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Abstract

This study proposes an equilibrium model of term structures of bonds and equities, which
has a similar descriptive ability to a reduced-form model proposed by Lettau and Wachter
(LW) (J. Financial Economics, 2011), and yet offers economic implications about preferences
and consumption dynamics. The ability is obtained by letting parameters of recursive utility
depend on state variables of the economy. The model is calibrated by matching it with
the LW model, showing that it can produce the term structure of real interest rates with
either a positive or negative slope and the term structure of dividend risk premiums with a
negative slope, both of which stand as challenges to any pricing models. It also shows that
while an implied behavior of state-dependent time preference is reasonable, modifications of
parameter values and cash flow processes are necessary for state-dependent risk aversion to

behave reasonably.
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1 Introduction

The pricing of cash flows at various points in time is one of central issues in finance. The term
structure of interest rates, which has long been studied, is based on fixed cash flows. Stochastic
cash flows such as dividends lead to the term structure of dividend strips or zero-coupon equities,
which is of relatively recent focus. The purpose of this study is to build an equilibrium model
of term structures of zero-coupon bonds and equities and discuss preferences and consumption
dynamics implicit in these term structures.

Essentially, any equilibrium models can price any assets. However, there are not many
such models aimed at explaining both zero-coupon bonds and equities from a term-structure
perspective. In modeling the term structure, at least two challenges are known. The first is
the term structure of real interest rates that is either upward-, flat-, or downward-sloping. This
indecisive shape in turn requires model’s flexibility. The second is the term structure of risk
premiums of dividend strips. It is on average downward-sloping, which is evidenced from various
data sources: index options (van Binsbergen, Brandt, and Koijen, 2012); index dividend futures
(van Binsbergen et al, 2013; van Binsbergen and Koijen, 2017); and the cross-section of stocks
(Weber, 2017). ! However, as illustrated by van Binsbergen et al. (2012), the downward slope is
difficult to explain using well-established equilibrium models, such as the external habit model
of Campbell and Cochrane (1999), the long-run risks model of Bansal and Yaron (2004), and the
disaster model of Barro (2009), and Gabaix (2012). These challenges motivate recent studies to
improve equilibrium models, which are reviewed below in comparison with ours.

Without imposing equilibrium conditions, it may not be very difficult to model the term
structures of real interest rates and dividend risk premiums consistently with stylized facts.
Indeed, Lettau and Wachter (LW) (2011) propose a reduced-form model that can explain these
term structures. The key to their success is the specification of the stochastic discount factor
(SDF), which increases one for one with a negative shock to realized dividend growth. This
specification is effective for raising the risk of holding short-term dividend strips. Furthermore,
LW assume that a negative shock to realized dividend growth is highly likely to increase expected
dividend growth. This assumption makes long-term dividend strips less risky because they go up
in value when the SDF is high. Consequently, the term structure of dividend risk premiums is

sloped downward. In addition, the LW model can generate either an upward-, flat-, or downward-

1See also Schulz (2016), pointing out that the evidence for the downward-slope is not decisive when returns to

short-term dividend claims are adjusted for taxies or liquidities.



sloping term structure of real interest rates by simply controlling for the correlation between
realized dividend growth and real risk-free rate.

These important mechanisms of the LW model are exogenous. Our goal is to endogenize
them. The purpose of this study is to develop an equilibrium model that offers implications
about preferences and consumption dynamics and yet has a similar descriptive ability to the
reduced-form model proposed by LW. For this purpose, we ask what kind of utility function
supports the LW’s SDF. Our answer is to let parameters of a recursive utility function of the
representative agent depend on state variables of the economy. Meanwhile, we model cash flow
processes as simply as in the original LW model: we later consider a minimal extension of cash
flows.

The idea of state-dependent preferences itself is not new. In fact, Gordon and St-Amour
(2000, 2004), Melino and Yang (2003), Chabi-Yo, Garcia, and Renault (2008), Berrada, De-
temple, and Rindisbacher (2013), and Dew-Becker (2014) consider models in which preference
parameters themselves change over time: A more detailed review is provided below. A distinct
feature of the current model is that both risk aversion parameter and time preference parameter
are driven by many state variables such as (expected) consumption and inflation growth and
financial variables such as risk-free rate and price of risks, so that the agent can fine-tune her
preferences by looking at the economy and asset markets.

A state-dependent risk aversion is beneficial for amplifying the variation in the SDF and
hence capturing high equity risk premiums. Besides, it leads to time-varying price of risks,
which naturally explains time-varying risk premium (the product of the price of risks and an
asset-specific quantity of risks) with the source of variation not limited to stochastic volatility,
or stochastic intensity in the case of jumps, of cash flow processes. Furthermore, it offers an
additional channel of raising the slope of the term structure of nominal interest rates other than
the standard channel of a negative correlation between consumption and inflation growth. A
state-dependent time preference also has an advantage of generating various shapes in the term
structure of real interest rates. Suppose, for example, there is a shock that increases the SDF.
If this shock also affects the agent’s time-preference in a way where she more heavily discounts
future cash flows, the prices of real bonds will fall with the fall more significant for longer-
term bonds due to the compound effect. The real bonds therefore cannot be hedge against
events of raising the SDF, and the real term structure will be upward-sloping. This mechanism

might also be useful when introduced into the LRR model of Bansal and Yaron (2004). One



of the criticisms to the LRR model is that it cannot generate a flat- or upward-sloping real
term structure when calibrated consistently with various moments of financial markets because
then, real bonds work as hedge against long-run risks about consumption growth; see Bansal,
Kiku, and Yaron (2012), and Beeler and Campbell (2012) for debate over the LRR model.
State-dependent time preference has potential of relaxing this restriction of the LRR model.

The parameters of the proposed model are calibrated by matching it with the LW model.
This calibration method has two advantages. The first is to achieve a similar descriptive ability
to the LW model. Indeed, the proposed model can closely replicate various term structure
shapes generated by the LW model. The second is to obtain an equilibrium foundation of the
LW model. Indeed, it is possible to imply preferences and consumption dynamics from the LW
model through the calibration of the proposed model. The calibration results, however, contain
unrealistic implications about preferences and/or consumption dynamics. Most notably, given
consumption volatility of less than 4% per year, the mean and standard deviation of a state-
dependent risk aversion reach 150 and 128, respectively. When the mean risk aversion is reduced
to 30, then an implied consumption volatility is nearly 9%.

One possibility of these unrealistic economic implications is that parameter values originally
calibrated by LW (2011) are not appropriate. Originally, the LW model is a reduced-form
model so that there are many combinations of parameter values that can explain observed
term structures. However, once some equilibrium conditions are imposed, there are not many
combinations of parameter values that are consistent with not only observed term structures
but realistic preferences and consumption dynamics. Our model has an advantage of revealing
which combinations are more appropriate. Another possibility is that the dynamics of cash flows
in the LW model are too simple. We then slightly deviate from the LW model by introducing
jumps into consumption and dividend growth, which are interpreted as disasters. The change of
parameter values and the modification of cash flow processes together are shown to be effective
for making the behavior of both risk aversion and consumption growth economically plausible

while keeping the ability to explain various term structures.

Related literature

Our model extends the recursive utility function of Epstein and Zin (1989, 1991), and Weil
(1989) in a way where the parameters of risk aversion and time preference depend on state

variables of the economy. Melino and Yang (2003) consider the recursive utility function with



state-dependent parameters more generally in that the elasticity of intertemporal substitution
is also state-dependent; however, they do not model how these parameters evolve over time.
The low of motion of the risk aversion is modeled by Gordon and St-Amour (2000), and Chabi-
Yo, Garcia, and Renault (2008) using Markov switching processes. Berrada, Detemple, and
Rindisbacher (2013) also use them for modeling the dynamics of both risk aversion and time
preference. Gordon and St-Amour (2004), and Dew-Becker (2014) model the risk aversion as
driven by auto-regressive processes. Our model is similar to the last two studies regarding how
to model time variation but different from them in that time preference is also state-dependent
and that the preference parameters are driven by many state variables driving the economy.

Compared with state-dependent risk aversion, state-dependent time preference has been less
of a focus. But Frederick, Loewenstein and O’Donoghue (2002) document that prior to the
Samuelson’s introduction of constant subjective discount rate, time-preference was considered
to be not necessarily constant but rather affected by various factors including psychological
ones. Halevy (2015) conducts a field experiment about time preference and shows that some
subjects (classroom students in his study) exhibit time-varying rate of subjective discount. The
direct modeling of time preference as a function of state variables—an approach taken by this
study—is different from the well-established, horizon-dependent time preference that discounts
nearby cash flows more heavily than distant ones; see, for example, Thaler (1981). However,
Harris and Laibson (2001), and Luttmer and Mariotti (2003) show that the horizon-dependent
time preference leads to an effective rate of subjective discount that depends on state variables
affecting endowment growth (unless the agent has log utility). As such, it may not be unreason-
able to consider state-dependent time preference. Besides, from an asset pricing perspective, it
is beneficial for generating the term structure of real interest rates, the average shape of which
is indecisive.

Recent studies develop equilibrium asset pricing models aimed at explaining a downward-
sloping term structure of dividend risk premiums. We limit our attention to some of these
studies that explicitly present the results for the entire term structures of risk premiums and
return volatilities of dividend strips, which are summarized in Table 1: A broader review is
provided by van Binsbergen and Koijen (2017).

There are mainly two approaches for improving equilibrium models: One is to improve
preferences or discounts as taken by this study and the other cash flows. The recent studies

taking the preference approach are as follows. Curatola (2015) considers heterogeneous agents



who have loss-averse utility, where the reference point between gain and loss is set at the level of
external consumption habit, so that unlike many standard habit formation models, consumption
is allowed to be below the habit. Because the loss-averse agents are willing to hold long-term
dividend claims to hedge risks of future consumption being below the habit, the term structure
of dividend risk premiums is downward-sloping. The term structure of real interest rates, on the
other hand, is upward-sloping because long-term real bonds cannot be hedge against increase
in habit and hence decrease in surplus consumption. Doh and Wu (2016) impose a structure
on the LRR model such that both the equilibrium wealth-consumption ratio and the price of
a one-period dividend strip are quadratic functions of state variables and then reverse-engineer
consumption and dividend processes consistent with the imposed structure. The resulting risk
premiums of dividend strips are first decreasing with maturity and then increasing, which is not
surprising as the premiums are also quadratic in state variables.

The recent studies that modify cash flow processes propose various mechanisms that make
short-run growth of dividends volatile and pro-cyclical relative to long-run growth. Belo, Collin-
Dufresne, and Goldstein (2015) consider as a mechanism a stationary financial leverage ratio.
In their model, in response to temporal increase (decrease) in corporate earnings, measured by
EBIT, a firm is assumed to increase (decrease) debt to keep the leverage ratio to a stationary
level, which further increases (decreases) cash distributed to shareholders as dividends. Con-
sequently, dividends change more intensely than earnings in the short-run. In the long-run,
however, both EBIT and dividends are exposed to the same amount of risks due to the station-
arity of the leverage ratio that makes EBIT and dividend cointegrated. Favilukis and Lin (2016)
consider as a mechanism wage rigidity in a production economy, where a negative transitory
shock to technology, corresponding to bad states of the economy, reduces dividends more than
wages that are settled infrequently. Lopez, Lopez-Salido and Vazquez-Grande (2015) consider a
similar logic but instead use nominal rigidity that induces a countercyclical wage share of output
and hence a procyclical dividend share. Marfe (2017) also uses the wage channel together with
limited participation of asset markets. Specifically, in his model, shareholders who receive and
consume dividends provide wage insurance to workers, which is effective for the short-run but
not for the long-run because both dividends and wages are co-integrated so that they share the
same long-run risks. Then, dividends, or equivalently shareholders’ consumption in equilibrium,
are more prone to transitory shocks than wages. Meanwhile, only shareholders can access to

asset markets. Consequently, from the eyes of the pricing agents (i.e., shareholders), short-term



dividend strips look riskier than long-term counterparts.

The above studies of the cash-flow approach seem to place more emphasis on short-run
growth of dividends than long-run growth. Hasler and Marfe (2016) pay attention to both
short-run and long-run growth. They introduce recovery after disaster into cash flow processes
as well as stochastic mean of cash flow growth and stochastic intensity of disaster occurrence.
While the latter two features alone generate an upward-sloping term structure of dividend risk
premiums as does the Wachter (2013) model, fast recovery of dividend growth after a large
negative shock reduces risks of holding long-term dividend strips, more than offsetting long-run
risks associated with stochastic mean growth and disaster intensity.

A novel approach taken by Croce, Lettau, and Ludvigson (2015) for generating a downward-
sloping term structure of dividend risk premiums is that they do not change cash flow processes
from those originally specified by Bansal and Yaron (2004) but do change the way they are
estimated. In their framework, the agent overestimates the impact of short-run shocks to con-
sumption growth on dividend growth because she erroneously revises a long-run component of
dividend growth that is irrelevant to short-run shocks to consumption growth. Consequently,
she requires high premiums of holding short-term dividend strips. Conversely, long-run shocks
to consumption growth, which are originally small, are difficult to infer from dividend growth
because they are contaminated by large idiosyncratic shocks to dividend growth. Then, long-
run consumption risks are not properly priced into long-term dividend strips, and they do not
command large risk premiums.

The strength of the proposed model is flexibility. Indeed, it is as flexible as the LW model
in term of generating various term structures despite the fact that equilibrium conditions are
imposed. Extensibility is another strength. Since the proposed model modifies the preference
of discount, it can easily be combined with more sophisticated cash-flow models.

The rest of the manuscript is organized as follows. Section 2 presents a model. Section 3
explains how to calibrate the parameters of the proposed model with a brief introduction of
the LW model. Section 4 verifies the performance of the proposed model and discusses implied
consumption dynamics and preferences. Section 5 introduces jumps into cash flow processes
to obtain more plausible economic implications. Section 6 concludes. Technical arguments are

collected in Appendices.



2 Model

Our model is built on a simple exchange economy, where the flow of endowments is exogenously
provided and a rational, representative agent has recursive utility of Epstein and Zin (1989,
1991), and Weil (1989). Section 2.1 first specifies the utility function and then extends it in a
way where the parameters of risk aversion and time preference depend on state variables of the
economy. Sections 2.2 through 2.4 specify endowment process and state-dependent preferences
such that the recursive equation for the agent’s continuation value is solved in closed form for a
certain case, which is presented in Section 2.5. Section 2.6 derives an analytical approximation of
the continuation value for a general case, guided by the results of Section 2.5. Finally, Section 2.7
provides pricing formulas for zero-coupon bonds and equities. The derivation of key equations

are provided in Appendix A.

