empl’], and is
a new “view” of class Empl. Due to the effect of the
coercion operator, the Boss field of every object in
the new class is assigned an oid in the new class that
shares the same object identity with the equivalent
oid in the original class. The coercion facility also
can be used to define more powerful operations such
as update of database, as will be noted in Section 4.

M as X does not work for arbitrary set X of oid’s,
even if the oid’s in the set is created from the class
to which the oid denoted by M belongs. This is
because the set X may be created from a subset of
the original class generated by a select operation.
In such a case, the oid being coerced may not
have the corresponding oid in X. This difficulty
is circumvented by our distinction of sets by the
two types {t} and class(t), the latter of which
guarantees that the set contains an equivalent oid
for every oid of type s such that s ∼=S t. The typing
constraint for the coercion operator is therefore
stated as follows: M as X is allowed only if M has
type t, X is the name for the value of type class(s),
and the equivalence relation s ∼=S t holds.

3.5 Reduction Operation
Following approaches for querying database col-
lections [TBN91, BNTW95] and set operations in
database programming languages [BBKV88, BO96],
we include the following general aggregate opera-
tion:

reduce X with unit=ε, op=⊗
where X has type {t} with t = τ ∈ S, ⊗ is an
associative and commutative binary operation on
the values of type τ that returns a value of type τ ,
and ε is a unit element for the binary operation. If
X is a set {o1, . . . , on} (n ≥ 0) such that oi = vi ∈ O
(for each i, 1 ≤ i ≤ n), the result of the reduction
operation is ε⊗ v1 ⊗ · · · ⊗ vn. For example,

let Salary = map x.Salary foreach x in Empl
in reduce Salary with unit=0, op=+

returns the sum of salary of all the employees.
The reduction operator works as the set flattening
operation if it is combined with the set union
operator:

reduce S with unit={}, op=∪
where S denotes a set of sets and {} denotes the
empty set. The reduction operation is also a source
of data-parallelism, as will be noted in Section 5.

4 Query Examples and Language
Extensions

In this section, we first show some examples of
object-oriented database queries and then describe

9

the extensions of the language for views and
updates.

4.1 Examples of Queries
Suppose the following type equations are defined in
the schema:

Empl = [Name: string, Salary:int, Department:Dept]
Dept = [Name: string, Manager: Empl]

and Empl and Dept are bound to classes of type
class(Empl) and class(Dept) respectively.

The first example is a simple projection on these
classes. Suppose the user is only interested in the
name of each department and the name of the
managers of each department. The query below
projects those attributes and bound the result to
Dept’:

let Dept’ = map [Name = x.Name,
MngrName = x.Manager.Name]

foreach x in Dept

This query is a usual relational-style query, and
forgets the sharing relation between the class of
employees on Manager attribute. There are cases,
however, where we want to reflect the sharing
relation between the two classes of employees and
departments in the query result. The following is
an example of such a query:

let Dept’ = map [Name = x.Name,
Manager = (x.Manager as Empl’)]

foreach x in Dept
and Empl’ = map [Name = x.Name]

foreach x in Empl
end

The sharing relation on Manager attribute is re-
tained by coercing the original oid to the corre-
sponding oid in the new class Empl’.

Next, we show an example of a more complex
transformation of the class Empl to different struc-
ture. The query below computes the colleagues of
each employee, i.e. the employees belonging to the
same department, and add the result as a new at-
tribute Colleague. The result of the entire query is
bound to Empl’:

let Empl’ =
map [Name = x.Name,

Department = x.Department,
Boss = x.Boss as Empl’,
Colleague =

select (o as Empl) from o in Empl
where (x.Department=o.Department

∧ x.self6=o)]
foreach x in Empl

In this query, we have assumed that each object val-
ue is, when parallel map is applied, automatically
augmented with the additional field self that con-
tains the oid of the object itself. In the rest of the
paper, we assume this convention.

