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An Equilibrium Guide to Designing Affine Pricing

Models

Bjørn Eraker and Ivan Shaliastovich ∗

Duke University

Abstract

We examine equilibrium models based on Epstein-Zin preferences in a frame-
work where exogenous state variables which drive consumption and dividend
dynamics follow affine jump diffusion processes. Equilibrium asset prices can be
computed using a standard machinery of affine asset pricing theory by imposing
parametric restrictions on market prices of risk, determined by preference and
model parameters. We present a detailed example where large shocks (jumps)
in consumption volatility translate into negative jumps in equilibrium prices
of the assets. This endogenous ”leverage effect” leads to significant premiums
for out-of-the-money put options. Our model is thus able to produce an equi-
librium ”volatility smirk” which realistically mimics that observed for index
options.

KEY WORDS: Epstein-Zin preferences, affine asset pricing model, general equilibrium,

option pricing
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1 Introduction

A cornerstone of modern finance, no-arbitrage models are routinely applied to price
basic securities such as stocks and bonds as well as derivative assets. No-arbitrage
models place very few restrictions on the behavior of asset prices. Indeed, no-arbitrage
models say (almost) nothing about the relationship between the assumed, objective
probability law of the ”state variables” in the model, and the arbitrage-induced ”risk-
neutral” measure used for pricing. This is convenient from the point of view of prac-
titioners who wish to maintain an infinite number of degrees of freedom in adjusting
no-arbitrage models to observed asset prices. It is inconvenient and non-informative
to academics who wish to design asset pricing models to study the dynamics of finan-
cial markets to learn about such things as market efficiency, investors’ risk aversion,
and the link between the macro economy and financial market prices.

In this paper we describe a consumption-based general equilibrium framework
for designing affine asset pricing models when the representative agent is endowed
with Epstein-Zin preferences over intermediate consumption and wealth (see Epstein
and Zin 1989), and the underlying state variables follow a multivariate affine jump
diffusion. The main message of the paper is that we can proceed to price stocks,
bonds and derivatives by using a standard machinery of affine no-arbitrage models,
under the conditions that 1) the market prices of risk are explicit functions of the
preference parameters, and 2) state variables relate to the movements in aggregate
consumption. We show that bond and stock prices are approximately exponential
affine in state variables. We provide explicit expressions for the market prices of risk
which depend on exogenous dynamics as well as preference parameters.

The Epstein-Zin preferences are crucial for our analysis because standard CRRA
(power utility of consumption) preference structure implies that market prices of risk
are zero for all shocks other than the immediate news to aggregate consumption. By
contrast, the Epstein-Zin recursive utility function delivers non-zero market prices
of risk for factors that are not directly related to consumption innovations. Thus,
the Epstein-Zin framework offers important additional insights into why factors other
than consumption shocks may be priced in asset markets.

We verify that market risk prices associated with small shocks (Wiener processes)
have a standard linear form known from the no-arbitrage literature. This result is
not surprising, and similar representations have been shown in discrete time models,
such as those in Bansal and Yaron (2004) and Tauchen (2005). The linear market
price of risk representation implies that state variables follow affine jump diffusions
under both the objective and the risk neutral probability measures.

While standard no-arbitrage models offer no guide in specifying a link between
the objective and risk-neutral measures for discontinuous jumps, our framework pro-
vides an explicit formula for connecting the two measures. Specifically, we show that
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the risk-neutral jump intensities as well as the risk-neutral jump size distributions
are obtained through a simple scalar adjustment of the arrival intensities and jump
size distributions under the objective measure. In an example application, we show
that both the jump arrival intensity and jump sizes are larger under the risk-neutral
measure. The differences increase in the level of risk aversion of the representative
agent.

In illustrating our approach, we present a detailed example model where aggre-
gate consumption and dividend processes exhibit stochastic volatility. The volatility
process, which we assume affects both dividend and consumption growth, follows
a mean reverting process where shocks may be continuous (Wiener), discontinuous
(compound Poisson), or both. Our model generates a negative correlation between
shocks to the volatility process and the equilibrium stock prices. This correlation
approaches negative one when the jumps dominate the variation in the volatility, and
is different under the objective and risk-neutral distributions. No-arbitrage models to
date have assumed that the negative volatility/stock price correlation is exogenously
determined and identical under the two measures.

We study the equilibrium impact of volatility shocks on theoretical option prices in
our model. Theoretical option prices are computed through the Fourier inversion tech-
nique of Lewis (2000), adapted to our setting with random, equilibrium-determined
interest rates. The model produces several interesting stylized facts about options.
The implied volatilities computed in our model tend to mimic those observed empir-
ically in that the implied volatility is U shaped, and with significantly higher prices
for out-of-the-money puts. Low levels of risk aversion, conversely, produce a flatter
volatility smile. This effect is not present in a model with CRRA utility, which tends
to produce a reversed pattern in the implied volatility with relatively higher prices for
ITM puts than OTM puts. The large impact of volatility shocks on OTM put options
is related to two facts. First, the equilibrium stock price process is heavily influenced
by the possibility of sudden increases (jumps) in economic uncertainty even under rel-
atively modest levels of risk aversion. This generates large (negative) price jumps in
the physical probability law of the stock price. Second, the adjustment of the physical
probability law into the risk-neutral one implies an increase in both volatility jump
arrival intensity, as well as the average sizes of the jumps. These risk adjustments
are only present under the full Epstein-Zin preference model, and no such adjustment
takes place for CRRA utility as shocks in the volatility are not explicitly correlated
with the immediate innovations into the consumption growth.

Our paper is connected to the extant literature in several ways. Bansal and Yaron
(2004) introduce the idea of long run risks and show that persistence in state vari-
ables coupled with an Epstein-Zin based equilibrium pricing kernel magnifies risk
premiums relative to i.i.d. economies. Chen (2006) provides exact solutions (up to a
system of nonlinear equations) in a continuous time setting when the state variable
follows a time-homogeneous Markov chain process. Aase (2002) studies time-additive
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equilibrium with general utility under jump processes. Shaliastovich and Tauchen
(2006) study equilibrium under subordinated Levy processes. Eraker (2006) exam-
ines a similar modeling environment in discrete time and studies example models for
pricing stocks and bonds. Our paper generalizes most of the previous works, which
are based on conditionally normal processes, to general affine processes. The advan-
tage of continuous time approach in the current paper is that analytical tractability
allows specific formulaes for market prices of risks, risk-neutral dynamics, etc. to be
developed.