2.1 Preference

Let U; denote time-t utility of the representative agent. It is originally specified by the following

recursive form:

Up = {(1 - B)CL + BEU P -0y Ve (1)

where C} is aggregate consumption at time ¢ to be determined by the agent (the decision vari-
able), and Ey[-] stands for expectation conditioned on time ¢. There are three parameters in Uy:
B represents time preference or subjective discount factor (typically somewhat less than one);
v is a coeflicient of risk aversion; and p is related to the elasticity of intertemporal substitution
(EIS) by EIS =1/(1 — p).

To capture average term structures of zero-coupon bonds and equities, we let 8 and 7 be
state-dependent as in Melino and Yang (2003). Unlike their study, we set p to zero or equivalently
the EIS to unity. This restriction has a merit of keeping the model simple without scarifying the
goodness-of-fit to at least average term structures. The unit EIS is considered by Piazzesi and
Schneider (2006) in modeling the term structure of interest rates. Hansen et al. (2007) show
that a model with unit EIS can be used as a basis for approximating more general models.

By substituting (8, v¢) for (8, ) and p =0 in (1),
Uy = Ctl_ﬁtEt[UtlJr}%]Bt/(l*’Yf) ) (2)

In solving the optimal consumption problem, we place the following assumptions: (i) 8; and

are exogenous; and (ii) 0 < B; < 1 for all ¢. Assumption (i) is also considered by Gordon and



St-Amour (2004), who model the risk-aversion coefficient directly by a stochastic process. The
analogous assumption is made by Campbell and Cochrane (1999) in the form of external habit.
Since B and ~; are not affected by the decision variable, the optimal consumption problem can
be solved in the same way as in the case of constant preference parameters. Assumption (ii)
guarantees that the period utility in (2) is concave with respect to the decision variable and that
the wealth is positive in equilibrium.

Let Cf > 0 be time-t endowment and W; be time-¢ wealth, which in the endowment economy
is the cum-dividend value of a claim to the flow of endowments. The gross rate of return to

wealth, Ry 41, is defined by

Wit
Ry, = . 3
e AT 3)
Then, the budget constraint for the agent is
Ryt 1(Wy = Ct) = Wigr . (4)

Let V; be the continuation value, which is the solution to the following problem:
Vi = max Uy subject to (4) . (5)
t

Because of the unit EIS, the optimal consumption, C}, has a closed form, irrespective of how f;

and -y; are specified:

Cf =1 -B)W;. (6)

Unlike a constant-parameter case, the wealth-consumption ratio, W;/C}, varies over time even
for a unit EIS.

The equilibrium condition is that the agent consumes the given endowment, Cj = Cf. The
wealth in equilibrium, Wy, is then solved as W} = %&CE from (6). By substituting W} into

(3), the equilibrium, gross rate of return to wealth, RJ, .4, is

* I 1- /815 Cte—i-l

Ry, =~
WAL 31— B Cf

(7)

The continuation value in equilibrium, V;*, is the solution to the following recursive equation:
Define vy = V;*/Cf, and 14 satisfies 2
—~, 7 Bt/ (1=1t)
Ce 1-—mt
v = Ey l(”t—&-l é.?) ] : (8)
t

2We call v; the continuation value unless otherwise noted because V;* does not explicitly appear in discussions

to follow.



The SDF, My41, is obtained as

1= _
o1 =B (e 1) "
My = Br—— 3 <Vt1/3t ( Ce ) : 9)

In general, the recursive equation for 14 cannot be solved in closed form, which makes the SDF

unavailable in closed form. In the next subsections, we specify endowment process and state-
dependent preferences in a way where v; is solved in closed form for constant time preference

and approximately for state-dependent time preference, keeping the accuracy in mind.

2.2 Dynamics

Following LW (2011), all variables are assumed to be homoscedastic. Define ¢; = InCf and
Aciy1 = ¢i+1 — ¢ The evolution of rate of growth in endowment, or equivalently aggregate

consumption in equilibrium, is specified as
Act_H = Ue + blc$t + Jézt_;_l , (10)

where 1. is the unconditional mean of consumption growth rate (given that the unconditional
mean of x; is zero), x; is a d-dimensional vector of state variables, and z;4 is a (d+3)-dimensional
vector of i.i.d. normal random variables. The reason for the (d + 3) dimension will be clear
soon.

For pricing nominal zero-coupon bonds, a general price index, Il;, is introduced, which is
assumed to be determined exogenously. Define m; = InIl; and Amyyq = mep1 — m. Then, the

evolution of rate of growth in inflation is specified as
ATty = pir + boxy + 0n it (11)

where the parameters and variables are interpreted similarly with the consumption process in
(10).

For pricing dividend strips, the flow of aggregate dividends needs to be specified. Let D; be
aggregate divided payed at time ¢. Define d; = In Dy and Ady+1 = di11 —di. Then, the evolution

of rate of growth in dividend is specified as
Adiy1 = pg + b&xt + inztﬂ . (12)

Aggregate dividend can be regarded as levered consumption in an endowment economy. The

most direct description of this relation is Dy = (Cf)? for some constant a > 1 (Abel, 1999;
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Campbell, 2003). Also, it is often assumed that Acy4q1 and Ady1 are co-integrated (Bansal,
Gallant, and Tauchen, 2007). We consider their link in calibrating the parameters in Section
3.2.

Finally, a d-dimensional state vector x; is assumed to follow
Tip1 = @;xt + a;zﬂ_l . (13)

Note that the unconditional mean of x; is zero. There are totally (d+3) variables in the economy.

For notational convenience, define s;; = ojo;. For example, the covariance between innova-
tions in Acyq and Adyqq is denoted as s.q = ol.og (scaler). Likewise, the covariance between
innovations in Aciy1 and @41 is denoted as s.; = oLo. (d x 1 vector) and the variance of

innovation in @441 as Syp = 0L, (d X d matrix).

2.3 Risk aversion

We specify the coefficient of risk aversion as a linear function of the state vector:
Ve = iy + bt (14)

The linear specification has a merit of obtaining the SDF in closed form when time preference
is constant. It is also useful for state-dependent time preference, which will be addressed in
Section 2.6.

A caveat, on the other hand, is that since x; is Gaussian, ; becomes negative with positive
probability. This shortcoming is also seen in the previous work. Gordon and St-Amour (2004),
and Dew-Becker (2014) specify v; as a part of the VAR(1) system and an AR(1) process, respec-
tively; however, they do not theoretically impose the positivity of 7;. The probability of v < 0

in this study is addressed after calibrating the parameters in Section 4.1.

2.4 Time preference

We consider the following two specifications:

(S1) B = B, (15)

(S2) B = 1—exp{ug+byz} (ug <0). (16)

S1 allows for solving the recursive equation (8) for v, in closed form. The resulting formula

is exponentially linear in xy, leading to the SDF of the affine class. The prices of zero-coupon
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bonds and equities are therefore available in closed form, which are also exponentially linear in
Zy.

For any specification of §; except S1, v+ has no closed form. To retain tractability, we perform
an analytical approximation of 14 in a way where the affine pricing framework is available as for
S1. S2 is aimed at keeping the accuracy of the approximation, rather than based on economic
reasoning or statistical adequacy. Specifically, once In v is approximated as a linear function of
x4 (this approximation is inevitable for any specification of 3;), the price of risks is derived as a
linear function of x; without further approximation. Intuitively, this is understood by noticing
that the SDF given in (9) has a term 1 — 41, which in S2 is exponentially linear in z;41. Also
of note is that the wealth-consumption ratio given in (6) is log-linear in ;.

A caveat of S2 is that f; becomes negative with positive probability, violating the lower
bound constraint in Assumption (ii). The severity of this violation depends on parameter values

and therefore is addressed after calibration in Section 4.1.

2.5 SDF for S1

We derive the continuation value and SDF for S1. Though our interest is in S2, the results for S1
are worth presenting for three reasons. First, they are an extension of the results presented by
Hansen, Heaton and Li (2008). The extension is in the coefficient of risk aversion: It is constant
in Hansen et al. (2008) whereas it is a linear function of Gaussian state variables in this study.
Second, the fact that the SDF for S1 derived here is exact while that for S2 is approximate
clarifies the source of approximation and provides the sense of accuracy. Third, through the
comparison with S1, the extension to S2 can be highlighted.

The recursive equation (8) for 14 is solved as
ve = exp{u, + b, a1}, (17)

where p,, and b, are the solutions to the following simultaneous equations:

1
p = B {,uu + He — ivcu(ﬂ'y - 1)} ) (18)
1
b, = B (bc + &b, — 2vcybﬁ,> , (19)
where
Ve = vargInvery + Acpp1] = b, 8200y + 250,61 + See - (20)
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Note that (18) and (19) are quadratic equations because v, is quadratic in b,. Appendix B
provides the condition for y, and b, to be real and addresses which real root to select. It is noted
that setting b, = 0 in (19) (i.e., a constant risk-aversion coefficient) leads to the continuation
value presented by Hansen et al. (2008).

Next, we drive the price-of-risk vector, denoted as A;. It is the (negative) loading on the
innovation vector z;4+1 in the SDF. By taking the log of (9) with f; replaced by £ and defining
M1 = In Myyq,

mey1 = (1 — ) Invepr — e +resy” (21)

where resy” collects the remaining terms observed at time ¢. By substituting (17) and then (10)

and (13) into (21), we have my11 — Ex[mit1] = —Nj2141, where
At = (0xby + 0c) vt — 05by . (22)

Since 7 is assumed to be linear in xy, so is A\;. Owing to -, the risk premium of any asset is
also time-varying even without time-varying volatility. A potential drawback of A; in (22) is
that it is driven by ~,; alone, which is a certain linear combination of the d-dimensional state
vector as given in (14). This implies that the correlation between risk premiums of any pair
of assets is one in absolute value as long as cash flow processes are homoscedastic. LW (2011)
make a similar assumption that the price-of-risk vector is driven by one factor and point out
the drawbacks of this assumption.

The one-period real risk-free rate, denoted as 7f;1, is the solution to the following Euler

equation: ryy11 = —In E [Mi41]. Then, it is also derived as a linear function of x:
rie1 = Ap + By (23)
where
1 /
Ay = —Inf+pe— iscc — (Segby + See) (py — 1), (24)
By = be—(siyby + Scc)by (25)

Finally, m;41 can be rewritten in a conventional form as
o 1 / /
Mip1 = —Tfie1 — SN — A2l - (26)

2

Since both 77,1 and A; are linear in x¢, m;y1 falls into the affine class.
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2.6 SDF for S2

The recursive equation (8) for 14 cannot be solved in closed form for a state-dependent time
preference, which is denoted here as 3(z;) to clarify the dependence on z;. To retain tractability,
we approximate v; by an exponentially linear function of z;. To begin with, 5(x;) and B(z)zy

are linearized around z; = 0 (the unconditional mean):

Blxe) = fo+ e, (27)

Blat)re ~ Powt (28)

where Gy = [(0) and 5 = %]wtzg. For S2, they are, respectively, 5o = 1 — e#8 and
B1 = —etBbg. Then, v; is approximated by an exponentially linear function of x; as given in

(17), where the coefficients satisfy the following simultaneous quadratic equations:
1
pe = Bo {NV + pe — §UCV(/~L’V - 1)} ) (29)

1 1
bu = BO <bc + (I)xbu - 2Ucub'y> + ﬁl {,U,,/ + Ue — ivcy(,ul'y - 1)} 5 (30)

where v, is given in (20). Notice that the second term on the RHS of (30) is newly added by
the extension to S2.

The accuracy of the approximation to 14 is examined in Appendix C. In brief, it seems to
be maintained for parameter values determined by the calibration procedure in Section 3.2 and
given specifically in Tables 2 and 4. Intuitively, the reason for a high accuracy is that 5(z;) does
not change much, as will be addressed in Section 4.1 and Figure 1(b). Then, (27) and (28) are
not bad approximations after all.

Once In v4 is approximated as a linear function of z;, the price-of-risk vector ) is derived as
linear in z; without further approximation, which is due to S2 together with a linear specification

of 4. Specifically, from (9), the log SDF can be written as

M1 = ln(l — Bt+1) + (]_ — 'Yt) In Vig1 — ’}’tACt+1 + 7"65;” , (31)

where res}” collects the remaining terms observed at time ¢. By substituting (16) and (17) and

then (10) and (13) into (31), we have as before myy1 — Ei[myy1] = —A\iz44+1, where
)\t = (O’xby + O'c)’)/t — O'x(bﬁ + by) . (32)

By a linear specification of v; given in (14), A\; is also linear in x;. Apart from b, that is not
the same between S1 and S2, —o,bg is newly added by the extension to state-dependent time

preference.

14



Finally, to obtain the one-period real risk-free rate 77,1 as a linear function of x;, we need
to rely on another approximation, which is to linearize In 3(z;) around z; = 0. Specifically for
S2,

]
Wz (33)

(1 —exp{ug + bgze}) ~ In(1 — ) — —— by

Again, this approximation may not be a serious concern due to a small variation in S(x;) as

noted above. Then, 71 is approximated as given in (23), where the coefficients are given as

follows:
1
Af = —InfBo+ pe — 5”06 - (Mv - 1)(S/cbe + See) + (,U”/ — 1)(822bv + Scw)/bﬁ ) (34)
1
Bf = be—(slyby + Scc)by + {BIdXd — @ + by (Sgaby + sm)’} bs , (35)
0

where Iy 4 is a d-by-d identity matrix and
vep = varg[In(l — fi41) — Acyqa1] = blﬁsmbg — 2slcxb5 + See - (36)

2.7 Prices of zero-coupon bonds and equites

Both the risk-free rate and price of risks are derived as linear functions of the Gaussian state
vector exactly for S1 and approximately for S2. We now turn to the pricing of zero-coupon
bonds and equites by utilizing the affine framework.

2.7.1 Real zero-coupon bonds

Let Ptjz be time-t real price of a zero-coupon bond maturing in time ¢ + n with the face value
normalized to one unit of consumption. The Euler equation for PY, is PR, = E[My 1 PR, ]

with the initial condition Pt{% = 1. The solution is of the form
Pl = exp{AF + B2}, (37)

where AZ and B! are determined recursively, starting with A% = 0 and Bf* = 0. The recursive

equations are provided in Appendix D.