In a relational database, the query above should
be done through joins. In our model, we can extend
each employee object directly so that it includes
the related objects, while preserving the identity
of Empl objects. Note also that the objects in
Colleague attribute belong not to the old class Empl
but to the newly created class Empl’. This allows
us to continue query processing by issuing a new
query on Empl’ as shown in the following example.

select o.Name
from o in Empl’
where (select o2

from o2 in o.Colleague
where #(o2.Colleague) > 10) 6= {}

This query returns the names of employees that
have a colleague who has more than 10 col-
leagues. In the query, # stands for a function
that returns the number of elements of a giv-
en set. # X can be expressed by a combination
of a parallel map and a reduction operation as:
reduce (map 1 foreach x in X) with unit=0, op=+.

These examples demonstrate that our model suc-
cessfully integrates the benefits of both relational
databases and object-oriented databases. In our
model, we can easily write a set-based declarative
query that transforms classes objects into new class-
es of different structures that preserve object iden-
tity and the mutual dependence relation among ob-
jects.

The next example shows an object-creating query
using class . . . from . . . where . . . construct. Sup-
pose there is a class of objects of type class(Computer)
defined as:

Computer = [Hostname: string, Type: string,

10

let Emp2 = map [Name = x.Name,
Department = (x.Department as Dpt2),
Manager = (x.Department.Manager as Emp2)]

foreach x in Empl
and Mngr = map [Name = x.Name,

Managing = (select (o as Dpt2) from o in Dept where o.Manager = x.self),
Subord = (select (o as Emp2) from o in Empl where o.Department.Manager = x.self)]

foreach x in (select o.Manager from o in Dept)
and Dpt2 = map [Name = x.Name,

Manager = (x.Manager as Emp2),
Member = (select (o as Emp2) from o in Empl where o.Department = x.self)]

foreach x in Dept
end

Figure 3: Transforming Mutually Dependent Classes

AssignedTo: Department]

Assuming that each employee is privileged to use
only the computers that are assigned to one’s
department, the following query computes the class
of objects ComputerAccount by joining Empl and
Computer belonging to the same department:

let ComputerAccount =
class [Emp = o1, Cmp = o2]
from o1 in Empl, o2 in Computer
where o1.Department = o2.Department

ComputerAccount has type class(ComputerAccount)
with a type equation ComputerAccount = [Emp :
Empl ,Cmp : Computer].

The query in Figure 3 transforms the classes Empl
and Dept defined above into mutually dependent
classes using the coercion operator as. The query
adds Manager attribute to the employee objects,
adds Member attribute to the department objects,
and creates a new set Mngr of managers from
Empl as a set of objects having Name, Managing,
and Subord attributes. Managing is the set of
departments one manages, and Subord is the set
of members of the department one manages. Note
that the query retains the mutually dependent
structure between the objects. This is accomplished
by coercing some oid’s to those of newly created
objects by using as.

There is one subtle point to be made in this query:
the objects assigned to Manager field of Emp2 and
Dpt2 are coerced to the objects in Emp2. Although
it may be more appropriate to coerce them to the
objects in Mngr, the typing constraint does not al-
low it, since the type of Mngr is not class(t) but {t}.
In this particular case, we see that employee objects
referred to through Manager attribute always have
corresponding objects in Mngr, and therefore co-
ercing them to Mngr never causes errors. Such an
analysis could be incorporated in our model by us-
ing some techniques in programming language re-
search such as abstract interpretation, but we do
not discuss the issue in this paper.

As shown in the example above, parallel map
and as construct provide us with a uniform way to
transform a class of objects into another class of
objects of arbitrary mutually dependent structure.
Moreover, transformations induce and maintain the
equivalence classes of those objects representing the
same “real-world entity.” For example, in the query
shown in Figure 3, objects in Empl, Emp2, and Mngr
are properly related by the equivalence relation.
This enables us to perform identity test among the
objects belonging to different types of classes. For
example, the following query is possible.

select o1.Name
from o1 in Mngr, o2 in Emp2
where o1 = o2 ∧ o2.Department = “Account”

11

update Empl=[Name=Empl.Name,
Salary = (if Empl.Department=“Account” then Empl.Salary+100 else Empl.Salary),
Department=Empl.Department]

end

(a) A Hypothetical Update Query

let Empl = map [Name=x.Name,
Salary=(if x.Department=“Account” then x.Salary+100 else x.Salary),
Department=(x.Department as Department)]

foreach x in Empl
and Dept = map [Name = x.Name, Manager = (x.Manager as Empl)]

foreach x in Dept

(b) A Translated Query Code

Figure 4: An Update Query

This query returns the names of employees who is a
manager of some department and is also a member
of the account department. In other words, this
computes the intersection of Mngr and the set of all
members of the account department.