A number of papers have examined the implications of stochastic volatility and
jump on option prices. Early examples include Hull and White (1987), Heston (1993),
Bates (1996, 2000), Bakshi, Cao and Chen (1997), and Duffie, Pan and Singleton
(2000). Madan, Carr and Chang (1998) and Carr et al. (2003) examine stochastic
volatility models driven by subordinated Levy processes. Option pricing under recur-
sive preferences has been studied by Liu, Pan and Wang (2005), Garcia, Luger and
Renault (2003) and Benzoni, Collin-Dufresne and Goldstein (2005). Liu, Pan and
Wang (2005) argue that Epstein-Zin preferences cannot explain the high valuations
of OTM put options in their i.i.d economy and argue that the results are similar to
results under CRRA utility. They conclude that a model in which investors do not
know the true probability of a crash and exhibit uncertainty aversion is needed to
explain high OTM put options. Benzoni, Collin-Dufresne and Goldstein (2005) show
that Epstein-Zin preferences generate high valuations for OTM puts if the economy
is not i.i.d, and expected consumption growth exhibits persistence along the lines
of Bansal and Yaron (2004). Unlike this paper, our example application focuses on
stochastic volatility as the driving force behind fat tailed return distributions and
option premiums.

The remainder of this paper is organized as follows. Section 2 discusses the speci-
fication of the Epstein-Zin preferences and exogenous state variables and derives the
equilibrium pricing kernel in the economy. In section 3 we discuss pricing of assets
with various payoffs, including dividend-paying stocks and equity options. In section
4 we present an example model and examine the equilibrium stock price process and
the implications for equity option prices computed in the model. Section 5 concludes.

2 Model

We start with a discrete time formulation of the real endowment economy where the
representative agent’s preferences over the uncertain consumption stream Ct can be
described by a recursive utility function of Epstein and Zin (1989) and Weil (1989):

(2.1) Ut =
[

(1 − δ)C
1−γ
θ

t + δ(EtU
1−γ
t+1 )

1
θ

]

θ
1−γ

.
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The representative agent’s preferences are thus characterized by a subjective discount
factor δ, the intertemporal elasticity of substitution (IES) ψ and the local risk aver-
sion coefficient γ. Et denotes the standard expectation operator conditional on the
information available to the agent in period t, and for notational convenience we set

θ =
1 − γ

1 − 1
ψ

.

Notably, when the risk aversion coefficient is equal to the reciprocal of the IES, (equiv-
alently, θ = 1), the preferences collapse to the familiar power utility case with risk
aversion parameter γ = 1

ψ
. The novel and appealing characteristic of the generalized

preferences is that they break the tight link between γ and ψ and allow to capture the
agent’s preference for the timing of the resolution of uncertainty. In the long run risks
literature (see Bansal 2007 for a survey), risk aversion is larger than the reciprocal of
the IES, γ > 1/ψ, that is, agents prefer early resolution of uncertainty. This ensures
that the compensations for risks are of the right sign and quantitatively important. 1

While one can view the recursive preferences in (2.1) as an important and eco-
nomically appealing generalization of the standard, constant relative risk aversion
expected utility, it is also possible to provide alternative interpretations of the recur-
sion via concerns for risk and robustness to model misspecification. Tallarini (2000)
enhances the value function of the standard log-utility agent by a risk sensitivity op-
erator, which is mathematically equivalent to Epstein-Zin preferences (2.1) with IES
and γ equal to one. Hansen and Sargent (2006) and Barillas, Hansen and Sargent
(2006) , on the other hand, re-interpret the recursion in Epstein-Zin preferences as
an endogenous risk compensation for agent’s distrust of model uncertainty and de-
sire for robustness against the worst-case scenario. Finally, Maenhout (2004) shows
that the behavior of the expected utility agent with a constant relative risk aversion
and homothetic preference for robustness is observationally equivalent to that of an
investor with a stochastic differential utility of Duffie and Epstein (1992), with an en-
hanced risk aversion coefficient. Thus, Epstein-Zin preferences provide important and
interesting extensions of standard economic analysis which allow to examine different
aspects of agent’s attitude towards the underlying uncertainty in the economy.

In discrete time, the Epstein-Zin (EZ) preference structure leads to the following
Euler equation

(2.2) Et

[

δθ
(

Ct+1

Ct

)

−
θ
ψ

R
−(1−θ)
c,t+1 Ri,t+1

]

= 1,

where Rc,t is the return on the aggregate wealth portfolio which pays consumption
as its dividends and Ri,t is the return on an arbitrary asset available to the investor.
For analytical convenience, we choose the discrete time Euler equation in (2.2) as a
starting point of our analysis despite the existence of a continuous time analogue pref-
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erence structure studied in Duffie and Epstein (1992), Schroder and Skiadas (1999),
among others.

Notice that the discrete time recursion (2.1), or its continuous equivalent which
we develop later in the paper, makes the pricing kernel non-affine if the log return on
aggregate wealth lnRc,t is non-linear. To maintain analytical tractability, therefore,
we follow Campbell and Shiller (1988), Campbell (1993) and Bansal and Yaron (2004),
among others, to linearize the model2.

Specifically, the discrete time continuously compounded (log) return lnRt on any
asset with price Pt and dividend level Dt can be expressed as

lnRt+1 = ln
Pt+1 +Dt+1

Pt

≡ ln(e
ln

Pt+1
Dt+1 + 1) − ln

Pt
Dt

+ ln
Dt+1

Dt

.

Log-linearize the first summand around the mean log price-dividend ratio to obtain

lnRt+1 ≈ k0 + k1vt+1 − vt + ∆ lnDt+1,(2.3)

where ∆ lnDt+1 = ln Dt+1

Dt
and vt = lnPt− lnDt. The approximation error is given by

the second-order Taylor residual; for notational ease, we suppress it in a subsequent
discussion and treat the approximated returns as exact. Campbell, Lo and Mackinlay
(1997) find that the absolute approximation errors for the mean and standard devi-
ation of US returns over the period 1926 to 1994 is −0.17% and 0.26%, respectively.
Bansal, Kiku and Yaron (2006) prove that if the IES parameter ψ is equal to one, the
approximation error for the model-implied equilibrium returns is exactly zero, while
for ψ > 1 they find the relative approximation errors for the model-implied mean
and standard deviation of the log price-consumption ratio being less than 1%. Thus,
while linearization of returns facilitates the analytical tractability of the model, we
believe it does not have any first-order effects on the asset prices.

The constants k0 and k1 depend on the mean log valuation ratio E(vt) :

k1 =
eE(vt)

1 + eE(vt)
,(2.4)

k0 = − ln
[

(1 − k1)
1−k1kk11

]

.(2.5)

In equilibrium, the model-implied mean price-dividend ratio E(vt) should be con-
sistent with the linearization coefficients k0 and k1. We show that this imposes a
non-linear constraint on k1, which can be solved recursively given the parameters of
the model.