2.7.2 Nominal zero-coupon bonds

Let Pt{\; be time-t real price of a zero-coupon bond maturing in time ¢ + n with the face value

normalized to one in nominal terms or equivalently 1/II;1, in real terms. The Euler equation
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for P, is Pf), = Ey[My1P[Y, ,, ] with the initial condition PfyIl; = 1. It follows that

IT;
44

PN = By | My (P 1)
The solution to (38) is of the form
P, = exp{A}) + BY'z,} (39)
where AY and BY are determined recursively, starting with A)’ = 0 and B} = 0. The recursive
equations are provided in Appendix D.
2.7.3 Zero-coupon equities or divided strips

Let Pt% be time-t real price of a zero-coupon equity that pays D;i, in time ¢t +n. The Euler

equation for Pt% is Pt% = FEy [Mt—l-lpt]«)kl,n—l] with the initial condition Pt% /Dy = 1. It follows

that
Ph PR 1 D
—— = F; | M1 ————— . 40
D, """ D Dy (40)

The solution to (40) is of the form
P,/ Dy = exp{A} + By 'z} (41)

where AP and BY are determined recursively, starting with Ay = 0 and B{ = 0. The recursive

equations are provided in Appendix D.

3 Calibration

We calibrate the parameters of the proposed model by matching it with the LW model. Specif-
ically, both the one-period real risk-free rate r7;,1 and the price-of-risk vector A; are matched
between the two models, which means from equation (26) that the SDF of the LW model that
is exogenously specified is replicated by that of the proposed model endogenously derived from
equilibrium conditions. Both models then agree with the price of any asset. This calibration
approach has two advantages. First, it provides the proposed model with the opportunity to
inherit a high descriptive ability of the LW model with respect to average term structures of
zero-coupon bonds and equities. Second, it provides the LW model with an equilibrium foun-
dation, uncovering preferences and consumption dynamics implicit in this reduced-form model.

Section 3.1 introduces the LW model and Section 3.2 explains a calibration procedure.
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3.1 The LW model

The LW model has the following six variables (the notation is slightly changed from the original

one):

Ad; : divided growth rate

Am; : inflation growth rate

zq¢ - factor driving expected divided growth rate
Zrt : factor driving expected inflation growth rate
xypy : factor driving the real risk-free rate

xxt : factor driving the price of risks

Note that consumption growth rate does not appear in the LW model as it is a reduced-form

model. The last four variables are collected in a state vector, denoted as 2F":
ot = (Tar Tmp wpe— gy wag—m) (42)

where ps and py are the unconditional means of z¢; and x4, respectively (those of x4; and

zr ¢ are implicitly assumed to be zero). The dynamics of these variables are specified as

Adyy1 = pra+xar +oyze (43)
ATgy1 = flo + T+ OrnZi4 (44)
xtLﬂ/ = <I>£W'$,5LW + UfW'th ) (45)

The log SDF of the LW model, denoted as thﬂ/ , is specified exogenously as

1

LW 2 /

Myl = =Tfe— 5 8ddTNe T~ IAtTat+1 (46)
where s4q = 0,04 A notable feature of m#W is that it is driven by the same innovation term

as driving dividend growth, o/z;11. The conditional correlation between m{jﬂ/ and Adyyq is
then —zy+/|z)|. Since the parameters calibrated by LW imply Pr{z); > 0} = 0.99, these two
variables can safely be regarded as perfectly negatively correlated. That is, a negative shock to
dividend growth almost always increases the SDF. This mechanism is the key to generating high
risk premiums of short-term dividend strips that are strongly affected by shocks to dividend
growth. Risk premiums arising from shocks to the other variables are non-zero as long as these
shocks have non-zero correlations with dividend growth shock.

The parameter values of the LW model are summarized in Table 2 of this manuscript, which

are collected from tables 1-3 in LW (2011). The unconditional means, standard deviations, and
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autocorrelations are expressed in annual terms, except for conditional first and second moments
of x); expressed in raw numbers. The annual numbers are transformed into quarterly raw
numbers when substituted into the models.

Several notes on the parameter values are in order. First, the autoregressive matrix of
oW, LW 'is diagonal. The expected-dividend-growth factor xq4 and the risk-free rate factor
xs; are relatively persistent as the autoregressive coefficients are equal to and larger than 0.9,
respectively. Second, the correlation between innovations in Ad; and x4; is —0.83, indicating
that a negative shock to realized dividend growth is more likely increases expected dividend
growth. An important implication of the negative correlation is that long-term dividend strips
are not as risky as short-term ones because a negative shock to realized dividend growth, which
always increases the SDF, raises the level of future dividends and thus the price of long-term
dividend strips. The negative correlation together with the innovation term of the SDF given
in (46) are the key for a downward-sloping term structure of dividend risk premiums. Third,
the correlation between innovations in Am; and z; is set to one, indicating that realized and
expected inflation growth rates move one for one. Fourth, the correlation between innovations
in Ady and m; is —0.3. Because m; and x,; are perfectly correlated, the correlation between
innovations in Ad; and z; is also —0.3. Then, a positive shock to realized and expected inflation
growth more likely decreases realized dividend growth, which increases the SDF. Meanwhile, the
rise in realized and expected inflation growth lowers the payoffs of nominal bonds in real terms
with both short and long maturities. Hence, nominal bonds cannot be hedge against events of
raising the SDF, leading to an upward-sloping term structure of nominal interest rates. Fifth,
the correlation between innovations in Ad; and xy; is —0.3. The (weak) negative correlation
contributes to generating a moderately upward-sloping term structure of real interest rates.
Specifically, by a negative shock to realized dividend growth, the SDF increases and the real
risk-free rate tends to rise by the negative correlation. The rise in the real risk-free rate in turn
lowers the prices of real bonds, indicating that real bonds cannot be hedge against events of
raising the SDF.

In summary, all variables, except ) ¢, are correlated negatively with Ad; and hence positively
with my, which intuitively means that the agent dislikes increase in these variables. The factor
risk premiums, which are computed as —cov;[mii1,- | = s4.7) 4, are then negative except those
of Ad; and x);. In the last row of Table 2, the factor risk premiums evaluated at z; = uy are

presented in annual percentage terms. First, by far the largest in absolute value is the factor
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risk premium of Ad;, 17% per year. Then, an asset that has a positive exposure to Ady, such as
short-term dividend strips, is supposed to command a positive risk premium. In fact, the risk
premium of the one-quarter dividend strip is exactly 17%. Second, the factor risk premium of
x ) is zero by the zero correlation between innovations in x); and Ad;. Then, even though an
asset has either a positive or negative exposure to x) ¢, this does not affect the risk premium of
this asset. However, the exposure to ) does affect the volatility and thus the Sharpe ratio of
this asset. Third, the factor risk premiums of the rest of the variables are negative. Then, an
asset that has a positive exposure to one of these variables commands a negative risk premium

attributed to it.

3.2 Calibration procedure

The most straightforward approach for replicating the SDF of the LW model with that of the
proposed model is to use the same variables. Specifically, we match z; = 2" and inherit the
dynamics of "' as well as those of Ad; and A into the proposed model. This means that
the parameters associated with these dynamics are not calibrated in this study: We simply
borrow them from LW (2011). Then, the parameters to calibrate here are those associated with
consumption dynamics and state-dependent preferences that do not appear in the LW model.

We first re-specify the consumption process as
Acip1 = pre + bexay + olzii (47)

which is similar to the dividend process given in (43). In particular, expected consumption
growth is driven by the same state variable (scaled by b.) as driving expected dividend growth.
The parameters of the consumption process are those of the drift, (i, b.), and those associated

with the variance and covariances with the other six variables, (Scc, Seds Sers Shp). Among

cx
these consumption parameters, we fix (u., b.) to maintain a reasonable relationship between
consumption and dividend growth (a more detailed reason is provided below). Specifically, we
set pe = pg and b, = 1/3, following Bansal and Yaron (2004). Then, there are seven consumption
parameters that need to be calibrated.

On the other hand, the parameters of state-dependent preferences are (fi, bﬁy) in the risk-
aversion coefficient v, and (pg, blﬂ) in the subjective discount factor 5;. Among these preference

parameters, some elements of b, can be determined immediately. In both the LW and proposed

models, the price-of-risk vector is driven by one factor: x); in the LW model and ~; in the
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proposed model. It is deduced from this relation that 7; is a linear function of ) ; alone:

Ve = oy + bya(@ae — 1) - (48)

Hence, b,; =0 (i = 1,2, 3), resulting in seven preference parameters that need to be calibrated.

These unknown parameters are determined by numerically solving the following sets of con-
straint equations. The first set is obtained by matching the one-period real risk-free rate, which
is given as a state variable in the LW model and as a linear function of state variables in the

proposed model. Specifically,
xpr=Ar+ Brixgr + Bpowry + Brs(xpe — puf) + Bra(xy: — pn) - (49)
Equation (49) holds for any z;, leading to the five constraint equations:
Bpi =Bpp=Bpy =0, Bypz=1, Ay=puy. (50)

The second set of constrained equations is obtained by matching the factor risk premiums.

In the LW model (augmented with the consumption process given in (47)):

—covt[mfﬂ/, ACt+1] = ScdTipt (51)
—covi[m{y, Adiv1] = Saatag (52)
—COVt[thﬂ/a A71't+1] = SdrTAt (53)

—covt[mﬂ/[l/, Tig1] = SdaTrt - (54)

Note that (54) is four dimensional. The corresponding factor risk premiums in the proposed

model are

—cove[mit1, Acr1] = (Shyby + See) Ve — S/cx(bﬁ +b,),

—COV¢ [mt-‘rlv Adt+1] = Sészu + Scd)% - Sézm(bﬂ + bu) )

/
_Covt[mtJrlv ATrtJrl] - S;mbu + Ser )Mt — S;rx(b,é’ + bu) y

/

Sszu + chg)'}/t - Slxw(bﬁ + bV) :

(
(
(
—covi[mitt1, Tey1] = (

By substituting (48) into (55)—(58) and then matching the resulting equations with (51)—(54),

we have the following fourteen equations:

(Slope) (Intersept)

b’Y4(S/c:va + Sec) = Sed (U'y - b’Y4/'L)\)(S/cme + See) — slcx(b,é’ +b,)=0, (59)
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bya(8ly,by + 5cd) = saa s (py — byapin) (8ggby + 8cd) — 84 (bg +b,) =0, (60)
b74(3;rxbl’ + SCW) = Sdn » (:UW - b’Y4M)\)(S;rxbl’ + SCW) - S;r:c(bﬁ + bl’) =0 ’ (61)

bW4(sgcsz + SCJC) = Sdx » (:U”Y - b’Y4M)\)(S;::1:bV + SCJC) - S;x<b5 + bV) =0. (62)

Taken together, there are fourteen unknown parameters; two in -, five in 3, and seven
for consumption variance and covariances. Meanwhile, there are nineteen constraint equations
needed for perfect replication; five from the risk-free rate and fourteen from the factor risk
premiums. Hence, the perfect replication is impossible in the first place. This is so even if
(e, be) are free parameters. In this case, these drift parameters are used for matching the factor
risk premiums, rather than capturing expected consumption growth. Consequently, unrealistic
values are returned, and this is why we fix (., bc) for a realistic consumption process.

Among these equations, five equations in (50) and seven slope equations in (59)-(62) are
selected. By this selection, there is no difference in the loadings of each asset on the state
vector, B! (i = {R, N, D}), between the LW and proposed models; see Appendix D for detail.
Additionally, given the fact that the factor risk premium of Ad; is by far the largest, the intercept
equation (60) is also selected. This means that the factor risk premium for Ad; is exactly
matched between the two models, and so is the risk premium of the one-quarter dividend strip
(17% per year). Finally, one free parameter is reserved for keeping positive definite the extended
correlation matrix, which includes consumption growth but excludes realized inflation growth
due to the perfect correlation with expected inflation growth. Without this constraint, a negative
definite correlation matrix is returned in exchange for a closer fit to the SDF of the LW model.

It is noted that since the rest of the intercept equations, (59) and (61)—(62), are not satisfied,
average term structures differ between the two models, as will be seen in Section 4.3. There
are two reasons that we give priority to the slope equations over the intercept equations. First,
the constant terms in the pricing formulas, A% (i = {R, N, D}), which matter with average
term structures, are computed recursively and dependently on the loadings; see equations (144),
(147), and (150) in Appendix D. Second, it is difficult to find the solutions to intercept equations
that satisfy the following two conditions: (i) (u., b,) are real; and (ii) the extended correlation

matrix is positive definite.
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4 Baseline results

The purpose of this section is to address whether the proposed model can replicate the ter-
m structures of bonds and equities generated by the LW model and discuss preferences and
consumption dynamics implicit in these term structures. There are multiple, in fact numerous,
solutions to the set of constraint equations presented in Section 3.2. In Section 4.1, we first select
several solutions to discuss their pattern, and then detail one of them in Section 4.2. At this
particular solution, we generate term structures of zero-coupon bonds and equities in Section
4.3. Finally, in section 4.4, we change the shape of the average term structure of real interest
rates without much affecting the other term structures. This ability is important as the shape

of the real term structure is indecisive.

4.1 Several solutions and their pattern

Table 3 presents several solutions in ascending order of the mean risk aversion j,. First of
all, there is an inverse relationship between p., and the volatility of innovation in consumption
growth ,/s... In addition, this relationship is nonlinear: The rate of decrease in /s.. is much
slower than the rate of increase in p. Specifically, at i, = 30, \/s¢. is 8.84% per year, which is
large relative to historical estimates discussed below and the corresponding dividend volatility
set at 10%. It becomes half at around y, = 120 and less than 4% at p, = 150. Further reduction
in \/scc is limited: (\/Sce, py) = (3.43%, 300), (3.32%, 500), (3.28%, 1000).

Second, the unconditional standard deviation of the risk aversion, SD[y:], also increases
with .. In fact, the ratio of mean to standard deviation is nearly constant at 1.2 for any
solutions. Because the standard deviation is large relative to the mean, v; becomes negative
with a nonnegligible probability. Figure 1(a) depicts the unconditional distribution of ; at
Solution (e) of Table 3 (i.e., u, = 150). The probability of 7; < 0 reaches 12%. The result may
be in line with Curatola (2015) in that risk loving agents exist at a certain proportion of the
population, which helps explain a negative slope of dividend risk premiums.

If a negative risk aversion is unacceptable, it can be avoided by specifying ~; as a positive
function of x;. In Appendix C, we consider a quadratic specification and examine the accuracy
of the approximation for the continuation value v;. Alternatively, it is also possible to virtually
avoid negative values by reducing the volatility of z) ;. It is originally set at 4 (raw figures) by

LW (2011). But the results of this study suggest that it is too large. In Section 5, we change
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the values of some of the parameters originally set by LW to see whether reasonable economic
implications are obtained without reducing the descriptive ability for average term structures
presented in this section.