4.2 Extension for Views and Updates
The facilities for writing a set-based and identity-
preserving query immediately yield identity-preserving
view mechanism; as in relational databases, a view
is just an unevaluated query. For example, the
query in Figure 3 can be changed to a view defi-
nition only by replacing the keyword let with a key-
word view. view . . . and . . . end construct is the
same as let . . . and . . . end except that the evalua-
tion is delayed until one of the names defined in the
construct is referred to. After defining this view,
Emp2, Mngr and Dpt2 are used as classes in a query
such as:

select o.Manager.Subord
from o in Emp2
where o.Name = ”John”

which is evaluated by first “materializing” all the
classes defined in the view, and then evaluating
the query itself. In relational databases, only the
relations that are referred to in the query need to
be materialized. In our model, however, all classes

defined in a view construct need to be materialized
even if some of them are not yet referred to because
they may have mutual references.

We can also describe update of database by mean-
s of parallel map and oid coercion. Consider a hy-
pothetical update query in Figure 4(a). The query
intends to update the database by adding 100 to
the salary of all the employees in the account de-
partment. We can translate the hypothetical query
to a query written by means of our query primitives
as shown in Figure 4(b). This updating query in-
dicates that updating objects is equivalent to map-
ping the target objects (here, employee objects) to
new objects, and switching all references to the tar-
get objects into references to the new objects. In
the example above, all the objects in Dept need to
be mapped because they have references to employ-
ee objects. In this way, any update query can be
systematically transformed to a query composed of
parallel map and oid coercion, by analyzing type
dependence. Furthermore, updates that alter the
type of objects are also allowed. The straightfor-
ward execution of the translated code may not be as
efficient as the corresponding in-place update that
may be possible in some imperative language. How-
ever, some optimizations are possible. For example,
we can discard the old data, since they are replaced
by the updated data and are never referred to. In

12

the case the type of objects are not changed, we can
translate the update query to the code performing
in-place update.

5 Data-Parallel Processing of Database
Queries

The proposed paradigm of an object-oriented database
query language is suitable not only for identity pre-
serving transformation of classes of objects, but also
for achieving data-parallel query processing on par-
allel machines, especially on recently emerging mas-
sively parallel distributed memory multicomputers.
The paradigm has two desirable properties. First,
it easily scales up with respect to the number of
processors. Secondly, we can apply a class of data-
parallel algorithms for parallelizing queries includ-
ing navigations.

5.1 Data-Parallel Query with Navigations

The mechanism of parallel map achieves data-
parallel evaluation of a query on a collection of
objects in the obvious way, if the map operation
does not include any navigations. However, as men-
tioned in the introduction, navigations sometimes
conflict with parallelization. Suppose a database
contains the following class describing the ancestry
trees of viruses:

class
Virus = {

iadhk=[Code=“IADHK”,Ancestor=iadhk],
iadhl =[Code=“IADHL”,Ancestor=iadhk],
iab37=[Code=“IAB37”, Ancestor=iadhk],
iackb=[Code=“IACKB”,Ancestor=iackb],
iackj =[Code=“IACKJ”, Ancestor=iackb],
iackg=[Code=“IACKG”, Ancestor=iackj],
iacka=[Code=“IACKA”,Ancestor=iackg],

... and more and more.}
end

where the fields Code and Ancestor respectively
indicates each virus’s identification code and the
immediate ancestor; in the case the ancestor is
unknown, the Ancestor field is specially set to the
oid of the object itself. On this database, consider
the following query: detecting the origin of each
virus. Processing this query requires traversing

virus objects recursively via the oid contained
in the field Ancestor. The conventional way of
implementing the required traversal as a recursive
program, however, does not achieve the desired
parallelization, particularly when the class Virus
contains a long chain of the ancestor relation.
This is because each recursive computation must
wait until the successive recursive computation
finishes, i.e. the recursive program sequentializes
the oid dereferences. Moreover, if the ancestor
relation has many confluences, i.e. there are many
objects to which multiple Ancestor pointers go,
much redundant duplications of computation are
generated.