While the approximation (2.3) applies in discrete time, in Appendix A we show
that its continuous time counterpart can be consistently defined in the following way:

d lnRt = k0dt+ k1dvt − (1 − k1)vtdt+ d lnDt,(2.6)
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where dvt and d lnDt are the instantaneous changes in log price-dividend ratio and
log dividend level, respectively. Parameters k0 and k1 can thus be interpreted as
linearization coefficients that are relevant over a unit of time.

The log-linearization of return (2.6) is a key to derive a continuous time coun-
terpart to the standard discrete time formulation of the economy. Indeed, in Section
2.2 we use it to explicitly characterize the continuous time equivalent of the Euler
equation in (2.2), which enables us to solve for the pricing kernel and equilibrium
asset prices in terms of the underlying state variables Xt. We provide a clear inter-
pretation of Xt as a set of common economic fundamentals which affect the dynamics
of consumption growth as well as dividends of individual assets. We turn to the
specification of these variables in the next section.

2.1 State Variables

We follow here the presentation of Duffie, Pan and Singleton (2000) and assume that
there is a set of n state variables in the economy which follow the affine jump diffusion
process. Specifically, we fix the probability space {Ω,F ,P} and the information
filtration Ft, and suppose that Xt is a Markov process in some state space D ⊆ Rn

with a stochastic differential equation representation

(2.7) dXt = µ(Xt)dt+ Σ(Xt)dWt + ξt · dNt.

Wt is an Ft adapted Brownian motion in Rn. The term ξt · dNt (element-by-element
multiplication) captures conditionally independent jumps arriving with intensity l(Xt)
and jump size distribution ξt on D. Intuitively, conditional on the path ofX, the jump
arrivals are the jump times of the Poisson distribution with possibly time-varying
intensity l(Xt). We further assume that jump sizes ξ are i.i.d. in time and cross-
sectionally; their distribution is specified through the ”jump transform” (individual
generating function) ̺ : C → C,

Eeuξ = ̺(u).

With a slight abuse of notation, we will sometimes evaluate ̺(.) at a vector argu-
ment, which we take to mean a stack of element-by-element application of the jump
transform. We assume that the moment-generating function of ξ exists such that ̺
is well defined for both complex and real arguments on some region of the complex
plane. This is a somewhat restrictive assumption which rules out certain heavy tailed
distributions including power-law ones.
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We further impose an affine structure on the drift, diffusion and intensity func-
tions:

µ(Xt) = M + KXt,

Σ(Xt)Σ(Xt)
′ = h+

∑

i

HiXt,i,

l(Xt) = l0 + l1Xt,

for (M,K) ∈ Rn × Rn×n, (h,H) ∈ Rn×n × Rn×n×n, (l0, l1) ∈ Rn × Rn×n. For X to be
well defined, there are additional joint restrictions on the parameters of the model,
which are addressed in Duffie and Kan (1996).

We assume that the log consumption and dividend growth rates are linear in the
states:

d lnCt = δ′cdXt,

d lnDt = δ′ddXt.

We typically structure the state variables so that the consumption growth is the first
factor, while the dividend growth rate is the last one, so δc and δd become selection
vectors (1, 0, 0, . . .) and (. . . , 0, 0, 1), respectively. This model setup follows Eraker
(2006).

2.2 Equilibrium

In the following we explicitly derive the equilibrium pricing kernel in our economy in
continuous time. Our strategy is to translate the Euler condition (2.2) in discrete
time into the martingale restriction in continuous time, relying on the continuous time
limit of log return defined in (2.6). Setting Ri,t+1 = Rc,t+1 in the Euler equation
(2.2), we first solve for the equilibrium return on the aggregate wealth portfolio. This
enables us to characterize the pricing kernel and the risk-neutral probability measure,
which can be used to price any asset in the economy.

Our economy is set up such that each asset pays a random dividend continuously
in time. To convert the continuous time dividend and price process into a discrete
time return, we define the discrete time return to be the return on a portfolio which
re-invests the continuously paid dividends. The discrete time return on this asset is
just the aggregate continuous time log return,

∫ t+1

t

d lnRi,s.

The Euler equation (2.2) becomes

(2.8) Et exp

[

ln
Mt+1

Mt

+

∫ t+1

t

d lnRi,s

]

= 1.
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where Mt is the marginal utility of the agents, whose log-increments in discrete time
are given by

(2.9) lnMt+1 − lnMt = θ ln δ − θ

ψ
(lnCt+1 − lnCt) − (1 − θ)

∫ t+1

t

d lnRc,s.

Thus, we can consistently define the continuous time dynamics of the pricing
kernel in the following way:

(2.10) d lnMt = θ ln δdt− θ

ψ
d lnCt − (1 − θ)d lnRc,t.

Note that the marginal utility Mt depends on the equilibrium return on the con-
sumption asset Rc,t, which is itself endogenous to the model. To obtain explicit
solutions in terms of the fundamental state variables, we first conjecture that the log
price-consumption ratio vt is affine in Xt :

(2.11) vt = A +B′Xt.

Setting Ri,t = Rc,t in the Euler equation (2.8), we can derive the loadings A and
B, which verifies our conjecture for the equilibrium solution to the value of the wealth
portfolio. For this purpose, define

ln
Zt+1

Zt
= ln

Mt+1

Mt

+

∫ t+1

t

d lnRc,s

= θ ln δ − θ

ψ
(lnCt+1 − lnCt) + θ

∫ t+1

t

d lnRc,s.

Using the continuous time dynamics of the discount factor in (2.10) and state
variables in (2.23), expression for linearized log returns in (2.6) and conjecture for the
log price-consumption ratio (2.11), we can express the evolution of lnZt in continuous
time in the following way:

d lnZt = θ ln δdt− θ

ψ
d lnCt + θd lnRc,t

= [θ ln δ + χ′(M + KXt) + θk0 − θ(1 − k1)(A+B′Xt)] dt

+χ′Σ(Xt)dWt + χ′(ξt · dNt),

where χ = θ
(

(1 − 1
ψ
)δc + k1B

)

.

Next, from (2.8) it follows that Zt = EtZt+1, so that Zt is a martingale. In
continuous time, it implies that its drift must be equal to 0. Using Ito’s lemma, we
obtain

θ ln δ + χ′(M + KXt) + θk0 − θ(1 − k1)(A +B′Xt)

+
1

2
χ′Σ(Xt)Σ(Xt)

′χ+ (̺(χ) − 1)′l(Xt) = 0.
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Matching the coefficients on a constant and Xt, we obtain the following equations
for A and B :

0 = K′χ− θ(1 − k1)B +
1

2
χ′Hχ+ l′1(̺(χ) − 1),(2.12)

0 = θ(ln δ + k0 − (1 − k1)A) + M′χ+
1

2
χ′hχ+ l′0(̺(χ) − 1).(2.13)

In general, these equations can yield multiple solutions to A and B. In our nu-
merical example, we generalize the criterion in Tauchen (2005) and select the root
which ensures the non-explosiveness of the system as the contributions of stochas-
tic volatility and jump components converge to zero. An alternative approach is to
choose an ”economically reasonable” solution which responds intuitively to model
and preference parameters. We will provide more discussion in the empirical section
of the paper.