Third, the unconditional mean of the subjective discount factor, E[3;], expressed in quarter-
ly terms, increases with p,. At p, = 30, it is 0.969, which appears to be smaller than usually
considered. At ;14 = 90, it increases to a reasonable value of 0.985. Conversely, the uncondition-
al standard deviation of the subjective discount factor, SD[3;], decreases with 1. The inverse
relationship between the mean and variance of ; is a natural consequence of the specification
given in (16), which has an upper bound of one. Figure 1(b) depicts the unconditional distri-
bution of 3; at Solution (e) of Table 3 (i.e., py = 150). Obviously, 3; does not vary largely.
Consequently, the unconditional probability of 8; < 0 is negligibly small, indicating that the
specification given in (16) is virtually consistent with Assumption (ii) (i.e., 0 < f; < 1). Also
of note is that a small variation in 5; is beneficial for the accuracy of the approximation to v.
As shown in Section 2.6, the source of the approximation lies in (27) and (28). The smaller
the variation in B, the more accurate is the approximation. In the limit, if 5; is constant, no
approximation is involved as seen in Section 2.5.

In summary, through the matching of the proposed model with the LW model, it is revealed
that we face either large risk aversion or high consumption volatility, or both. This is a typical
tradeoff in the literature of equity premium puzzles. But here, it results from many equity risk
premiums having the term structure with a sharply downward slope. The tradeoff implies that
the specification of the SDF and/or the calibration of the parameters provided by LW (2011) are
not in fact realistic from an equilibrium point of view. This problem is masked by the flexibility
of the LW model. But once economic structures are imposed, it does emerge. In Section 5, we
slightly change the specification of cash flow processes as well as the values of the parameters

to resolve the trade-off and recover realistic economic implications.

4.2 Implied consumption dynamics and preferences at a particular solution

Facing the tradeoff between risk aversion and consumption volatility, we choose a reasonable
consumption volatility while giving up a reasonable risk aversion. Specifically, we focus here
on Solution (e) of Table 3, characterized by ., = 150 and /5. = 3.91%. The consumption
volatility of 4% seems reasonable when viewed from U.S. historical data. For example, in Barro

(2006, Table IIT), a sample standard deviation of real per capita GDP growth over 1890-2004
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is 4.5%. In Mehra and Prescott (1985, table 1), originally from Grossman and Shiller (1981), a
sample standard deviation of real per capita consumption growth over 1889-1978 is 3.6%.

We report all calibrated parameters with particular attention to the following two points. The
first is the mechanism of implying a large j, and the second is key parameters for determining
the shape of the average term structure of real interest rates. The parameters of consumption

dynamics are first addressed, followed by those of state-dependent preferences.

4.2.1 Consumption growth

Panel A of Table 4 presents implied correlations between innovations in consumption growth
Ac; and the other six variables in addition to the volatility of innovation in Ac¢;. First, the
correlation between Ac; and dividend growth Ad:, denoted as p.q, is 0.88. A high p.q is a
natural consequence of the calibration procedure, which requires that the innovation term of
the SDF in the LW model be replicated by innovations in consumption growth and associated
state variables in the proposed model. The implied correlation is lower than it is in assuming
Dy = (Cf)*: In this case p,g = 1. However, it may be larger than conventional estimates
from time-series data on aggregate consumption and dividend growth. An economic rationale
of this result seems to be limited participation in asset markets. Namely, as assumed by Marfe
(2017), only shareholders who earn dividends and consume them can have access to the markets,
indicating that the SDF is that of shareholders. This assumption then supports not only the
SDF of the LW model but a high correlation between consumption and dividend growth.

Second, the correlation between Ac; and expected-dividend-growth factor x4, denoted as
Pex1, is —0.76, which is close to the correlation between Ad; and x4, originally fixed at —0.83.
These negative correlations contribute to making longer-term dividend strips less risky than
shorter-term ones.

Third, the correlation between Ac; and expected-inflation-growth factor x, ¢+, denoted as pez2,
is —0.09, which is somewhat smaller in absolute value than the correlation between Ad; and x
originally fixed at —0.3. Note that the correlation between Ac; and realized inflation growth Amy
is the same as pq;2 due to the perfect correlation between A, and x, ;. Negative correlations of
consumption growth with realizedl and expected inflation growth are the key channel through
which equilibrium models generate a positive slope of the term structure of nominal interest rates
(e.g., Piazzesi and Schneider, 2006; Wachter, 2006). Empirically, however, it may be difficult

to find decisive evidence for a negative correlation. It is then beneficial to create alternative
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channels of making longer-term nominal bonds riskier. Indeed, the proposed model has such a
channel, which is addressed in Section 4.4.

Fourth, the correlation between Ac; and risk-free-rate factor z;, denoted as pc.3, is —0.05.
It is consistent in sign with, but smaller in magnitude than, the correlation between Ad; and
x4 originally fixed at —0.3.

Finally, the correlation between Ac; and price-of-risk factor x;, denoted as pez4, is 0.34,
which is higher than the correlation between Ad; and x); originally fixed at zero. A positive
Peza 18 from a positive covariance s.p4, which is needed to match the factor risk premium of
x)+ between the LW and proposed models. Specifically, recall that the fourth row of the slope
equation (62) is

bya(Sizaby + Scxa) = Saza (= 0) (63)

where sqy4 and sg.4 are, respectively, the fourth row of s., and sg4, (the vectors consisting of
covariances of innovation in x; with innovations in Ac¢; and Ad;) and sg4 is the fourth column
of sz, (the variance matrix of innovation in x;). Note that sg.4 is originally set to zero by LW
(2011). On the LHS of (63), s,,4by = covi[zr 41, Invgiq] turns out to be negative, which is
intuitive because a positive shock to the price of risks tends to lower the continuation value. It
then follows that sepq = —s.,40, > 0.

A positive correlation between Ac; and x); appears counterintuitive as a positive shock to
consumption growth tends to raise the price of risks. Because a positive shock to consumption
growth lowers the SDF, it may be concerned that the SDF lowers in response to rise in x ;. We
will show below that the SDF, in fact, is correlated positively with x ;.

Taken together, implied parameters of the consumption process are basically consistent with
pre-determined parameters of the divided process. Though the correlation between innovations
in consumption growth and price of risks becomes positive, this is inevitable by the calibration

procedure.

4.2.2 Preferences

To ease explanation, we call 1 — 3; the subjective discount rate. Panel B of Table 4 presents
implied parameters of the risk aversion v; and the log subjective discount rate In(1—f;), together
with calculated parameters of the log continuation value In v4.

First of all, the loadings on the expected-inflation-growth factor x-; are zero for all of these

functions. The reason that 7y does not depend on z,; is noted in Section 3.2. zr; does not
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affect In(1 — ;) because it does not enter into the risk-free rate by the constraint By, = 0 given

n (50). Since ¢ has no influence on 74, 5, or Ac, it has no channel of affecting 1.

Risk aversion

As reported in Table 3, the standard deviation of v, is 128. Behind such a large value, b,4 (the
coefficient of xy ;) is implied to be 8.94. A large b,4 together with a large p., are a consequence
of explaining a large factor risk premium of Ad; set by LW. Specifically, recall that the slope

equation for matching the factor risk premium of Ad; is
bya(Sazby + Sca) = Sdd - (64)

On the LHS, s/, b, = cov¢[Adi11, Invyiq] turns out to be negative, indicating that a positive
shock to dividend growth tends to decrease the continuation value. This relation can intuitively
be understood by recalling that a positive shock to Ad; more likely reduces x4 due to pgy1 =
—0.83 and hence In1; having a positive coefficient of x4, b,1 = 8.86. Meanwhile, both b4 and
Sqq in (64) are positive. It follows that s.q > —s/,,b, > 0. But because s¢q = \/SccSddped is much
smaller than sqq given a reasonable /s (around 4% per year) and p.q < 1, by4 must be large
to equate the LHS with sgq.

This logic can also be used for explaining why a large /s is required to reduce b,4. For a
small b4, s.q must be large to satisfy (64). But because sq4 is fixed at 10% per year and because
ped has an upper limit of one, there is no other way but to increase |/scc.

A large b4 leads to a large ji, which is explained using the intercept equation for matching

the factor risk premium of Ad;:
(fty = byapr) (Sgzby + Sea) = Stz (bg + by) - (65)
The RHS of (65) is
Stz (bg + by) = covi[Adpr1, Invepr] + covi[Adirr, In(1— Biga)] . (66)

As noted above, the first term on the RHS of (66) is negative. The second term on the RHS
turns out to be positive but is dominated by the first term. Then, the RHS of (65) is negative
but not very large in absolute value. Meanwhile, b4 on the LHS of (65) is large to satisfy (64)

and py is originally fixed at 17. To offset by4py, jty must also become large.
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These explanations make it clear why we face the tradeoff between reasonable values of risk
aversion and consumption volatility. In order to reduce fy, by4 must also be reduced. But this
is possible only by increasing the consumption volatility.

Because of b4 = 8.94, the risk aversion increases with the price-of-risk factor. Because the
correlation between Ac; and x); is positive (i.e., peza = 0.34), so is the correlation between
Ac; and ~;, which may be counterintuitive. However, this relationship does not violate an
inverse relationship between In1; and 7; because Inv; has a negative coefficient of )¢, by =
—0.003. In fact, the covariance between Inv; and -+, is negative, covi[lnvy, ] = —0.24. This
negative covariance in turn implies a positive covariance between the log SDF m; and ~;, which
is fundamental for many models to explain high equity premiums. This relation is detailed after

reporting the parameters in the subjective discount rate.

Subjective discount rate

First of all, it is noticed that the signs of the coefficients in In(1 — f;) are all opposite to
those in In 14, indicating that the subjective discount rate moves inversely with the continuation
value. This movement makes sense by recalling that the wealth-consumption ratio is solved in
equilibrium as In(W;/Cf) = —In(1 — 3;). So, the inverse relationship between In(1 — ;) and
In 14 is consistent with the parallel movement between the continuation value and wealth.

More precisely, increase in 2 ¢4 and x ¢+ increases In(1— ;) due to bgz = 30.2 and bgy = 0.014,
respectively. The positive relationship between subjective discount rate and risk free rate is
reasonable. From a positive bgy, it is implied that the agent raises her discount rate and hence
becomes less patient when she becomes more risk averse. Conversely, increase in x4, decreases
In(1 — ;) due to bgy = —8.66. It is implied that the agent lowers her discount rate and hence
becomes more patient when she has brighter prospects for future consumption.

Finally, we discuss implied conditional covariances between m; and state-dependent prefer-

ences.

cove[mirt, vir1] = b {52a(bg +b) = (Seaby + Scx)yt} = 1.53 (67)

covi[mer1, In(l1— Bipq)] = 'B{sm(bﬁ +by) — (Sgzby + Scx) 1t} = 10_5(292 — 1.6) . (68)

The conditional covariance between my;; and 741 is positive, which is consistent with many
equilibrium models in that rise in the risk aversion raises the SDF. It is constant because only

the fourth element of b is non-zero and because the fourth element of (s;.b, 4 scz) is zero by
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the slope equation (62) for matching the factor risk premium of z;. On the other hand, the
conditional covariance between m;41 and In(1 — f;41) depends on ;. It is positive at p, = 150
and remains so for v, < 180. Then, it is implied that the agent more likely raises her discount
rate when the SDF is high. Because future cash flows are more discounted by the compound
effect, real bonds are devalued with the devaluation more significant for longer-term bonds.
They therefore command high risk premiums and the resulting term structure of real interest
rates will be upward-sloping.

In summary, when consumption volatility is reasonable, implied parameters of v are large.
They are mostly determined by the factor risk premium of dividend growth, which in turn
is the key to determining risk premiums of short-term dividend strips. On the other hands,
the parameters in (; are more closely related with (real) bonds. They are calibrated so as to
explain the real term structure. In Section 4.3, we actually generate average term structures of

zero-coupon bonds and equities at Solution (e) of Table 3 discussed here.

4.3 Term structure shapes

It is first noted that any solutions, some of which are presented in Table 3, lead to almost
the same average term structures because the factor loadings B! (i = {R, N, D}) do not differ
among the solutions: In fact, they are always identical to those in the LW model by design of the
calibration. The constant terms A’ (i = {R, N, D}) differ among the solutions because not all
of the intercept equations are satisfied and the resulting errors have different patterns. However,

given the identical loadings, these errors cannot be large by the recursive equations for A¢ .

4.3.1 Factor loadings

We first show the term structure of factor loadings for the log-price of zero-coupon bonds and
equities, B! (i = {R, N, D}). The sign and shape of B! give us a clue of the term structure
of risk premiums. Since we know the sign and magnitude of factor risk premiums, which are
presented in Panel C of Table 4, we understand the risk premium of an asset if we know an
asset-specific quantity of risks, which is associated with the loadings. Also, the knowledge about
the loadings is helpful for roughly capturing the shape of the term structure of excess-return
volatilities.

Figure 2 plots B! against n (quarters). First of all, the loadings are exactly the same

between the LW and proposed models, so there is virtually one curve in each graph. The plots
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are normalized by multiplying the unconditional standard deviation of each factor. Hence, they
are interpreted as the loadings on the factors with unit volatility. We begin with Panel (c)
showing the loadings on the risk-free-rate factor xy;, which is a common factor for all assets,
producing the baseline risk. They are identical for all assets, negative for all n > 1, and decrease
with n. Since the factor risk premium of ¢ is negative (—0.11% per year), the negative loadings
on s, lead to positive risk premiums attributed to xy; for all assets. Furthermore, the risk
premiums are expected to increase with n as the loadings decrease with n. Since for real bonds,
the loadings on the other factors are zero as seen in the other panels of Figure 2, the term
structure of real interest rates is expected to be upward-sloping.

Panel (b) shows that only nominal bonds have non-zero loadings on the expected-inflation-
growth factor xr;, which are negative for all n > 1 and decrease with n. Since the factor risk
premium of z; is negative (—0.18% per year), the risk premiums attributed to x,; become
positive for all n > 1 and increase with n. These premiums are added to those attributed to
xs4, and the resulting term structure of nominal interest rates will be above that of real interest
rates with the difference between the two curves widening with n.

Panel (a) shows that only dividend strips have non-zero loadings on the expected-dividend-
growth factor x4;, which are positive for all n > 1 and increase with n. Since the factor
risk premium of z4; is negative (—0.46% per year), the risk premiums attributed to z,; are
negative for all n > 1 and more so for longer n. This means that a dividend strip has two
opposing components of the risk premium: One is a positive risk premium attributed to zy;
and the other is a negative risk premium attributed to z4;. The latter dominates the former.
Specifically, while the magnitude of the normalized loadings is similar in absolute value between
xq; and xy; as seen in Figures 2(a) and 2(c), the normalized factor risk premium of x4, is
about three times larger in absolute value than that for z;;. Consequently, the term structure
of dividend risk premiums will have a downward slope.