In the following, we show how this difficulty
can be overcome by combining parallel map and
the technique of pointer jumping [Jáj92] which is
well known in the field of imperative data-parallel
programming. The above query can be regarded
as a problem of finding the root nodes in a forest
of trees such as the one illustrated in Figure 5 (a).
There is an efficient data-parallel algorithm based
on pointer jumping technique for this root finding
problem. The algorithm is iteration of the following
data-parallel operation: the reference to the parent
in each node is simultaneously updated by its
reference’s reference, resulting new structure as
shown in Figure 5 (b). This operation is repeated
until all the reference in every node is set to its
root node (Figure 5 (c)). Since every reference is
doubled in each iteration, every pointer in a forest
of trees of N nodes refers to the root node at most
after O(log2 N) iterations.

This algorithm can be directly applied to the
above query by regarding the dots, the integer
numbers, and the arrows in the figure as objects,
oid’s, and reference relations, respectively. The
pointer jumping technique can be used to write
a wide range of data-parallel algorithms including
not only root finding but also parallel prefix, tree
contraction, and so on. If we are able to describe
such algorithms in our language, we can achieve
effective parallelization of various queries including
object traversals. In the previous work [NO95],
it has been shown that various parallel algorithms
based on the pointer jumping technique can be
expressed in a declarative programming language
through the notion of parallel recursion, which is

13

Figure 5: The Data-Parallel Root Finding Algorithm in a Forest of Objects

a process of repeatedly transforming a system of
equations by parallel map into another system until
the final result is obtained.

Our query language is also designed to be able
to express parallel recursion on classes of objects.
As parallel recursion is iteration of parallel map, it
is sufficient to introduce the following primitive for
bounded iteration.

iterate N times do X=M end

In this construct, N is an integer which indicates
the number of iterations, and M is the code for each
transformation. The transformed class of objects is
assigned to the variable X in each iteration. For
example, the following code creates a class of new
virus objects by replacing the Ancestor field in each
object in the class Virus with the Origin field that is
assigned the oid of its most distant ancestor:

let Virus = map [Code=x.Code,
Origin=(x.Ancestor as Virus)]

foreach x in Virus end;

iterate log(#Virus) times do
Virus = map [Code=x.Code,

Origin=(x.Origin.Origin as Virus)]
foreach x in Virus

end

where # Virus is the number of oid’s contained
in the class and log is the logarithm with base
2. The query first transforms the class Virus to
the class of type class(Virus′) with type equation
Virus ′ = [Code : string ,Origin : Virus ′] where each
Origin field is set to its immediate ancestor. Then
the pointer jumping technique is applied to the
class of virus objects by repeatedly transforming
the class via parallel map. It is sufficient to iterate
log2 #Virus for every object to reach its most distant
ancestor. Though it is possible to stop iteration
just when all the objects reach to the most distant
ancestors, testing this condition requires, in each
iteration, an additional reduction with a boolean
operator or over the set of virus objects. We

therefore take the way to iterate by a fixed number
as a gentle solution for termination checking.

6 Implementation Strategy

We claim that the proposed model serves not
only as a formal model to account for object-
oriented databases but also as a basis to develop a
practical object-oriented database systems. In this
section, we describe two implementation strategies
of our query language: one for conventional single
processor architectures and the other for distributed
memory massively parallel multicomputers.

6.1 Implementation on Conventional
Single Processor Architectures

Our set-based query primitives such as parallel map
is designed to be evaluated in data-parallel fashion.
However, they can equally well be implemented on a
conventional single processor machines. Most of the
features of our query language can be implemented
by using the existing technologies for implementing
databases on conventional architectures, except for
the features that is specific to our query language:
oid coercion operation as, equality test between
oid’s, and oid dereference operation. In order to
implement these features, we represent an oid using
a pair (i, t) where i is an instance identifier and
t is the type of that oid. An instance identifier
corresponds to a “real-world entity,” and is shared
by all the objects representing different views of
the same entity. For example, in the example in
Figure 3 that derives the class Emp2 from the class
Emp, we first introduce a fresh type variable s for
Emp2, derive objects for Emp2 from objects in Emp,
and then assign an oid (i, s) to each object for Emp2
where i is the same instance identifier of the source
object from which that object is derived. In this
way, the same instance identifier is assigned to all
objects representing the same entity.