Similar to Bansal, Kiku and Yaron (2006), we solve for the linearization constants
k0 and k1 as part of the equilibrium solution of the model. From (2.11)

(2.14) E(vt) = A+B′µX ,

where µX is the vector with ith component

µX,i =

{

E(Xi) if E(Xi) exists,

0 otherwise.

Expanding k0 in terms of k1 we can show that

k0 + (k1 − 1)A = k0 − (1 − k1)(E(vt) − B′µX)

= − ln k1 + (1 − k1)B
′µX .

(2.15)

Plugging this expression into (2.12), we obtain that the linearization coefficient k1

satisfies the following non-linear equation:

(2.16) θ ln k1 = θ (ln δ + (1 − k1)B
′µX) + M′χ+

1

2
χ′hχ + l′0(̺(χ) − 1).

Given the parameters of the model, we numerically iterate on k1 in the formula above
starting from the initial value δ, which is the exact the solution for k1 when ψ = 1. For
the parameter values we consider, the algorithm converges very fast, in 2-5 iterations.

Using the equilibrium solution to the return on wealth portfolio, the evolution of
the log pricing kernel can now be written in terms of the economic fundamentals:

d lnMt = θ ln δdt− θ

ψ
d lnCt + (θ − 1)d lnRc,t

= (θ ln δ − (θ − 1) ln k1 + (θ − 1)(k1 − 1)B′(Xt − µX)) dt− λ′dXt,

(2.17)
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where

(2.18) λ = γδc + (1 − θ)k1B.

This equation offers some key insights into the difference between Epstein-Zin and
CRRA preferences. Without loss of generality, we may assume that the first state-
variable is the (log) consumption, in which case the selection vector δc = (1, 0, 0...).
Now if γ = 1/ψ ⇔ θ = 1, the Epstein-Zin preferences collapse into the familiar
CRRA case, and thus λ = (γ, 0, 0, ...). As we show below, λ determines the market
prices of risk for the different components of X, such that if λi = 0, then innovations
into Xi are not priced. Therefore, while consumption is the only priced factor in
CRRA utility models, Epstein-Zin preferences usually imply that all state variables
are priced, since θ 6= 1 and B and k1 are different from zero.

From the expression for the pricing kernel (2.17), we obtain that the instantaneous
risk-free rate rt is affine in Xt,

(2.19) rt = Φ0 + Φ′

1Xt.

As Mte
R t
0 r(s)ds is a martingale, we use Ito’s lemma to obtain

Φ1 = (1 − θ)(k1 − 1)B + K′λ− 1

2
λ′Hλ− l′1(̺(−λ) − 1),(2.20)

Φ0 = −θ ln δ + (θ − 1)(ln k1 + (k1 − 1)B′µX) + M′λ

−1

2
λ′hλ− l′0(̺(−λ) − 1).(2.21)

Thus, we can substitute the short rate to express the evolution of the discount
factor in the following way:

(2.22)
dMt

Mt−

= −rtdt− Λ′

tdWt −
∑

i

[

(1 − e−λ
iξit)dN i

t − (1 − ̺(−λi))li(Xt)dt
]

,

where superscript i denotes the ith element in the vector, and Λt is defined by

Λt = Σ(Xt)
′λ.

The vector Λt is related to the price of jump risk of size ξ in ith state variable
and literarily is the price of Brownian motion risk. The following theorem is a slight
generalization of Proposition 5 in Duffie, Pan and Singleton (2000) which describes
the evolution of the system under the risk-neutral measure.

Theorem 2.1. Under the risk-neutral measure Q induced by the discount factor Mt

the state variables follow

(2.23) dXt = (MQ + KQXt)dt+ Σ(Xt)dW
Q
t + ξQt · dNQ

t ,
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where

MQ = M− hλ,(2.24)

KQ = K −Hλ.(2.25)

(2.26) dWQ
t = dWt + Λtdt

defines a Brownian motion under the risk-neutral measure.

The Q jump-arrival intensity is given by

(2.27) lQt = lt · ̺(−λ).

The Q jump-size density is characterized by its Laplace transform ̺Q : Cn → Cn

(2.28) ̺Q(u) = EQeuξ = ̺(u− λ)./̺(−λ).

Notice that if λi = 0, there is no difference in the jump measures and both market
prices of diffusion and jump risks are zero. This pinpoints the importance of the
parameters λ in generating risk premia in our model.

The jump intensity is greater (smaller) under the equivalent measure Q whenever
λ is negative (positive). The mean and standard deviation of jump size are greater
under the risk-neutral than objective measure when ̺(−λi) ∈ (0, 1) and smaller if
̺(−λi) > 1, as

EQξ = E(ξ)/̺(−λi),
StdQ(ξi) = StdP (ξi)̺(−λi)−

1
2 .

The following reward-to-risk ratio illustrates the equilibrium rewards for jump risks,

ΛJ
i ≡ Eξi − EQξi

Std(ξi)
=

Eξi
Std(ξi)

(

1 − 1

̺(−λi)

)

.

It is somewhat misleading, although tempting, to coin this measure a market price of
jump risk. Jump risks are characterized, and thus priced, not only according to their
mean and standard deviations, but also higher order moments.

To build more intuition about the risk-neutral adjustment to the overall density
of jump amplitudes, let us examine a particular case when the jump size ξ belong
to an infinitely divisible class of distributions with finite variation Lévy measure,
which includes Gaussian, gamma, α−stable and tempered stable, compound Poisson
distribution and others. In particular we can write down the moment-generating
function of jumps under the physical measure as

̺(u) = eµu+ 1
2
σ2u2+

R
R

(eux−1)ω(dx),

12



for certain µ and σ and positive Radon measure ω. 3 It is easy to see that if it exists,
the risk-neutral distribution of jump sizes will remain infinitely-divisible, with the
following parameters:

µQ = µ− λσ2,

σQ = σ,

ωQ(dx) = e−λxω(dx).

For λ < 0, the risk-neutral adjustment shifts the distribution of jump sizes to the right
and fattens its tails. Therefore, the investors adjust their perception of large negative
jump-news in the economy by making them higher on average and more extreme under
the risk-adjusted probabilities, while the opposite happens if λ > 0. For particular
examples of the risk-neutral transformations of the jump size distribution, refer to
Table 1.