Finally, in Panel (d), the loadings on the price-of-risk factor x; are presented, which are
negative for all assets. They differ in shape, however. They decrease monotonically with n
for both real and nominal bonds whereas they are inversely hump-shaped for dividend strips.
These shapes do not matter with the risk premium of any assets in the original LW model,
however, because the factor risk premium of z); is zero. They do matter with the volatility
and hence the Sharp ratio. Specifically, the negative hump at around n = 35 — 40 will raise

the volatility of return to dividend strips with these maturities. In contrast to the LW model,
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the negative loadings on x; also matter with any assets’ risk premiums in the proposed model
because the factor risk premium of x) ; is negative as presented in Panel C of Table 4. Hence,
the negative loadings on x ) ; generate additional risk premiums. Consequently, term structures
of risk premiums in the proposed model will be above those in the LW model, which is indeed

the case as seen below.

4.3.2 Level and volatility of real and nominal interest rates

Let Y/, (i = {R,N}) be the yield to maturity of a zero-coupon bond maturing in n periods:
Y, = —1n P},. By substituting the formulas for P/, in (37) and (39),

Vie= (AL Biz) (= {RN}). (69)

Then, the unconditional mean and variance of Y;fn are — A’ /n and B:'var[z;] B! /n?, respectively.
These moments, expressed in quarterly terms, are annualized by multiplying by four.

Figure 3(a) plots the annualized unconditional mean of real interest rates, 4F [Yﬁz], against
n (quarters) produced by the LW (dotted line) and proposed (solid line) models. Both plots are
upward-sloping. By design of the calibration in which the real risk-free rate is matched exactly
between the two models, both plots start from the same point at n = 1. By increasing n, they
deviate gradually. At n = 160 (forty years), the mean real interest rate for the proposed model
is higher by 1% than that for the LW model in line with the argument in Section 4.3.1.

Figure 3(b) plots the annualized unconditional mean of nominal interest rates, 4E[Y,5]¥L]
Again, both plots are upward-sloping and above those for real interest rates due to additional
risk premiums attributed to zr;. They start from almost the same point at n = 1 and deviate
gradually with the proposed model producing higher nominal rates. The deviation reaches 1.65%
at n = 160.

Figures 3(c) and 3(d) plot the annualized unconditional standard deviation of real and nom-
inal interest rates, \/4var[Y,] (i = {R,N}). Both plots are downward-sloping. There is no
discrepancy between the LW and proposed models because the loadings B: (i = {R, N}) are
the same between the two models for any n.

Figures 4(a) and 4(b) plot the term structures of real and nominal interest rates generated
by the proposed model when the risk-free-rate factor ¢, is above (+2SD) or below (—2SD) two
standard deviations from the mean while the other factors are fixed at the mean (i.e., zero).

Consistent with intuition, when x¢; is high (low), both real and nominal curves shift upward
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(downward) with the shift more significant at the short end.

Analogous plots are shown in Figures 4(c) and 4(d), where the price-of-risk factor zy; is
above or below two standard deviations from the mean with the other factors fixed at the mean.
It is noted that this is equivalent to changing the risk aversion coefficient +; by plus or minus two
standard deviations from the mean because 7; is a linear function of x) ;. Also consistent with
intuition, when the agent becomes more risk averse (i.e., 7 is high), both curves shift upward
as she requires high risk premiums. When she is less risk averse (i.e., 7 is low), both real and
nominal interest rates first decrease up to n = 12 — 16 (three to four years) and then increase
because of the constant term, —A? /n, which is increasing in n as shown in Figures 3(a) and
3(b).

The term structures of interest rates in Figures 4(e) and 4(f) are drawn when the economy
is “Good” and “Bad,” respectively. We arguably define a good (bad) state of the economy as
a state with low (high) x), and high (low) (x4, ®z¢, ;). The high (low) value corresponds
to two standard deviations above (below) the mean. When the economy is good, both real
and nominal interest rates start from high levels, decrease with increasing n up to around
n = 40 (ten years), and then turn slightly increasing. Overall, both curves can be regarded
as flat- or downward-sloping. In contrast, when the economy is bad, both curves are sharply
upward-sloping, starting with low levels. The nominal interest rate at n = 1 is negative as the
model consists of Gaussian state variables. These plots do not seem to deviate largely from real

observations of the economy though some level adjustments may be necessary.

4.3.3 Risk premium, volatility, and Sharpe ratio of dividend strips

Let rBan_l be the log return to a dividend strip, defined and developed as
D
T’D — In Pt+1,n—1
t+1,n—1 Pt%

PP, /D D
In t+1,nD 1/Di41 +1n< t+1)
Pt,n/Dt D,

= (JIB,?_I +04) 241 + T@S? , (70)

where resP collects the remaining terms observed at time . We define the risk premium of

a dividend strip, denoted as RPtl?

_1, based on the excess log return adjusted for convexity or

Jensen’s inequality term:

1
D D D
RPt,nfl = Lk [Tt+1,n71] —Tfi+1 §Vart[rt+1,nfl}
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= _COVt[mtJrh Tt[—)‘,—l,n—l] ’ (71)

where the second equality follows from the Euler equation, F; [emt+1+'f’tD+17n71] = 1. By developing

the conditional covariance in (71),

RPL,_, = AP + BPy (72)

where
ARPD — _(bg +b,) (522 BE_| + 542) (73)
Brl?le = Séla:bu + Sed + (Szxby + Scx),Br?—l . (74)

The unconditional risk premium is then obtained as E [RPt7Dn_1] = ARPD  BRPD ),

Figure 5(a) plots the annualized unconditional mean of risk premiums, 4F [RPt%_l], against
n (quarters) implied by the LW (dotted line) and proposed (solid line) models. Both plots are
downward-sloping. They start from the same point, 17%, which is remarkably high. By increas-
ing n, they deviate gradually with the proposed model again producing higher risk premiums.
At n = 160, the risk premiums implied by the LW and proposed models are, respectively, 4.4%
and 5.8%, and both curves are almost flat.

Next, we compute the unconditional variance of excess return to a dividend strip, var[rgrlm_l —

7¢441). First, it can be decomposed as

Val"[TtDH,nq - Tf,t+1] = Val"[Et[TtD+1,n71 - Tf,t+1]] + E[Vart[rgrl,nq - Tf,t+1]] : (75)
The first term on the RHS of (75) is developed as

| = BffllVar[%]BRP . (76)

var[Ei[ri}y o1 = rpes1]] = var[RP] -1

n—1

The first equality in (76) follows from the definition of the risk premium given in (71), where
VaI‘t[Tg_Ln_l] is actually constant. The second equality follows by substituting (72). By (14),

var[yi] = b var[z¢]b,. The second term on the RHS of (75) is developed as
Elvary thzrl,n—1 — rfer1]] = varg [TtD+1,n—1] = Bl 502 Bl | + 250, BY | + sda , (77)

where the first equality follows because r ;11 is observed at time ¢ and because var; [rﬁlm_l] is

constant. The second equality follows by substituting (70).

Figure 5(b) plots the annualized volatility, \/ 4var[7“tD+17n71 — 7f441), implied by the LW and

proposed models. Both plots are the same because both BY and BEPP are the same for any
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n > 1 between the two models. The reason for the same B2 is that all slope equations (59)(62)
are satisfied. In addition, BF'P is the same because the intercept equation (60) associated with
the factor risk premium of dividend growth is satisfied. The volatility curve is hump-shaped
with the peak at around n = 35 — 40, which corresponds to the trough of the term structure of
loadings on x; shown in Figure 2(d).

Finally, we compute the unconditional Sharpe ratio of dividend strips as a ratio of the

unconditional mean of risk premiums to the unconditional volatility of excess returns. Figure

5(c) plots the annualized ratio, 4E[RPt%_1]/\/4var[rg_17n_l — rf4+1). Both plots are sharply
downward-sloping with the curve for the proposed model less steep. As seen in Figures 5(a) and
5(b), the risk premiums are high while the volatilities are low at the short end. This combination
produces high Sharpe ratios. In the medium maturity range, the risk premiums decrease while
the volatilities increase, leading to a sharp decrease in the Sharpe ratio. At the long end, since
both risk-premium and volatility curves are almost flat, so is the curve of the Sharpe ratio.

Figure 6 presents the term structures of dividend risk premiums and Sharpe ratios gener-
ated by the proposed model when the price-of-risk factor x); is above or below two standard
deviations from the mean. It is noted that since risk premiums are driven by =, which is a
linear function of x); alone, changing the other factors does not change the plots. Also, since
excess-return volatilities are constant for any maturities, the volatility curve does not change by
changing factor values. Accordingly, it is not surprising that only a parallel shift is observed in
both risk-premium and Sharpe-ratio curves. Consistent with intuition, the curves shift upward
(downward) when x ; and thus 7; are large (small).

If we wish to see a more flexible shift in the risk premium curve, such that the curve is sloped
upward in times of good economy, it may be necessary to incorporate stochastic volatility into
cash flow processes.

In summary, the proposed model can produce average term structures of zero-coupon bonds
and equities that are close to those produced by the LW model. In the next subsection, we further
examine whether the proposed model can also generate the term structure of real interest rates

that is flat- or downward-sloping without much affecting the shape of the other term structures.

4.4 Changing the shape of the real term structure

The LW model can easily change the shape of the average term structure of real interest rates.

This ability is rooted in the SDF that is driven by the same innovation term as driving dividend

33



growth, which makes it easy to change the correlations between the SDF and factors affecting
the real term structure. Since the proposed model does not have such a simple mechanism, it
cannot change the average real yield curve as easily as the LW model. However, as demonstrated
in Sections 4.1-4.3, the proposed model can replicate the LW model, which motivates us to take
the following two steps to generate a downward-sloping term structure of real interest rates:
The first step is to generate it using the LW model, and the second step is to replicate the LW
model using the proposed model.

In the first step, we change the correlation between innovations in dividend growth Ad; and
risk-free-rate factor x;, denoted as pg,3, from —0.3 to 0.1 while keeping the other parameters
unchanged in the LW model. When pg,3 = 0.1, the factor risk premium of x; is now positive
because a positive shock to xy; more likely increases Ad; and hence decreases the SDF. Mean-
while, it is the robust feature, regardless of the value of the correlation parameter, that the (log)
price of real bonds is negatively exposed to x; and that the negative exposure is increasing with
maturity. Then, the combination of a positive factor risk premium and increasingly negative
exposures associated with z; results in increasingly negative risk premiums of real bonds. The
term structure of real interest rates will then have a negative slope. If we wish to lower the slope
further, we simply increase the value of pg,3 (up to one). But it is noted that since the loadings
on xs, are the same for all assets as shown in Figure 2(c), the slope for nominal interest rates
and dividend risk premiums is also lowered for a more negative pg,3.

In the second step, this exogenous mechanism through correlation parameters is again en-
dogenized by the proposed model using the parameters of consumption dynamics and state-
dependent preferences. They need to be re-calibrated entirely even though only a single param-
eter is changed in the original LW model. As in the baseline calibration, there are numerous
solutions to the set of constraint equations presented in Section 3.2. We then pick a solution
with p, = 150 to ease comparison to the baseline calibration.

In Figure 7, the average term structures generated by the LW (dotted line) and proposed
(solid line) models are presented: Those of volatilities are not shown for saving space. It is noted
that each term structure starts from the same point as that in the baseline calibration presented
in Figures 3 and 5. First, Figure 7(a) shows that the real term structure is indeed slightly
downward-sloping. The proposed model generates higher rates with the deviation reaching
0.55% at n = 160 (forty years). Second, Figure 7(b) shows that the term structure of nominal

interest rates is flattened for both models, reflecting a downward-sloping real term structure.
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The nominal term structure is still positively sloped because of positive risk premiums attributed
to xr ;. By increasing these risk premiums, it is possible to raise the slope of the nominal term
structure. In the LW model, this is achieved by making the correlation between dividend growth
and realized/expected inflation growth more negative (up to minus one). In addition to this
correlation channel, the proposed model has an alternative channel through state-dependent
preferences, which may be beneficial when empirical evidence of the correlation channel is weak.
The benefit of this alternative channel is illustrated in Section 4.5. Third, in Figures 7(c) and
7(d), the average term structures of dividend risk premiums and Sharpe ratios remain sharply
downward-sloping. In fact, the downward slope is reinforced due to negative risk premiums
attributed to ;.

Table 5 presents calibrated parameters for pg, = 0.1. There are two major changes in con-
sumption dynamics shown in Panel A. First, the consumption-growth volatility |/s.. is increased
from 3.91% to 4.96%, which can also be explained using the slope equation (64) for matching
the factor risk premium of Ad;: In this equation, sfixb,, = cov[Ady1, Invgqq] becomes more
negative than in the baseline calibration because increase in x s, which decreases the log contin-
uation value In1411 in both the previous and current calibrations due to b,3 < 0, now tends to
increase, rather than decrease, Ady11 by changing pg.3 from —0.3 to 0.1. Second, the correlation
between innovations in Ac; and ¢y (i.e., peg3) is increased from —0.046 to 0.085 consistently
with the change in pg,3 from —0.3 to 0.1.

Panel B of Table 4 presents preference parameters. Overall, the signs of the parameters
do not change from those in the baseline calibration. Since we originally select a particular
solution with p, = 150, an implied value of b4 (the coefficient of xy; in ;) does not change
much from that in the baseline calibration. Instead, implied parameters in In(1 — ;) exhibit
some changes. Specifically, the unconditional mean of ; is increased from 0.987 to 0.998, which
is mainly due to the decrease of pg from —4.39 to —6.34. Furthermore, implied values of bg
are changed toward reducing the conditional covariance between In(1 — ;) and m;. Specifically,
covi[met1, In(1—pBi1)] = 107°(171—11.5v;), which is now negative at y, = 150, indicating that
the agent tends to lower her discount rate when the SDF is high. The decrease of this covariance
is mainly attributed to the decrease of bg; from —8.66 to —12. Then, a positive shock to x4,
which increases m; as reflected into a negative factor risk premium of x4, decreases In(1 — ;)
more than previously. Also, the increase of bgs from 30 to 45 has an additional contribution to

decreasing this covariance. Specifically, a positive shock to xy; increases In(1 — ;) more than
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previously while it more likely decreases the SDF due to pg.3 = 0.1.

In summary, the proposed model is shown to be as flexible as the LW model in terms
of generating the average term structure of real interest rates. Again, state-dependent time
preference has an important role for this flexibility, which is crucial for any models as the shape

of the real term structure is indecisive.

4.5 Raising the slope of the nominal term structure

As seen in Section 4.4, the real term structure is sloped downward by setting pg,3 = 0.1. But
at the same time, the nominal term structure is flattened. We attempt to raise the nominal
slope while keeping the real slope negative by changing not correlation parameters but some
preference parameters.