By this representation of oid’s, equality test
for two oid’s is easily implemented: it just tests
the equality of instance identifiers of those oid’s.
Coercion of an oid is also easy. It just changes the

14

type in the oid to the type of the target class. We
can coerce an oid to a class that is being defined,
since the type of the target class is statically known
by a preceding type checking phase. Finally, oid
dereference operation is implemented as a map from
oid’s to object values. A map for oid dereference is
maintained by the system as a hash table whose
key is an oid and the contents of whose entry is
the object value of that oid. Since only limited
combinations of instance identifiers and types would
be used, we use hashing function to avoid a very
sparse table.

6.2 Implementation on Massively Parallel
Multicomputers

To achieve data-parallel execution of our query lan-
guage, we propose an implementation strategy for
distributed memory massively parallel multicom-
puters. The basic strategy is, similar to that of
conventional data-parallel languages such as Data-
parallel C [HQ91], to evaluate queries in so called
SPMD (single program multiple data-streams) style
[Kar87]. In the SPMD execution, every processor
executes the same program (compiled code) on its
own copy of scalar data, while a set of oid’s are dis-
tributed over the processors by assigning each data
element (oid) to a distinct processor. In the rest of
this section, we assume that underlying hardware
system is a distributed memory multicomputer con-
sisting of unbounded number of processors, each of
which has a unique processor id.

There are four sources of parallelism in the
language: the class creation operation class, the
set restriction operation select, the parallel map
map, and the reduction operation reduce. Among
them, the reduction operation can be effectively
parallelized due to binary operator’s associativity
and commutativity. In particular, if the hardware
supports special machine instruction for reduction,
it can be utilized for speed up.

To achieve parallelization of the other operations,
we must invent a run-time representation of schema
instance, i.e. system of oid equations, suitable for
data-parallelism. In the previous work [NO95], a
method has been proposed for expressing system of
equations on a massively parallel distributed memo-
ry multicomputer model. We can apply this method
for implementation of our query language with some

modifications as follows. Each oid is represented by
(p, t), a pair of a processor id p and the type of the
oid t. The processor number p corresponds to in-
stance identifier in the implementation strategy for
conventional machines. This indicates objects that
represents the same “real-world entity” are assigned
to the same processor. A schema instance is repre-
sented by maintaining in each processor a table that
associates each type variable with the correspond-
ing object value. The object value associated with
an oid (p, t) is stored in the local table of processor
p with t as the key. Note that an oid (p, t) in a
processor p has a unique corresponding object val-
ue stored in the local table, since no two objects in
the same class are assigned to the same processor.
Dereference of an oid (q, t) in a processor p returns
the value stored in the local table with t as the key,
if p = q; otherwise, it retrieves the value stored in
the table of processor q with t as the key via inter-
processor communication. When a parallel map is
applied to transform a set of objects represented by
a set of oid’s {(pi, t) | 1 ≤ i ≤ n}, every processor pi

simultaneously applies the same map operation to
the object value associated with t in the local table,
and the result value of the map operation is regis-
tered to the table with s as the key, where s is the
type of oid’s of the new object set. The parallel map
finally returns a set of oid’s {(pi, s) | 1 ≤ i ≤ n} as
a result. An oid equivalence checking between t-
wo oid’s (p, t) and (q, s) returns true if and only if
p = q and t ∼=S s. An oid coercion on (p, t) to a set
of oid’s X returns an oid (p, s), where s is the type
of oid’s belonging to X.

The above method is designed to work only in a
simple setting. To support full specification of the
query language, we must consider nested parallelis-
m, i.e. execution of parallel operations in another
parallel operation. An obvious way to execute such
nested parallel queries is to give up nested paral-
lel execution, and to sequentially execute the inner
parallel constructs. Such a solution, however, signif-
icantly limits the parallelism to be exploited. In or-
der to achieve full parallelization, a technique called
flattening has been studied by some researchers to
support nested data-parallelism in the array based
data-parallel languages [Ble90, PP93]. They have
proposed systematic ways to flatten the nested par-
allelism, and an array based data-parallel language

15

NESL [Ble93], which supports the nested parallelis-
m based on such a method, has been actually im-
plemented. A similar technique may be applicable
to our language. A bit of difficulty lies in our da-
ta representation, the equational data formulation,
but the authors believe that the difficulty can be
overcome by further investigations.