[Table 1 about here.]

3 General asset prices

Consider the price of an asset which pays a continuous dividend stream Ds, t < s < T .
The price of this asset (stock) is now obtained by taking the expectation under the
risk-neutral measure of its discounted payoffs D(Xt) :

P ({D(Xs)}Ts=t) =

∫ T

t

Et

(

Ms

Mt

Ds

)

ds

≡
∫ T

t

EQ
t

(

e−
R s
t
r(u)duDs

)

ds.

Expiration date T can also be infinity, provided that the price is finite.

To facilitate the computations, we follow Duffie, Pan and Singleton (2000) and
compute a discounted characteristic function of Xt under the risk-neutral measure:

(3.1) ̺QX(u,Xt, s) = EQ
t

(

e−
R t+s
t

r(τ)dτeu
′Xt+s

)

.

for u ∈ Cn.

Under appropriate technical regularity conditions (see Duffie, Pan and Singleton
(2000)), ̺QX is exponential affine in Xt,

̺QX(u,Xt, s) = eα(s)+β(s)′Xt ,
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where α(s) and β(s) satisfy complex-valued ordinary differential equations

β̇ = −Φ1 + KQ′

β +
1

2
β ′Hβ + lQ1

′ (

̺Q(β) − 1
)

,

α̇ = −Φ0 + MQ′

β +
1

2
β ′hβ + lQ0

′ (

̺Q(β) − 1
)

,
(3.2)

subject to boundary conditions β(0) = u, α(0) = 0.

In particular, setting u = 0 we immediately obtain that the yield on a discount
bond with s periods to maturity is given by,

y(Xt, s) = −1

s
(α(s) + β(s)′Xt) ,

where α and β solve the ODEs in (3.2) with boundary condition β(0) = α(0) = 0.
Note that as the initial values for α and β are real and the risk-neutral mgf of jump
distribution is assumed to exist (i.e. take real values), the solution to the yield curve
is guaranteed to be real as well.

3.1 Dividend Paying Assets

Consider an asset which dividend stream can be expressed as a linear function of the
state variables,

d lnDt = δ′ddXt.

From the discussion in the previous section, the price of an asset which pays a per-
petual dividend Dt, if it exists, is given by

Pt(Xt) =
∫

∞

0
̺QX(δd, Xt, s)ds

=
∫

∞

0
eα(s)+β(s)′Xtds,(3.3)

where α and β satisfy the ODEs in (3.2) subject to β(0) = δd and α(0) = 0.

Equation (3.3) gives the exact equilibrium price-dividend ratio when the stock
pays a perpetual dividend. To build more intuition about the model, we consider
an approximate equilibrium solution which is obtained, as for the consumption asset,
through the log-linearization of returns. It is straightforward to show that in this
case, the equilibrium price-dividend ratio is exponential linear,

(3.4) Pt = Dt exp(Ad +B′

dXt),

where the coefficients Ad and Bd satisfy

(3.5) K′χd + (θ − 1)(k1 − 1)B + (k1,d − 1)Bd +
1

2
χ′

dHχd + l′1 [ρ(χd) − 1] = 0
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and

(3.6) θ ln δ − (θ − 1) (ln k1 + (k1 − 1)B′µX) − (ln k1,d + (k1,d − 1)B′

dµX)

+ M′χd +
1

2
χ′

dhχd + l0 [ρ(χd) − 1] = 0,

for

χd = δd + k1,dBd − λ,(3.7)

and k1,d is the log-linearization coefficient for a dividend return. As before, we can
solve the equations above for Bd and k1,d, and then obtain an intercept Ad from the
chain of equalities

Ad +B′

dµX = E ln
Pt
Dt

= ln
k1,d

1 − k1,d
.

(3.8)

The first equality follows from the conjectured solution for the price-dividend ratio,
while the second one comes from the log-linearization procedure.

The main advantage of the formulae presented in this section is that we can obtain
an exponential affine representation of the equilibrium stock price dynamics, subject
to our log-linearization of returns. This facilitates the computations of option prices,
as illustrated next.

3.2 Option Pricing

Lewis (2000) and Carr and Madan (1999) discuss methods for computing option
prices from the characteristic function of the underlying stock price. In the following
we adapt the formula in Lewis (2000) to our setting.

The price of a European call option is a function of the state variables Xt, strike
price K and maturity of an option s:

(3.9) C(Xt, K, s) = EQ
t

[

e−
R t+s
t

rτdτ
(

elnPt+s −K
)+

]

.

Using the Parseval identity, we obtain that

C(Xt, K, s) = EQ
t

[

e−
R t+s
t

rτdτ
(

elnPt+s −K
)+

]

=
1

2π
EQ
t

[
∫ izi+∞

izi−∞

e−
R t+s
t

rτdτe−iz lnPt+sŵ(z)dz

]

,(3.10)
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where the generalized Fourier transform of the payoff function of the option ŵ(z) is
equal to,

ŵ(z) =

∫

∞

−∞

eizx (ex −K)+ dx

= − Kiz+1

z2 − iz
,

(3.11)

for zi ≡ Im(z) > 1, and identical expression obtains for put options for zi < 0.

If a stock pays a single terminal dividend DT at some date T > s > t or if we
log-linearize the returns on a stock which pays dividend continuously, the equilibrium
value of an asset will be linear in the state variables:

lnPt = Ad + (Bd + δd)
′Xt.(3.12)

Using a discounted characteristic function of state variables under the risk-neutral
measure defined in (3.1), we can rewrite the expression for the option price in the
following way:

C(Xt, K, s) = −K 1

2π

∫ izi+∞

izi−∞

e−izAd̺QX(−z(Bd + δd), Xt, s)
Kiz

z2 − iz
dz.(3.13)

The integration in (3.10) is performed on the intersection of the strips zi > 1
for call option or zi < 0 for puts, and the one parallel to the real z−axis. Notice
that (3.10) requires a single numerical integration, which is advantageous relative
to the formulae in the extant literature (e.g. Heston 1993; Bates 1996; Duffie, Pan
and Singleton 2000) which require two numerical integrations. In addition, the
discounted characteristic function ̺QX is known up to a system of ordinary differential
equations (3.2), which depend on preference, cash flow parameters and maturity of
an option, but do not involve strike price K. In this case, calculating option prices
for a range of strikes is particularly convenient and fast.