There are two approaches for this purpose. The first is a direct approach, which is to increase
byo (the coefficient of z,; in ;), originally set at zero. Specifically, we set b,o = 90. Then, the
agent dislikes increase in xr; more than previously as it increases the risk aversion v; and thus
the log SDF m;. Consequently, she requires higher risk premiums of holding nominal bonds that
are exposed (increasingly) negatively to z ¢, and the term structure of nominal interest rates
will be more positively sloped. It is noted that after changing the value of b,2, we need to solve
the recursive equation (8) for the continuation value ;. Then, the solution would not exist if b2
were changed largely from zero (the original value) because the rest of the parameters regarding
consumption dynamics and state-dependent preferences remain unchanged.

Figures 8(a) and 8(b) plots the average term structures of real and nominal interest rates
for by = 90 together with those for by = 0 (the same plots shown in Figures 7(a) and 7(b)).
Indeed, the nominal term structure is shifted upward with the shift more significant at the long
end. Consequently, the spread between nominal interest rates at n = 160 and n = 1 is increased
from 1.44% for byo = 0 to 1.79% for by = 90.

The second is an indirect approach, which is to increase bgy (the coeflicient of z; in In(1 —
Bt)), originally set at zero. Specifically, we set bga = 2. The reason that a positive bgy raises
the slope of the nominal term structure is less obvious but will be understood by recalling an
inverse relationship between In(1 — ;) and Inu; as evidenced in Tables 4 and 5. Then, it is not
surprising that by setting bga > 0, the corresponding coefficient in In v, b,2, which is obtained
as a solution to the recursive equation (8), is negative. By a negative b,2, the agent becomes

more risk averse to increase in xr; as it reduces the continuation value. It is also noted that as
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is the case for by, if bgy were changed largely from zero (the original value), there would be no
solution for v;.

Figures 8(c) and 8(d) plots the average term structures of real and nominal interest rates
for bgy = 2 together with those for bgy = 0 (the same plots shown in Figures 7(a) and 7(b)).
Again, the nominal term structure is more upward-sloping with the spread between long-term
and short-term rates increased to 2.14%.

In summary, the proposed model can raise the slope of the term structure of nominal inter-
est rates when the term structure of real interest rates is sloped downward and the correlation
between consumption and inflation growth is moderate. The key is again state-dependent pref-

erence parameters, which control for agent’s aversion to inflation risks.

5 Alternative parameter values and cash flow dynamics

While the proposed equilibrium model can generate the term structures of bonds and equities
as flexibly as the reduced-form LW model, it obtains some counterfactual implications about
consumption dynamics and/or preferences. The purpose of this section is to make the proposed
model plausible from an economic point of view. There are two steps to achieve this purpose.
First in Section 5.1, we change some parameter values originally calibrated by LW (2011) and
then re-calibrate the parameters of the proposed model in the same procedure as explained in
Section 3.2. This change is aimed at reducing the mean and standard deviation of the state-
dependent risk aversion without much increasing the volatility of consumption growth. Second
in Section 5.2, we slightly deviate from the LW model and incorporate jumps into cash flows to

further reduce the consumption volatility.

5.1 Changing some parameter values of the LW model and re-calibrating the

proposed model

The values of the following three parameters originally calibrated by LW (2011) are changed

while the other parameters are kept fixed at the values presented in Table 2:

\/vargay ¢4+1] © 4 = 02,
varg[Adey1) 0 10% —  18% (per year) ,
Elzxg] 17 — 262 (=0.085/0.18%),
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where x); is a price-of-risk factor and Ad; is realized dividend growth. The reduction of the
volatility of x); from 4 to 0.2 is aimed at reducing the variance of the state-dependent risk
aversion, which is specified as v = py + bya(xrs — pr). This change, however, also reduces
return volatility for dividend strips, shifting downward the volatility term structure with the
shift more significant at the short end. To offset the downward shift, the volatility of innovation
in Ady, simply denoted as /544, is increased from 10% to 18% per year, which seems to be
still in an acceptable range. In the LW model, the increase in s4q directly raises the factor risk
premium of Ady, or equivalently the risk premium of the one-period dividend strip, as it is given
by E[—covt[mﬂ/‘f, Adyy1]] = sqaExa]. To keep it in a reasonable range, then, Efz) ;] = px
is reduced from 17 to 2.62. It is note that by this change, we lower the factor risk premium of
Ad; by half, from 17% to 8.5% per year. Still, the level of 8.5% seems to stand as a challenge
to equilibrium models; see Table 1.

After changing the values of the three parameters in the LW model as above, the parameters
of the proposed model are calibrated by the same procedure as explained in Section 3.2. Again,
there are numerous solutions to the set of constraint equations, and among them we focus on
the solution with E[y;] = 1, = 30. This is because we wish to highlight the degree to which the
volatility of consumption growth decreases when the mean risk aversion is fixed at 30. The level
of 30 may still be large but is in a range of values considered or estimated by the previous work:
21 (Bansal and Shaliastovich, 2013), 50 (Doh and Wu, 2016), 66 (van Binsbergen, Fernandez-
Villaverde, Koijen, and Rubio-Ramirez, 2012), and 75 (Rudebusch and Swanson, 2012).

The results of the calibration are provided in the “No JUMP” row of Table 6. The total

volatility (Total vol.) is computed as \/var;Aci41] for consumption growth and \/var;[Ad; ]
for dividend growth. They are the same as \/sc. (= \/0Lo.) and (/544 (= \/0},04), respectively,

in the current model: In Section 5.2, we extend the model by introducing jumps into cash flows,
and in this extended model, \/sc. and /544 correspond to the Gaussian component of the total
volatility.

An implied /5 is 5.05% per year, which is smaller than 8.84% in the baseline calibration
presented in Table 3 but still seems to be large relative to historical estimates. An intuitive
explanation of why the volatility of consumption growth is smaller in spite of the fact that
the volatility of dividend growth is increased from 10% to 18% is as follows. By reducing
the volatility of z¢, bya (the coefficient of x); in ;) is increased from 1.78 in the baseline

calibration (i.e., Solution (a) of Table 3) to 12.03: These numbers are not shown in any tables.
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The result indicates that though both b,4 and s4; are increased, the rate of increase is larger
in the former than in the latter. It then follows from the slope equation for the factor risk
premium of Ady, given by bya(s,by + Sca) = Sqa, that the consumption volatility, which appears
in Seq = /SceSddPed, does not need to be as large as in the baseline calibration.

The unconditional standard deviation of ;, denoted as SD]v], is implied to be 8.6, which is
smaller than 25 shown in Table 3. Panel (a) of Figure 9 depicts the unconditional distribution of
~¢. Though still non-zero due to the normal distribution, the probability of 7 < 0 is negligibly
small, showing that one of the shortcomings of the proposed model is resolved.

The unconditional mean and standard deviation of the subjective discount factor, denoted
as E[f:] and SD][B], are 0.996 and 0.00085, respectively. Compared with the corresponding
values at row (a) of Table 3, the mean becomes more reasonable, and the standard deviation
becomes much smaller because of a lower volatility of ;. As noted in Sections 2.6 and 4.1, a
lower volatility of 8; improves the accuracy of the approximation to the continuation value v;.
Panel (b) of Figure 9 depicts the unconditional distribution of 3;, showing that the peak is near
the upper bound of one and that the left tail is not long.

Figure 10 presents the average term structures of real and nominal interest rates. Panels
(a) and (b) show that both yield curves are upward-sloping. The slope, however, is less steep
than in the baseline calibration shown in Figure 3 because of a smaller mean of x) ;. Panels
(c) and (d) show that both volatility curves are downward-sloping. The negative slope is more
pronounced than in the baseline calibration because of a lower volatility of x ;.

Figure 11 presents the term structures of risk premiums, excess-return volatilities, and Sharpe
ratios of dividend strips. Panel (a) shows that the proposed model can still generate a downward-
sloping term structure of dividend risk premiums. The risk premiums at n = 1 (one quarter) and
n = 160 (forty years) are 8.50% and 5.77% per year, respectively. Though the range is narrower
than in the baseline calibration, it is still comparable to those for the previous models listed in
Table 1. Panel (b) shows that the volatility curve is first decreasing up to around n = 40 (ten
years) and then turns slightly increasing. The volatilities at n = 1,40, and 160 are, respectively,
18.0%, 15.2%, and 16.3% per year. Compared with the baseline calibration shown in Figure 5,
the volatilities at the short end are higher, reflecting the increase in the volatility of Ad;. In the
medium maturity range, they are lower due to a lower volatility of x;. At the long end, the
volatilities in both the baseline and alternative calibrations converge to a similar level. Panel

(c) shows that the model can also generate a downward-sloping term structure of Sharpe ratios,
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ranging from 0.47 (n = 1) to 0.35 (n = 160). The range seems to be comparable to the previous
models though narrower than in the baseline calibration.

In summary, the proposed model can still generate the term structures that stand as chal-
lenges to equilibrium models. But changing parameter values alone may not be sufficient because
the volatility of Ac; still seems to be high. In Section 5.2, we modify the dynamics of cash flows
to overcome this problem. But the modification is kept minimal as our focus is on the extension

of preference, or discount, rather than cash flows.

5.2 Introducing jumps into cash flows

To further reduce the volatility of consumption growth, we introduce jumps into both consump-
tion and dividend processes. The jumps can be interpreted as disastrous events in line with
Reitz (1988), Barro (2009), Gabaix (2012), and Wachter (2013). The agent dislikes jump shocks
(infrequent but large negative shocks) to consumption growth more than Gaussian shocks (small
but frequent shocks) if these two types of shocks have the same volatility in a statistical sense.
Then, for a given level of the agent’s measure of consumption risks, it is possible to reduce a

statistical measure of consumption risks by introducing jumps.

5.2.1 Cash flow dynamics and the derived SDE

Our introduction of jumps is simple by assuming that realized consumption and dividend growth
alone can jump: Neither inflation growth nor state vector can. Additionally, we assume that
both jump intensity and jump size are constant. Then, we re-specify the consumption and

dividend processes as

Acip1 = pre+bezar + olzesr + (InE)Nejr (78)

Adyy1 = pra+ zar + gz + k(In&)Np (79)

where V; follows an i.i.d. Poisson distribution with intensity parameter [ > 0 and is independent
of the Gaussian shock z;. A jump size in consumption growth is captured by £ (0 < £ < 1).
When a single jump occurs at time ¢ + 1 (i.e., Nypy = 1), Cf; = £CF, ignoring the other
components. Multiple jumps at a point in time are also possible, which can be interpreted as
representing how serious the disaster is. Specifically, when Ny = n, Cf,; = £"Cf{. But this

interpretation makes it difficult to identify [ and £ separately as both are related to the disaster’s

40



seriousness. Then, we fix [ at 1/40, which roughly corresponds to the frequency at which a jump
occurs once in every ten years on average.

The same N4 is used for capturing jumps in dividend growth, which means that the jump
event occurs to both processes simultaneously. But the jump size for dividend growth is amplified
by k > 1 because Dyyq = £"¥ D, for N;1 = n, ignoring the other components.

It is noted that a number of extensions are possible regarding a jump component and ac-
cordingly that the results below can be further improved. First, the jump size can be stochastic.
A conventional probability distribution such as an exponential, gamma, or normal distribution
does not violate the model’s tractability. Second, the jump intensity can be stochastic. Gabaix
(2012) and Watcher (2013) demonstrate the importance of time-varying jump intensity for cap-
turing high equity premiums. Third, the disaster can be followed by the recovery. Hasler and
Marfe (2016) model consumption and dividend processes that mean-revert after a large fall,
with the rate of mean-reversion differing between the two processes, and successfully explain a
downward-sloping term structure of dividend risk premiums.

For notational simplicity, we denote the consumption process by the sum of Gaussian and
Jump components as Acii1 = Acthy + Acf,y, where Ac/i; = (In€)Nppy and Acfl, is the
remaining Gaussian component (including the predictable one). Likewise, the dividend process
is denoted as Ady1 = AdY, | + Adf 4.

The log continuation value In v is also approximated by a linear function of the state vector
x¢ as Invy = p, + 0,24, where (u,, b)) is the solution to simultaneous quadratic equations, which
are slightly modified due to the jump component. They are provided in Appendix A and the
accuracy of the approximation to v is reported in Appendix C.

The log SDF my1 is derived as
1 _
Mmey1 = —7’f7t+1 — 5)\;)\75 — )\taH — ’yt(ln§)Nt+1 - l(f " 1) . (80)

The real risk-free rate 77,41 is also derived as a linear function of z4: rp11 = Ap+ B}xt, where
(Ay, B}) are also adjusted for the jump component, presented in Appendix A. The price-of-risk
vector \; associated with Gaussian shocks is of the same form as given in (32). But it is noted
that it depends implicitly on jump parameters through (ju,, b),).

The log prices of zero-coupon bonds and equities are approximated as linear in x;: In Ptiyn =
Al + Bi'z, (i = {R, N, D}). For real and nominal bonds, the recursive equations for (4%, B’

(it = {R, N}) are of the same form as those without the jump component: They depend on jump
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parameters indirectly through (u,, b}, Ay, B}) In contrast, for dividend strips, the recursive
equations for (AP, BP’) have additional terms related to the jump component because their
payoffs directly depend on future dividends that are exposed to jump shocks. The price of a

dividend strip when jumps are included is derived in Appendix D.

5.2.2 Calibration

The parameters of the extended model are calibrated by taking the following conditions into
account: E[y] = 30; E[Ac] = E[Ad;] = 1.29% per year in equations (78) and (79) (the same
level as in the baseline calibration); var;[Acty1] = 4% per year in equation (78); vari[Ady1] =
18% per year in equation (79); [ = 1/40; and the average term structures of interest rates and
dividend risk premiums do not change much from those in Section 5.1.

The results of the calibration are provided in the “JUMP” row of Table 6. It is first noted
that the solution to (an approximation of) the continuation value and hence the SDF does exist
that satisfies the conditions listed above. Indeed, we can successfully reduce the volatility of
consumption growth while keeping reasonable the behavior of state-dependent preferences. Of
the total volatility of Ac; set at 4%, the Gaussian component ,/sqq reaches 3.98%. Once a
jump event occurs with the intensity set at [ = 1/40, the current consumption falls by 1.26%
(computed by £ — 1) from the previous quarter. These results imply that the role of jumps is
not crucial for consumption growth. It is, however, for dividend growth. Of the total volatility
of Ad; set at 18%, the Gaussian component is 16.52%, and upon occurrence of a jump, the
dividend falls by more than 20% (computed by ¢* — 1) from the previous quarter.

The standard deviation of the state-dependent risk aversion is decreased from 8.6 to 8.1 when
jumps are included. The difference, however, does not seem to be economically large, judged
from the unconditional distribution of 74 presented in Figure 9(a). Indeed, the probability of
¢ < 0 is negligibly small in both cases.