7 Conclusion and Future Work

This paper proposed an object-oriented data model
and its query language. We based our development
by modeling an object-oriented database as a sys-
tem of oid equations of the form {o1 = O1, . . . , on =
On} which associates each oid oi with a value Oi.
Every Oi can include any oj defined within the sys-
tem of equations for expressing object sharing and
mutual dependencies. On this model, we developed
a query language that transforms a system of equa-
tions to a new system of equations. We demon-
strated that the language can express wide range
of transformation, including those that cannot be
described in the existing object-oriented query lan-
guages. In our language, object identity is up to an
equivalence relation over oid’s in the system of e-
quations. This equivalence relation is automatically
induced and maintained for each time the system of
equations is transformed by a query. By this mech-
anism, the language supports identity-preserving
queries and views. Another advantage of our model
is that it naturally supports data-parallelism. Even
those queries that crucially depend on navigation
can be evaluated in a data-parallel fashion in our
language.

The discussion on our object-oriented data mod-
el and query language has been focused on object
identity so far. There are some important aspects
of object-oriented paradigm which are not covered
in our proposal. One of most important is inher-
itance. In object-oriented databases, the term in-
heritance implies method inheritance, i.e. the ability
to share code among classes, and extent inclusion,
i.e., hierarchical organization of classes induced by
inclusion relation of their extents. A convention-
al approach is to represent both of them by simple
subtype relation [Car88]. This appracoh can cer-
tainly be adopted to our model. A more promiss-
ing approach would be to integrate the model p-

resented here with a polymorphic type system for
database programming language [BO96] based on
record polymorphism [Oho95]. As demonstrated
in [BO96], method inheritance and extent inclusion
can be more accurately represented by polymorphic
typing of record structures. We believe that these
features can be cleanly integrated with our model
of objects.

We have not provided an algebra for our query
language either. An important further investigation
is to develop an algebra that works as a basis
of equational reasoning, query optimizations, and
so on. It would be also challenging to develop
a systematic method for flattening nested parallel
queries, which will enable us to achieve a full
implementation of the data-parallel object-oriented
query language.

References

[AB91] Serge Abiteboul and Anthony Bonner.
Objects and views. In Proc. ACM
SIGMOD Conference, pages 238–247,
Jun. 1991.

[ABGO93] Antonio Albano, R. Bergamini, Giorgio
Ghelli, and Renzo Orsini. An object
data model with roles. In Proc. VLDB
Conference, pages 39–51, Aug. 1993.

[AK89] Serge Abiteboul and Paric C. Kanel-
lakis. Object identity as a query lan-
guage primitive. In Proc. ACM SIG-
MOD Conference, pages 159–173, Jun.
1989.

[BBKV88] François Bancilhon, Ted Briggs, Setrag
Khoshafian, and Patrick Valduriez.
FAD. a powerful and simple database
language. In Proc. VLDB Conference,
pages 97–105, Sep. 1988.

[BCD89] François Bancilhon, Sophie Cluet, and
Claude Delobel. A query language
for the O2 object-oriented database
system. In Proc. Int. Workshop on
DBPL, pages 122–138, Jun. 1989.

[BKK88] Jay Banerjee, Won Kim, and Kyung-
Chang Kim. Queries in object-oriented
databases. In Proc. IEEE ICDE, pages
31–38, Feb. 1988.

16

[Bee95] Catriel Beeri A Formal Approach
to Object-Oriented Databases. Da-
ta and Knowledge Engineering, 5:353–
382, 1990.

[Ble90] G.E. Blelloch. Vector Models for Data-
Parallel Computing. MIT Press, 1990.

[Ble93] G.E. Blelloch. NESL: A nested da-
ta parallel language. Technical Report
CMU-CS-93-129, Carnegie Mellon Uni-
versity, 1993.

[BNTW95] Peter Buneman, Shamim A. Naqvi, Val
Tannen, and Limsoon Wong. Principles
of programming with complex objects
and collection types. Theoretical Com-
puter Science, 149(1):3–48, Sep. 1995.