4 The Equilibrium Impact of Volatility Shocks

In an application of our model, we consider an economy in which consumption, div-
idends and in the end asset prices, are influenced by a single state variable, which
is the conditional volatility of consumption growth. To this end we assume that log
aggregate consumption follows

d lnCt = µdt+
√

VtdWc,t,(4.1)

dVt = κV (V̄ − Vt)dt+ σv
√

VtdWV,t + ξV dNt,(4.2)

ξV ∼ GA(ν, µV /ν),(4.3)

l(Vt) = l0 + l1Vt.(4.4)
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The volatility process Vt is driven by the continuous Brownian motion dWV,t as well
as discontinuous process ξV dNt, whose arrival intensity is l(Vt). Our assumption
of Gamma distributed volatility jump sizes allows a fairly heavily tailed jump size
distribution for small values of the scale parameter ν.

The specification above encompasses a number of stochastic volatility models in
the literature, including square root volatility model of Heston (1993), the exponential
jump diffusion model of Duffie, Pan and Singleton (2000), Eraker (2004), among
others. By removing the diffusion part, σv = 0, the volatility dynamics reduces to the
gamma OU process (l1 = 0 and ν = 1). For a detailed treatment of Non-Gaussian OU
processes refer to Barndorff-Nielsen and Shephard (2001). Our specification of the
consumption process is a simplification of the Bansal and Yaron (2004) model in that
the expected log consumption growth is constant. In the Bansal and Yaron (2004)
model, the expected consumption growth follows a mean-reverting AR(1) process.
Fixing the expected growth rate in our model allows us to focus entirely on the
equilibrium effects of stochastic volatility.

The first step in our analysis is to recover expressions for the coefficients A and
B in eqns. (2.12) and (2.13). The loading on consumption growth is zero, while the
”volatility factor loading” Bv solves
(4.5)

0 = −θ [κvk1 + (1 − k1)]Bv+
1

2
θ2(1− 1

ψ
)2 +

1

2
θ2k2

1σ
2
vB

2
v + l1

[

(1 − Bvθk1µv/ν)
−ν − 1

]

.

This equation admits an explicit solution only in special cases. In particular, if
there are no state-dependent volatility jumps, l1 = 0, then Bv solves the quadratic
equation a + bBv + cB2

v = 0 for a = θ2 1
2
(1 − 1

ψ
)2, b = −θ(κv + (1 − k1)), c = θ2κ2

1σ
2
v .

Tauchen (2005) points out that square root processes for volatility generally produce
two roots for Bv. However, if θ < 0, b is positive, so that only the ”right” root is
non-explosive when a stochastic volatility parameter σv converges to 0. By including
state-dependent volatility jumps, we generally have more than two roots. In the
case where the volatility is driven by pure jumps (σv = 0) and volatility jumps are
exponentially distributed (ν = 1), we can recover another quadratic equation for Bv,
and we can use a similar argument to select the non-explosive solution when the
jump contribution is converging to zero. When σv and l1 are not zero, for reasonable
parameter values we typically obtain two real solutions for Bv, and we choose the
”right” root near the one implied by a quadratic equation above.

17



Given the solution to Bv, we recover the dynamics of the state variables under
the risk-neutral measure:

d lnCt = (µ− γVt)dt+
√

VtdW
Q
c,t(4.6)

dVt = κV (V̄ − Vt)dt− λvσ
2
vVtdt+ σv

√

VtdW
Q
V,t + ξQV dN

Q
t(4.7)

ξQV ∼ GA(ν,
µv

ν + λvµv
)(4.8)

lQ(Vt) = (1 +
λvµv
ν

)−νl(Vt),(4.9)

where λv = (1 − θ)k1Bv denotes the price of the variance shock.

This process is well defined whenever ν > λvµv, which places implicit restrictions
on the permissible preference parameters. If this holds and the market price of volatil-
ity risk is negative, then both jump sizes and arrival intensity are greater under the
risk-neutral measure,

EQξV > EP ξV ,

V arQξV > V arP ξV ,

lQ(Vt) > l(Vt).

In the case of exponentially distributed jump sizes, ν = 1, and jump size distribu-
tion as well as jump intensity are scaled by a constant (1 + λvµv)

−1, which is greater
than one whenever ψ > 1, γ > 1. This offers a very simple and intuitive adjustment
from the objective to the risk-neutral measure.

4.1 Dividends

We consider a stock whose perpetual dividend stream follows

d lnDt = φd lnCt + σd
√

VtdWd,t,

where the parameter φ can be interpreted as a ”consumption leverage” parameter
or the OLS slope coefficient obtained by regressing d lnDt on d lnCt. Whenever
φ > 1, we can think of the corporate dividends as being a levered position on total
consumption output. The idea of dividends as a levered position on consumption is
useful in reconciling the low consumption volatility with high volatilities of corporate
earning and dividends. The term σd

√
VtdWd,t represents asset specific noise which is

not priced in equilibrium.

It is straightforward to recover an exact pricing formula for the price of a stock,
as in equation (3.3). However, in order to recover exponential affine stock price
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dynamics, we log-linearize stock returns, so that the equilibrium price-dividend ratio
can be written as exp(Ad +B′

d,vVt). Equations (3.5) become

(4.10) − κv [(θ − 1)k1Bv + k1,dBd,v)] − (θ − 1)(1 − k1)Bv − (1 − k1,d)Bd,v

+
1

2

[

(γ − φ)2 + σ2
d + σ2

v ((θ − 1)k1Bv + k1,dBd,v)
2]

+ l1

[

(

1 − µv(θ − 1)k1Bv

ν
− µvk1,dBd,v

ν

)

−ν

− 1

]

= 0,

which can be solved for Bd,v with similar caveats about multiple roots as in the
previous section.

The dividend process follows

d lnDt = φd lnCt + σd
√

VtdW
Q
d,t

= φ(µ− γVt)dt+ φ
√

VtdW
Q
c,t + σd

√

VtdW
Q
d,t

(4.11)

under the risk-neutral measure. It is now straightforward to show that the stock
price, which is given by lnPt = lnDt + (A+Bd,vVt), evolves according to

(4.12) d lnPt =
[

φ(µ− γVt) +Bd,v(κv(V̄ − Vt) − λvσ
2
vVt)

]

dt

+ σd
√

VtdW
Q
d,t + φ

√

VtdW
Q
c,t +Bd,vσv

√

VtdW
Q
v,t +Bd,vξ

Q
V dN

Q
t .

under the risk-neutral measure. In particular, the variation in stock price is generated
by the Brownian motion shocks in dividends, consumption and market volatility as
well as variance jumps. For a reasonable calibration of parameter values, the model-
implied stock price volatility is greater than the consumption volatility Vt. In fact,
it is easy to generate 15 − 20% stock price volatility while keeping the aggregate
consumption growth variation close to the historical estimates of 2 − 3%. Therefore,
our model can account for an excessive volatility of financial variables relative to the
economic fundamentals.