On the other hand, the inclusion of jumps can change the mean and standard deviation of
the subjective discount factor ;. The unconditional mean E[3;] is decreased to 0.986 while the
unconditional standard deviation SD[f;] is increased to 0.00232. But still, the mean is reasonable
and the standard deviation is smaller than in the baseline calibration because of the decrease
in the volatility of z) ;. Consequently, the accuracy of the approximation to the continuation
value v is maintained even by the introduction of jumps: The results of the accuracy with

jumps are provided in Appendix C. We plot the unconditional distribution of 3; in Figure 9(b),
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noticing leftward shift and longer left tail. The change of the distribution can be explained as
follows. Facing jump risks in consumption growth, the agent is more willing to hold real bonds,
which potentially shifts the real yield curve downward. But since we do not change the level of
the one-period risk-free rate from that without jumps, the subjective discount rate 1 — §; must
increase and hence ; must decrease. Since [; is shifted away from the upper bound of one,

there is more room for S; to fluctuate.

5.2.3 Term structures

The term structures of interest rates and their volatilities are plotted in Figure 10. By con-
struction of the calibration procedure explained in Section 5.2.2, each plot is similar between
with and without jumps. The same is true for the term structure of dividend risk premiums
shown in Figure 11(a). On the other hand, a difference appears in Figure 11(b) showing the
term structure of excess-return volatilities of dividend strips. By including jumps, the volatility
curve in the medium to long maturity range is shifted upward while at n = 1, the volatility is
almost the same between with and without jumps because of the constraint that the volatility of
dividend growth is exactly the same, set at 18%. At n = 160, excess-return volatility with jumps
is 17.0%, which is larger than 16.3% without jumps. An intuitive explanation of the upward
shift is as follows. Among the four factors, the expected-dividend-growth factor z4; dominates
return volatility for medium- to long-term dividend strips. By introducing jumps into realized
dividend growth but not into expected dividend growth, the covariance between realized and
expected dividend growth becomes less negative than it is before introducing jumps, because
the role of the Gaussian component, which matters with the covariance, is less important with
the presence of jumps. The less negative covariance then leads to higher return volatility for
these strips. Since the volatility is slightly higher with jumps than without, the Sharpe ratios
decrease slightly faster as shown in Figure 11(c).

In summary, the change in some parameter values and the inclusion of jumps into cash flows
together are helpful for improving the proposed model, which now offers economically reasonable
implications about consumption dynamics and preferences while keeping the ability to generate

various term structures.
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6 Concluding remarks

This study proposes an equilibrium asset pricing model with the purpose of jointly producing
the term structures of zero-coupon bonds and equities. For this purpose, we extend a recursive
utility function in a way where the parameters capturing risk aversion and time preference are
driven by state variables of the economy and asset markets, enabling the agent to more directly
express her preferences for cash flows at various points in time. The parameters of the proposed
model are calibrated by matching the stochastic discount factor of the proposed model with that
exogenously specified by Lettau and Wachter (LW) (2011). This calibration approach allows
the proposed model to have a similar descriptive ability to the LW model, and the LW model
to have an equilibrium foundation. With the help of the LW model, the proposed model can
produce a downward-sloping term structure of dividend risk premiums when the term structure
of real interest rates is sloped either upward or downward, which is considered as challenges to
equilibrium models.

At the same time, we uncover that the values of the parameters originally calibrated by LW
may not be realistic when more economic structures are imposed. Most notably, it is implied that
the mean and variance of a state-dependent risk aversion is too high given a reasonable level of
consumption growth volatility. We then change some parameter values of the LW model, which
shifts some risks from a price-of-risk factor to realized dividend growth. We further introduce
into consumption and dividend processes jumps, which can be interpreted as disasters. The
model then implies an economically plausible behavior of both preferences and consumption
growth without losing the descriptive ability for the term structures.

This study presents an approach for creating an equilibrium asset pricing model that is as
flexible as a reduced-form model. But it does not address which state variables really affect a-
gent’s preferences nor how the model is estimated using macro and finance data. These, together

with collecting more evidence on state-dependent preferences, are left for future research.
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Appendix A: Derivation of key equations

The optimal consumption given in equation (6)

Substitute V; into (2) with Cy replaced by C; (the optimal consumption for the agent):
V= G BV 0 (81)

Assume that V; is of the form V; = ¢, Wy, where ¢, is a state-dependent variable identified below.
Substitute first this form and then the budget constraint given in (4) into the RHS of (81):

Vi = CIP (W = O Ey[($1 Run) )7 0700 (82)

(82) satisfies the first order condition (FOC): 0V;/0C} = 0. Given that 8; and ; are exogenous
by Assumption (i), solving the FOC yields C} given in (6). By Assumption (ii), the second
order condition is met: 92V;/0C}? < 0. Finally, by substituting (6) into (82), V; is confirmed to

be of the assumed form, where

¢>t=(1ﬁt>{

Bt

By Et[(¢t+1Rw,t+1)1_%]1/(1_%)} . (83)

1= B

Recursive equation (8) for the value function

Replace first Ry 41 with Ry, ,; on the RHS of (83) and then substitute (7):

* * e —Yt Bt/(l_ t)
o B [( i1 Ct+1>1 7] ! ’ (84)

1-6 1— B CF

where ¢y is used in place of ¢; to emphasize the equilibrium. Meanwhile, the continuation value

in equilibrium is V;* = ¢; Wy = 1?’?& Cf. Define v, = V;* /Cf = 1?—:& Substituting this into (84)
yields (8).
SDF given in equation (9)

A simple way of deriving the SDF is to use the Euler equation for the wealth (a claim to the

flow of endowments). Rearrange (8):

- E Viy1 e < f+1>_% i1 (85)
H\ Cf Cf
By (7),
Cip 1 — B4t .
— . 86
Cte ﬂt 1 _ /Bt w,t—l—l ( )

Substitute (86) into (85) and rearrange the terms, we have 1 = Ey[M; 1R}, 1], where My is

given in (9).
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Value function given in equations (17)—(19)

Assume that the solution to the recursive equation (8) is of the following form: vy = exp{u, +

bl,x;}. Substitute this form into (8) together with 5; = S:

exp{ul, + bzljxt} = Et[exp{(l - 7t)(,uy + blyxt_g_l + ACt_H)}]ﬁ/(l_%)

= exp {5 (Et[Xt+1] - %(% - 1)Vart[Xt+1]>} , (87)
where
Xt = tw + @ + Acy . (88)
Note that
Eilxe1] = o+ e+ (be + @3by) 2, (89)
varg[xer1] = b,Szaby + 285,00 + See (= V) - (90)

Substitute these conditional moments and ; = p, + b,z into the RHS of (87), and then take
the log of both sides:

1
py + bz =8 {,uy + e + (be + @uby) 2 — 5UC,,(;L7 + bl — 1)} . (91)
For the assumed form of v; to be true, (91) must hold for any x, leading to the simultaneous
equations for (u,, bl,) given in (18) and (19).
Risk-free rate given in equations (23)—(25)

By substituting (17) together with 8; = (3 into (9), the SDF can be rewritten using x4+1 defined
in (88) as
_ g, (1= ~ _A
M1 = P, exp{(1 —Y)xt41 — Acrya} . (92)
Take the conditional expectation of both sides of (92):
Ey[Myi) = vy P Eyfexp{(L—m)xen}] Bl exp{( — Deovilxesr, Aerial} . (93)
Meanwhile, the recursive equation (8) can be rewritten using x: as
T = Bylexp{(1 — ) xe+1}] - (94)

Substitute (94) into the RHS of (93), develop the conditional moments, and rearrange the terms:

Tl = —InE M)

1
= —Inf+ pe— 5560 — (sh,b, + See)(py — 1) + {be — (sl,by + scc)by}la:t . (95)

46



Collecting the intercept and slope terms of (95) into Ay and By, respectively, yields (24) and
(25).

Approximation of the value function given in equations (17) and (29)—(30)

Substitute vy = exp{u, + b, x¢} into the RHS of (8), develop the conditional expectation, and

rearrange the terms:

In (RHS of (8)) = B(z+) {uy + pe 4+ (be + @yby) z — %vc,,(u7 + bl — 1)} , (96)

which is basically the same as the RHS of (91) except that S is replaced by S(z:). Since (96)
is not equal to p, + b, z¢ (the log of the LHS of (8)) for any x4, it is approximated as linear in
x¢. Specifically, nonlinear terms associated with () and B(z¢)x; are linearized around z; = 0
(the unconditional mean) as given in (27) and (28), respectively. Then, matching the intercept

and slope terms yields (29) and (30).

Approximation of the risk-free rate given in equations (23) and (34)—(35)

By substituting (17) into (9), the SDF can be rewritten as

M1 = 1?@%(1%)/& exp{(1 —)Xe41 + Vi1t (97)

where x;41 is defined in (88) and
wt == ,Ltﬁ + blﬁxt — ACt . (98)
Take the conditional expectation of both sides of (97):

Et[Mt+1] — /Bt V_(l_%)/ﬂt

1= "
X Eylexp{(1 — ) xt+1} B[’ ] exp{(1 — y¢)cove[xit1, i)} - (99)
Note that the recursive equation (8) can also be rewritten as Vt(l_%)/ﬁt = Eilexp{(1 —v¢)xt+1}]-

Substitute this into the RHS of (99) and develop the conditional expectation:

Ey[Miy1] = 1 ftﬂt exp {Et [Yey1] + %Vart [the41] + (1 = ve)cove[xi+1, ¢t+1]} - (100)
Note that
Ei1] = pg— pe+ (Pobs — be)'wy (101)
varg[thip1] = bsSeebs — 250,08 + Sce (= vep) (102)
cove[Xtt1, YVir1] = (Szzby + scx)'bg — (sl + See) - (103)
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Substitute these conditional moments together with (14) and (16) into the RHS of (100), and

rearrange the terms:
1
Tl = —In B+ pe — §Uc,8 + {(Szzby + scx)/bﬁ - (Slczbl/ + SCC)}(NW —-1)
+ [be + (Tgxd — P2)bs + {(Seaby + Sex)'bg — (shuby + 5ce) 10y 24 - (104)

The leading term on the RHS of (104), —In f, is nonlinear in ;. It is then linearized around
x¢ = 0 (the unconditional mean) as given in (33). Then, collecting the intercept and slope terms

into Ay and By, respectively, yields (34) and (35).
Risk premium of a dividend strip given in equations (72)—(74)
Note that
M1 — Eifmeen] = =Nz, (105)
"o — EBlrfan 1] = (02B) ) +0d) 241, (106)
where \; = (0,b, + 0¢)y — 0,(bg + b,). Substitute (105) and (106) into the RHS of (71),

RPtl,zz—l = {(0zby + )yt — Ul‘(bﬁ + bl/)}/(Ul‘BTIL)—l +04)

= *(bﬁ + bV),(SmBq?—l + Sdz) + {Siixbv + Sed + (Szxby + Scx),Ba?—l}'Yt . (107)

Approximation of the value function with jumps in consumption growth

By Ac; = In(Cf/Cf_ ) = AcE + Ac/, the recursive equation for the log continuation value can

be written as

B Byfexp{(1 - ) (muiss + A, + At} (108)

Iny;, =
L=

Because Ac{ and Ac/ are mutually independent and because v; is a function of the state vector
that has no jump component, the RHS of (108) can be factorized as follows:
B G J
L (In Byfexp{(1 = ) (I ves1 + A )} + In Efexp{(1 = w)Ac,1}]) - (109)
-t

For Ac/ ; = (In€)Ny41, the second term on the RHS of (109) is developed as

1B (et —1
b In Eilexp{(1 — v)(In &) Ney1}] = LA™ = 1) ) (110)
L= I—m
To approximate Inv; as Invy = p, + b}, 24, it is necessary to linearize the RHS of (110) as,
T=y _ 1
DB(ET" = 1) (1 oo Viko + I 2 (111)

L=y
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where

1—py 1
o = &1 (112)
fy =1
1 — ehs -
ki = 6“‘3/{()()5 + p 1 {k‘o + &M lnf}b,y . (113)
y—

It is noted that this approximation is unavoidable even for 8; = [ (constant). Then, it is
concerned that the approximation to 14 is less accurate, which is addressed in Appendix C.

By the additional approximation given in (111), (u,, b)) satisfies the following equations:

1
pe = (=) fu e Gralin ~ ) =tk (114)

1 1
b, = (1—es) (bc + Db, — szbv) — ks {uu + e = 5V (pty — 1)} bs + k1 . (115)

Risk-free rate with jumps in consumption growth

We approximate the risk-free rate ry;11 as rp1 = Ay + B}xt. First, the SDF given in (9) is

rewritten as My, = MtcilMtJH, where

1-p % e G
¢ _ — Pyl [ Vi1 v Ac
Mty Bt 1= 5 (th/ﬁt> e 1 (116)
Mtﬂ-l — e (M&Net1 (117)
Then, by the Euler equation, 7441 = —In E[MS ] — In E;[M{,]. The conditional expectation

of the Gaussian part is the same as before and that of the Jump part is developed as
—In Ey[e mON] — _je= — 1) . (118)

This term is added to the previous equation for r7;,; without jumps. To approximate ;1 as

linear in z;, the RHS of (118) is linearized as,
=T = 1) = =l = 1) + 1 (In &by (119)
Then, rf41 = Ay + B}y, where

1
Af = —In(1—e€") + pc— 5“06 + (N"/ — D{(sz2by + SCI)/bB - (S/cbe + Sece) }
-t =1, (120)

1
By = be+{l&HMIng - (sl,by + Sce) Joy + {l—el‘BIdXd — Oy + by (Szaby + SCI)/} bs(121)
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Appendix B: Condition for the continuation value to be real

For a state-dependent subjective discount factor, 5(x¢), the continuation value is approximated

as vy = exp{p, +b,2:}, where p,, and b, are the solution to the simultaneous quadratic equations

given in (29) and (30). This appendix presents the condition on which y, and b, are real. Also,

it addresses which real root to select.

Recall that (29) and (30) are, respectively,

1
My = BO {HV+MC_ZUCV(M7_1)} ,

by

1 1
Bo <bc + @0, — 2Ucyb7) + 51 {,UV + fe — E'Ucz/(,uﬁ/ - 1)} )

where v, = b),8z0b, + 25,0, + Sce - By (29), ve, can be expressed as a linear function of .

Then, substitute this into (30) and rearrange the terms:

b, =co+cipw ,

where

co = (Laxa — Bo®z) " Bo (bc - Mucbv> ,
T = (Idxd - 60(1)1‘)_1 (

Substituting (122) back into (29) yields a quadratic equation with respect to p, as

~

B 1= Po
ﬂ0+uw—1b7> |

iz + 2001y, + ag =0,

where

/
g = C1SgzC1,
1 —fo
/ /
a1 = CySzzCl + SepCl + 57—,
50(/‘7 -1)
2p
/ / C
Qg = CoSzxCo + 25,,C0 + Sce — 1
M~y —

Then, the condition for real y, is that the determinant of (125) is non-negative:

a%—agaOZO.