[BO96] Peter Buneman and Atsushi Ohori.
Polymorphism and type inference in
database programming. ACM Transac-
tions on Database Systems, 21(1), 30-
76, 1996.

[Car88] Luca Cardelli. A semantics of multiple
inheritance. Information and Compu-
tation, 76:138–164, 1988.

[Cat94] R.G.G. Cattell. The Object Database
Standard: ODMG-93. Morgan Kauf-
mann, 1994.

[CK86] Hong-Tai Chou and Won Kim. A
unifying framework for versions in a
CAD environment. In Proc. VLDB
Conference, pages 336–344, Aug. 1986.

[Day89] Umeshwar Dayal. Queries and views in
an object-oriented data model. In Proc.
Int. Workshop on DBPL, pages 80–102,
Jun. 1989.

[DG92] David DeWitt and Jim Gray. Parallel
database systems: The future of high
performance database systems. CACM,
35(6):85–98, Jun. 1992.

[HQ91] Hatcher, P.J. and Quinn, M.J. Data-
Parallel Programming on MIMD Com-
puters. The MIT Press, 1991.

[HY90] Richard Hull and Masatoshi
Yoshikawa. ILOG: Declarative creation
and manipulation of object identifiers.

In Proc. VLDB Conference, pages 455–
468, Aug. 1990.

[HZ90] Sandra Heiler and Stanley B. Zdonik.
Object views: Extending the vision. In
Proc. IEEE ICDE, pages 86–93, Feb.
1990.

[Jáj92] J. Jájá. An Introduction to Parallel
Algorithm. Addison-Wesley, 1992.

[Kar87] A. Karp. Programming for parallelism.
IEEE Computer, pages 43–57, May
1987.

[KC86] Setrag Khoshafian and George P.
Copeland. Object identity. In Proc.
ACM OOPSLA Conference, pages 406–
416, Nov. 1986.

[Kim89] Won Kim. A model of queries for
object-oriented databases. In Proc.
VLDB Conference, pages 423–432,
Aug. 1989.

[KSW86] Peter Klahold, Gunter Schlageter, and
Wolfgang Wilkes. A general model for
version management in databases. In
Proc. VLDB Conference, pages 319–
327, Aug. 1986.

[LRV88] C. Lécluse, P. Richard, and F. Velz. O2,
an object-oriented data model. In Proc.
ACM SIGMOD Conference, pages 424–
433, Jun. 1988.

[NO95] S. Nishimura and A. Ohori. A calcu-
lus for exploiting data parallelism on re-
cursively defined data (preliminary re-
port). In Proc. International Work-
shop on Theory and Practice on Paral-
lel Programming, LNCS vol. 907, pages
413–432, 1995.

[Oho95] Atsushi Ohori. A polymorphic record
calculus and its compilation. ACM
Transactions on Programming Lan-
guages and Systems, 17(6):844–895,
1995.

[PP93] J. Prins and D. Palmer. Transforming
high-level data-parallel programs into
vector operations. In Proc. ACM Sym-
posium on Principles and Practice of

17

Parallel Programming, pages 119–128,
1993.

[Run92] Elke A. Rundensteiner. Multiview: A
methodology for supporting multiple
views in object-oriented databases. In
Proc. VLDB Conference, pages 187–
198, Aug. 1992.

[SS90] Marc H. Scholl and Hans-Jörg Schek. A
relational object model. In Proc. ICDT,
LNCS vol. 470, pages 89–105. Springer-
Verlag, Dec. 1990.

[SZ89] Gail M. Shaw and Stanley B. Zdonik.
An object-oriented query algebra. In
Proc. Int. Workshop on DBPL, pages
103–112, Jun. 1989.

[TBN91] Val Tannen, Peter Buneman, and
Shamim Naqvi. Structural recursion as
a query language. In Proc. Int. Work-
shop on DBPL, pages 9–19, Aug. 1991.

[YCWT93] Philip S. Yu, Ming-Syan Chen, Joel L.
Wolf, and John Turek. Parallel query
processing. In Nabil R. Adam and B-
harat K. Bhargava, editors, Advanced
Database Systems, LNCS vol. 759,
chapter 12, pages 229–258, 1993.

18