As the conditional variance of log price is proportional to Vt, the conditional
correlation between log price and its variance is given by Corrt(d lnPt, dVt). The
latter is equal to

(4.13) Corrt(d lnPt, dVt) = Bd,v

√

σ2
vVt + µ2

vν
−1(l0 + l1Vt)

Vt(σ2
d + φ2 +B2

d,vσ
2
v) +B2

d,vµ
2
vν

−1(l0 + l1Vt)
,

where l0, l1 and µv can be under either the physical or risk-neutral measure. Thus,
the correlations of the stock price with volatility are different under the objective P
and risk-neutral measure Q. The difference in P and Q correlation is driven by the
magnitude of the jump risk premium. In our model, the jump risk premium increases
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uniformly in the risk aversion parameter γ. Thus, larger values of γ generate a larger
dispersion in the correlation for the two measures. This effect is illustrated in Figure
4.1.

[Figure 1 about here.]

Notice that the correlation is increasing (in absolute value) in the parameter Bd,v.
This parameter typically takes on negative values for ψ, γ > 1. This implies that
the correlation in (4.13) approaches negative one for large values of γ and ψ. Fig-
ure 4.1 illustrates this effect. The figure also shows that the correlation under both
the objective and the risk-neutral measures becomes more negative when risk aver-
sion increases. The correlation is less negative for all values of γ when the value
of the idiosyncratic dividend noise term, σd, is higher, illustrating that individual
stocks (which contain a larger fraction of idiosyncratic noise) exhibit less pronounced
volatility/stock price correlation than do equity indices.

The negative sign shows that increased macroeconomic uncertainty leads to lower
equilibrium stock valuations. Correlations are higher in absolute value under the
risk-neutral measure, and the difference between the two measures increases with the
risk aversion coefficient. This is an important observation, because researchers who
attempt to fit reduced form no-arbitrage models to option price data often find that
the magnitude of the stock/price volatility correlation well exceeds the correlations
estimated from the actual stock price and volatility estimates. For example, Bakshi,
Cao and Chen (1997) calibrate jump diffusion models and find option implied corre-
lations in the -0.6 to - 0.8 range. This is generally outside the range found in returns
data.

Andersen, Benzoni and Lund (2002) estimate the correlation to be in the -0.5 to
-0.6 range. Eraker, Johannes and Polson (2003) estimate it to be in the −0.4 to −0.5
range. Eraker (2004) fits various no-arbitrage jump diffusion models to both returns
data and joint data on options and returns and finds that the correlations are greater
in magnitude when option data is included. A difference of about ten percentage
points in the P and Q correlations is consistent with a risk aversion, γ, of about nine
in our model.

The equity premium in our economy is

(4.14)
1

dt
Etd lnRd,t − rt = (γφ+ λvk1,dBd,vσ

2
v −

1

2
(σ2

d + φ2 + k2
1,dB

2
d,vσ

2
v))Vt+

(k1,dBd,vµv + ̺(−λv) − ̺(k1,dBd,v − λv)) l(Vt).

The first bracket contains a standard CRRA risk premium γφVt which will be present
in a model with no jumps or time-varying stochastic volatility. The second component,
λvk1,dBd,vσ

2
vVt, captures the compensation for ”small” volatility shocks dWV,t, while
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the third term gives an (unimportant) quadratic variation adjustment due to the fact
that we work with log, rather than level returns. In the same way, the second bracket
contains the risk premium due to ”large” volatility jumps dNt and the corresponding
Ito’s adjustment due to jumps in log returns.

With power utility preferences, expected excess returns do not contain the com-
pensation for Brownian and jump volatility shocks. On the other hand, the volatility
and jump compensation terms could be large in our model if Bd,v and λv are large.
While a careful estimation of model parameters is beyond the scope of this paper, it
is interesting to note that the parameter values used to generate the implied volatil-
ity graphs reported below generate an equity premium that ranges between one and
twelve percent per annum. Thus, our model could potentially resolve the equity pre-
mium puzzle of Mehra and Prescott (1985). We note here that large equity premium
and low risk-free rates is a well documented feature of long run risk models. Eraker
(2006) studies a three factor model in which the equity premium puzzle can be re-
solved with small values of the risk aversion parameter γ. The presence of volatility
jumps in this model significantly increases the equity premium. It is noticeable that
our model can generate large equity premium even without the ”long run risk” factor
that captures time-variation in expected consumption growth, as is the case in the
Bansal and Yaron (2004) and Eraker (2006) models.

4.2 Price Patterns

In the following we discuss key properties of option prices computed in our model.
The standard measure of empirical patterns in option data is the options implied
volatility. It is well known that the implied volatility of index options is convex over
different strikes. To examine if our model can generate similar patterns, we compute
implied volatilities by equating the theoretical model prices to the ones in the Black
& Scholes model using our model solutions for the dividend yields and interest rates.

In Figure 4.2 we plot the implied volatility as a function of the strike price and
maturity. The two surface plots are generated for low and high initial values of the
volatility Vt. The implied volatility patterns are fairly typical of those computed in
no-arbitrage models which feature high negative correlation between volatility shocks
and prices. The implied volatility has a more pronounced U shape at short maturities,
and flattens out at the long end. Evidence of negative skewness is evident even for
long maturity contracts.

[Figure 2 about here.]

Figure 4.3 depicts the implied volatility of our theoretical model prices computed
over different values of risk aversion γ and with a fixed value of ψ = 4. There are two
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main effects of increasing the level of risk aversion. First, the stock prices become
more volatile on average. This is reflected by an upward shift in implied volatility for
higher values of γ. Second, and more interesting, the convexity of the curve is much
more pronounced for higher values of γ, reflecting a more heavily tailed equilibrium
stock price distribution. Jumps to the volatility process always result in (negative)
jumps in the stock price, as can be seen from equation (4.12). The negative price
reactions to a jump in volatility can be significant, as evidenced by the increasing
prices of far out-of-the-money put options in Figure 4.3. Therefore, endogenizing the
stock price in an economy where the volatility may increase suddenly can explain the
high crash insurance premiums offered by out-of-the-money put options.

[Figure 3 about here.]

Does CRRA utility deliver implied volatility graphs that mimic those of the gen-
eral Epstein-Zin model? Recall that the CRRA model obtains as a special case by
imposing the constraint ψ = 1/γ. We impose this condition in computing implied
volatilities in figure 4.4. The main difference between the two equilibrium speci-
fications is that CRRA model produces implied volatility curves that imply posi-
tive conditional skewness in the risk-neutral stock price distribution, as can be seen
from the fact that contracts with high strikes carry a higher premium. This positive
skewness is attributable to the fact that the parameter Bd,v is positive, indicating
a positive volatility-return correlation in 4.13. For Epstein-Zin preferences, Bd,v is
negative, which yields a negative volatility-return correlation and thus a negatively
skewed stock price density. Thus, Epstein-Zin based equilibrium option prices tend to
generate implied volatility curves that are consistent with those observed empirically.

[Figure 4 about here.]

It is possible to generate very steep equilibrium implied volatility curves in our
example model. Recall that the parameter ν determines the tail-behavior of the
volatility jump sizes, and a small value of ν leads to heavier tails. Figure 4.5 illustrates
the effect of changing ν. The impact of out-of-the-money puts is significant, and prices
increase uniformly with lower values of ν. The case where ν = 0.15 illustrates that
the possibility of a very severe jump in volatility has a dramatic effect on the price of
OTM puts.

[Figure 5 about here.]

Our discussion so far has mostly been relevant in the context of options written on
an index of stocks. Stock indices, unlike individual equities, are characterized by the
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fact that the risks are almost entirely systematic. In our model this is captured by a
small value of σd (we used 0.2 in our preceding discussion). Figure 4.6 illustrates the
effect of increasing idiosyncratic risk, σd, on option prices. While the overall implied
volatility increases, higher values of σd significantly diminish conditional skewness
and kurtosis as can be seen from an almost flat implied volatility curve. Increasing
σd in our model thus has an effect of just adding Gaussian noise to the stock price
process. Our model can easily be augmented to allow for company specific dividend
jumps. This would generate additional kurtosis, and thus additional convexity in
implied volatilities of individual stock options.

[Figure 6 about here.]

5 Concluding Remarks

Affine class constitutes a significant and important class of asset pricing models.
Affine models are typically derived under assumptions of no-arbitrage, which offers
a limited ability for economic interpretation of the market prices of risks that link
the objective probability measure with the risk-neutral pricing measure. Our paper
suggests a way to remedy this by constructing a pricing kernel which is based on
generalized preferences of Epstein and Zin (1989). Importantly, our framework offers
a convenient way to link the two measures in the presence of diffusion risks and jump
risks. All risk premia computations in our model are done through the specification of
the three preference parameters (δ, ψ and γ). Since market prices of risk are explicit
functions of these three parameters, our model framework offers a more parsimonious
way to compute equilibrium prices than the usual affine no-arbitrage models which
do not restrict market prices of risk.

We set up an example model with only one state variable, variance of consumption
growth driven by Brownian motion shocks and Poisson jumps, and study the equi-
librium effects on the equity and option prices. Our model endogenously generates
a negative correlation between shocks to the volatility process and the equilibrium
stock prices. The compensation for the variance shocks is sizeable and can help to
account for a high expected equity return relative to the risk-free rate. The implied
volatilities are U shaped, with significantly higher prices for out-of-the-money puts;
the smile flattens out with a decrease in the risk aversion coefficient. These effects
can not be captured in traditional power utility models.

It is straightforward to include additional state variables into our framework, such
as time-varying expected consumption growth, inflation, multiple volatility and jump
intensity processes, etc. The model can also be confronted with macro and financial
data; there are several possible empirical strategies for identification and estimation
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of the preference and cash flow dynamics parameters and evaluation of the model in
and out of sample. We leave the issues of more elaborate models and empirical fit for
a future research.
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A Log-linearization in Continuous Time

Let d lnRt heuristically denote the continuous time log return so that
∫ t+1

t
d lnRs

define the return over the interval (t, t+ 1]. The Campbell-Shiller approximation to
the discrete time return is then

(A.1)

∫ t+1

t

d lnRs = k0 + k1vt+1 − vt + ∆ lnDt+1

where vt is the log price-dividend ratio, and ∆ lnDt is the dividend growth rate.
Equation (A.1) is exactly the same as in discrete time, as we showed in Section 2.

Now rewrite (A.1) as

∫ t+1

t

d lnRs = k0 + k1(vt+1 − vt) − (1 − k1)vt + ∆ lnDt+1

=

∫ t+1

t

k0ds+ k1

∫ t+1

t

dvs − (1 − k1)

∫ t+1

t

vtds+

∫ t+1

t

d lnDs.

From here we define the continuous time return d lnRt :

d lnRt = k0dt+ k1dvt − (1 − k1)vtdt+ d lnDt.(A.2)

For the consumption asset, vt = A+B′Xt and d lnCt = δ′cdXt, so that d lnRc,t is

d lnRc,t = k0dt+ [δc + κ1B]′dXt − (1 − k1)(A+B′Xt)dt.(A.3)

Similar decomposition holds for a log return on a dividend asset d lnRd,t.
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Notes

1 For robust empirical evidence on the magnitude of the IES and the asset pricing
implications in equity, bond and currency markets refer, for instance, to Bansal,
Khatchatrian and Yaron (2005), Eraker (2006) and , Bansal and Shaliastovich (2007).

2Other approximations are possible - see for example Hansen, Heaton and Li
(2004), Benzoni, Collin-Dufresne and Goldstein (2005).

3These results apply under certain technical existence and integrability conditions
(see, e.g. Cont and Tankov 2004 ).
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Tables and Figures
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Name Physical measure Risk-Neutral measure Restrictions
Infinitely Divisible Distributions

Normal ̺(u;µ, σ) = euµ+ 1
2
u2σ2 µQ = µ− λσ2

σQ = σ

Gamma ̺(u; ν, µv
ν

) = (1 − µv
ν
u)−ν

νQ = ν
µQv = µvr

ν+λµv

ν, µv > 0
u < min( ν

µv
, ν
µv

+ λ)

Tempered Stable ̺(u; c, α, ν) = eνΓ(−α)((c−u)α−cα)

νQ = ν
αQ = α
cQ = c+ λ

α ∈ (0, 1)
ν, c > 0
u < min(c, c+ λ)

Compound Poisson ̺(u; c, f) = ec

R
(eux−1)f(x)dx cQ = c

∫

e−λxf(x)dx
fQ(x) = e−λxf(x)/

∫

e−λxf(x)dx

c > 0
f(x) is pdf
∫

euxf(x)dx < ∞
Non-Infinitely Divisible Distributions

Uniform ̺(u; a, b) = eu(b−a)

u(b−a)
̺Q(u; a, b) = eu(b−a)λ

λ−u
b > a

Table 1: The risk-neutral adjustment to the jump size distribution.
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Figure 4.1: Correlation between the innovations in log stock price and market variance
as a function of risk aversion γ.
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Figure 4.2: Implied volatility across strikes and maturities. The upper (lower) surface
plot corresponds to high (low) initial volatility Vt.
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Figure 4.3: Implied volatility for different levels of risk aversion γ.
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Figure 4.4: Implied volatility for different levels of risk aversion γ in the case of CRRA
utility.
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Figure 4.5: Implied volatility for different levels of volatility jump tail-thickness ν.
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Figure 4.6: Implied volatility for different levels of idiosyncratic risk σd.
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