By (122), this is also the condition for real b,.
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Which root to select

Given that (125) has two real roots, we always select a larger root in order to avoid a negative
value of pu, if a smaller root is negative. It is likely that at least one root is positive for typical

sets of parameter values, which is explained as follows. (29) can be rewritten as

Do
’uy_l—ﬁ(]

where fy = 1 —e#s. By pg < 0, it holds that 0 < fp < 1 and hence that 8y/(1 — By) > 0.

{uc - %Ucu(ﬂ’y - 1)} : (130)

Furthermore, it is typically the case that the mean term (u. = F[Ac;]) dominates the (scaled)

variance term (ve, = varg[Inve 1 + Aceyq]) even if p1y is large.

Appendix C: Accuracy of approximation to the value function

We examine the accuracy of the approximation to the value function vA* = exp{u, + bz},
where an uppercase letter “AP” is added here to clarify the approximation. Approximation

error is defined as
er = vy — v = By(vq 20 ) 708 0= _oxp{uy, 4+ a4} (131)

Since the true form of 1, is unknown, it is difficult to evaluate the conditional expectation on
the RHS of (131) and hence the error e;. We instead compute a pseudo approximation error.

First, we decompose e; as e; = e1 + €2, where

e1y = Eyf(vppetorr)mB/0=y) Et[(,/ﬁrfl’eﬁqﬂ)lfw]ﬁt/(lﬂt) ’ (132)

)

con = Eif(vifietern )T 00 —exp{p, + b} (133)

Note that taking the log of E;[(v/ifeAe+1)1=7]f/(1=7) yields (96). Then, we compute ez as
a pseudo approximation error. Therefore, unless e;; and e offset each other, es; undervalues
the approximation error, and caution is needed to interpret the following results, which are

separated in three cases.

C1. Linear risk aversion v, with E[y;] = 150

Panel A of Table A1 presents e3¢/ VtAP in percentage terms when -, is linear and parameter values
are given in Table 4. The errors are evaluated when the factors are above or below &k (= 1,2, 3)

standard deviations from the mean (i.e., zero). By construction of the approximation, ex; = 0
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at z; = 0. The label “All factors” indicates that all factors change simultaneously, whereas the
label “Individual factors” indicates that only a factor in each row changes with the other factors
fixed at the mean. Note that the errors in the z ; -row are zero as 4 does not originally depend
on Ty .

First, by changing all elements of x; proportionally, the pseud errors are at most —0.12%.
Second, by changing only the expected-dividend-growth factor z4; or the risk-free-rate factor
xf¢, the pseud errors are negligibly small. Third, since the price-of-risk factor x); varies more
intensively than the other factors, it is expected to have a larger impact on the accuracy of the

approximation. This is indeed the case, but still the pseud errors are at most 0.1%.

C2. Quadratic v with E[y] = 150

In Section 4.3, we refer to a quadratic specification of v to avoid negative values of ;. We
specify v = qo + qlxit with qg, g1 > 0. In order to derive Iny; as a linear function of z;, v

needs to be linearized around x) ; = py:

Ve R qo + qupd + 2qipx(xae — pa) - (134)

By matching the intercept and slope terms between (48) and (134), we have q1 = bya/(2p)
and go = py — q1 ,u?\. By this matching, we do not re-calibrate the parameters of the model but
simply use those presented in Tables 2 and 4.

Panel B of Table Al presents ez ;/ I/iAP in percentage terms for a quadratic ;. As expected,
the pseud errors are larger than those for a linear ; due to the additional approximation given

in (134). Still, they are less than 1% in absolute value.

C3. Linear v and jumps in cash flow processes

P = ji, + b,z in the case of jumps, we need to rely on a further approximation

To obtain In v/
presented in (111). It can be avoided if 7; is constant: Remember that §; has already been
approximated, the accuracy of which is not a serious concern as 3y does not vary largely. It then
follows that the smaller the variation in =, the more accurate is the additional approximation.
In Section 5.1, we reduce the volatility of x); and hence the volatility of v; = p, + byazry,

which is illustrated in Table 6 and Figure 9(a). We can expect therefore that the accuracy is

maintained.
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Panel C of Table A1 presents e ¢/ Z/{‘P in percentage terms, which are computed at parameter
values given implicitly in Table 6. As expected, the additional approximation is not a serious
concern. The pseud error is at most —0.2% when all components of the state vector are above
three standard deviations from the mean. In changing the value of each factor, there is no case

in which the pseud error exceeds 0.1% in absolute value.

Appendix D: Term structure formulas

Risk-neutral drift

To simplify the notation of recursive equations for the prices of zero-coupon bonds and equities,
we bundle model parameters into those in the risk-neutral probability measure. Specifically, we

first describe the risk-neutral dynamics as

Adpyr = p§ +b9 2+ 02, (135)
Ampr = pQ+ 0@ +0l22 (136)
v = p9+ 0@+ olzl (137)

where ng is an 4.¢.d. normal random vector in the risk-neutral probability measure. The

risk-neutral drift of Ad;; satisfies for any x;
,ug + b(? 'y = E[Adiq] + covi[mit1, Adigq] . (138)
The conditional covariance on the RHS of (138) is
covi[Adiy1, myi1] = —oghe = iy (bg 4+ by) — (Sizby + Sea)py — (Suzby + scd)b;:vt . (139)

Then, ug and b? on the LHS of (138) are identified as

,UdQ = pd + S:ix(bﬁ + bl/) - ,U”Y(S/da:bv + SCd) ) bg =bg — b'y(Slebl/ + Scd) . (140)

Likewise,
Mfr? = pr + Sk (bg +by) — 1y (Shyby + Sex) bg = by — by(Szby + Sen) (141)
#;}? = S22(bg + by) — py(Szaby + Sea) <I>g =&, — by(Spaby + Scz)' . (142)

By the calibration, the slope terms of the factor risk premiums are matched exactly between
the LW and proposed models. This is equivalent to matching the slope terms of the risk-neutral

drift (i.e., bdQ, bfl?, and @g) between the two models.
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Real zero-coupon bonds

The price of a real zero-coupon bond maturing in n periods, ﬁl, satisfies the following Euler
equation:

Ptl,%n = Et[MtJrlPtil,n—l] = efrf’t“EtQ [Ptlil,n—l] ’ (143)
where the second equality is due to the change from the physical to risk-neutral probability
measures and EtQ[] stands for the conditional expectation under the risk-neutral probability
measure. The initial condition is Py = 1. By substituting Pf, = exp{AF + B}'z,} into
the RHS of (143), developing the conditional expectation under the risk-neutral probability
measure, and matching the intercept and slope terms on both sides, we obtain the following

recursive equations for A% and BJ:

AR = AR A+ u9'BE |+ Bn ! Sga B

n n—1>

(144)
BE = a9BR, - B, (145)

with the initial condition Af = 0 and B{* = 0.
It is noted that ®% in (145) is the same between the LW and proposed models as documented
above. Also, By, the loading on the state vector for the real risk-free rate ry;,q, is the same

between the two models as (50) holds by the calibration procedure. Consequently, B is the

same between the two models for any n.

Nominal zero-coupon bonds

Rewrite the Euler equation (38) for the real price of a nominal zero-coupon bond as

Ht Ht
PHN II
Ht+1 ( t-‘r]. n—1 t+1)Ht 1 ?

with the initial condition PIl; = 1. By substituting P II; = exp{A} + B2"z,} into (146),

Pl = By | Myea (P oy i) ]Z Gy o

(146)

developing the conditional expectation under the risk-neutral probability measure, and matching
the intercept and slope terms on both sides, we obtain the following recursive equations for AY

and BY:

1
ismr + (N? - Sm’),BN 1+ Bn 13mBn 15 (147)

By = OfB), - Br-b7, (148)

AV = AL A

with the initial condition A} = 0 and B}’ = 0. Notice that BY is the same between the LW
and proposed models for any n because @3, By, and b? are the same between the two models

by the calibration.
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Zero-coupon equities

Rewrite the Euler equation (40) for the price of a dividend strip as

Ph, PR 1D PRy
—— = F, | M, _— — einytJrl EQ +7’neAdt+l , 149
Dy t | M1 Dii D, t Ditt (149)

with the initial condition P%/D; = 1. By substituting P, /D; = exp{AL + BP'x;} into (149),
developing the conditional expectation under the risk-neutral probability measure, and matching
the intercept and slope terms on both sides, we obtain the following recursive equations for A?

and BP:

1 1
AD = AP - Ap+ud+ 55dd + (4 + s42)' By + 537?_'1%3035_1 ; (150)

BP = ®YBP | —B;+b?, (151)

with AY = 0 and BY = 0. For the same reason as above, BY is the same between the LW and

proposed models for any n.

Zero-coupon equities with jumps in consumption and dividend growth

The SDE M1 is decomposed into Gaussian and jump components, which are mutually inde-

pendent, as
MG, M,
Ey M) B[ M)

G J —
M1 = Mg My =e "/t

Also, Adyt1 = AdZ,,+Ad], . Meanwhile, Pt{)rl’n_l /D¢+1 does not depend on a jump component
as it is a function of x;4; that has no jump component. Then, the recursive equation (149) is

developed as

D G D J
Fin = e THtH ], MHGl Pt“v”*leﬁdﬁrl E, 7Mt+} Al | (152)
Dy Ey[M{,] Dia Ey[Mi 4]

The first conditional expectation on the RHS of (152) is the same as that developed without

jumps. The second conditional expectation is developed by substituting Mt{u = ¢ (N

and Ad/,; = k(In&)Nyy1 as

Eylexp{(k — 7)) (In&) N1 — 1§ — 1)}] = exp{I(€F — 1)¢ ™} . (153)

To derive In(PR, /D) as a linear function of a;, " is linearized as

& R = (Ing)b e} (154)
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Then, ln(Pt’?1 /Dy) = AP + BD'x, where AP and BY are determined recursively as

1 1
AP = AP A+ 8+ 5 5dd + (18 + s42)'BP | + 53}2 " 822 BY | +1(F — 1)e M (155)

BY = ®IBY - By+b7 -1 — )& (&b, , (156)

with AP =0 and B = 0.
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Ad Ar Ty T Ty T

Unconditional means

1. 1.29% 3.68% - — 0.96% 17.0

Standard deviations of innovation terms

NZN 10.0% 1.18% 0.32% 0.35% 0.19% 4.00
Autocorrelations
diag(¢z.) — - 0.90 0.78 0.92 0.85

Correlations between innovation terms

Ad 1.00 ~0.30 ~0.83 ~0.30 ~0.30 0.00
An 1.00 0.00 1.00 0.00 0.00
T4 1.00 0.00 0.00 0.35
x 1.00 0.00 0.00
zf 1.00 0.00

Unconditional factor risk premiums
17.00% —0.60% —0.45% —0.18% —0.10% 0.00%

Table 2: Parameter values of the LW model

These values are collected from tables 1-3 in LW (2011). Unconditional means, standard de-
viations, and autocorrelations are annualized, except for the unconditional mean of x); and
the standard deviation of innovation in x); expressed in raw numbers. The last row presents

annualized, unconditional factor risk premiums, except for x) expressed in row numbers.
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Solution Consumption Risk aversion Subjective discount factor

Sec Ely SD[] E[5] SD[B]

(%, year) (x102)

(a) 8.84 30 25 0.969 1.097
(b) 5.89 60 51 0.981 0.532
(c) 477 90 77 0.985 0.392
(d) 4.22 120 102 0.986 0.331
(e) 3.91 150 128 0.987 0.298

Table 3: Moments for consumption and preferences at selected solutions

Table 3 presents the annualized volatility of innovation in consumption growth (y/sc), and
the unconditional mean (E[-]) and standard deviation (SD[:]) of state-dependent preferences at
selected solutions to the set of constraint equations given in Section 3.2. The solutions are in

ascending order of E[vy].
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Panel A: Consumption volatility and correlations

Sce Pecd Pcxl Pcx2 Pcx3 Pcxd

3.91% 0.877 —0.755 —0.086 —0.046 0.341

Panel B: State-dependent preferences and continuation value

constant T4 Tr Tf Ty
Vi 150 0.00 0.00 0.000 8.9357
In(1 — B) —4.392 —8.66 0.00 30.170 0.0136
In vy 0.071 8.86 0.00 —0.817 —0.0029

Panel C: Unconditional factor risk premiums

Ad Am Tq T xTf T

17.00% —0.60% —0.46% —0.18% —0.11% —0.172

Table 4: Implied parameters of consumption dynamics and preferences

Table 4 presents calibrated parameters at Solution (e) of Table 3. Panel A presents the an-
nualized volatility of innovation in consumption growth (,/s..) and the correlations between
innovations in consumption growth and the rest of the variables. The correlation with realized
inflation growth is not shown because it is the same as the correlation with ezpected inflation
growth (pcy2). Panel B presents the parameters in the risk aversion v, the log subjective dis-
count rate In(1 — f3;), and the log continuation value Inv;. These functions are all linear in
x; = (Tdt, Trt, Tfe, Tag). Panel C presents annualized, unconditional factor risk premiums,

except for x) expressed in row numbers.
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Panel A: Consumption volatility and correlations

Sce Pecd Pcxl Pcx2 Pcx3 Pcxd

4.96% 0.898 —0.792 —0.069 0.085 0.281

Panel B: State-dependent preferences and continuation value

constant T4 Tr Tf Ty
Vi 150 0.00 0.00 0.000 8.7817
In(1 — B) —6.337 —12.00 0.00 44.639 0.0025
In vy 0.458 12.36 0.00 —1.619 —0.0035

Panel C: Unconditional factor risk premiums

Ad Am Tq T xTf T

17.00% —0.60% —0.45% —0.18% 0.02% 0.015

Table 5: Implied parameters for pg,3 = 0.1
Pdz3 stands for the correlation between innovations in dividend growth and risk-free-rate factor.
It is first changed from —0.3 to 0.1 in the LW model, and then the parameters of the proposed

model are re-calibrated in the same procedure as explained in Section 3.2. The same legend as
in Table 4 follows.
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—3S.D. —2S.D. —1S.D. +1S.D. +2S.D +3S.D.
Panel A: Linear 4
All factors —0.060 —0.030 —0.008 —0.011 —0.048 —0.124
Individual factors
T4 0.046 0.020 0.005 0.004 0.017 0.038
T 0.000 0.000 0.000 0.000 0.000 0.000
Ty —0.002 —0.001 0.000 0.000 —0.001 —0.002
T\ 0.056 0.028 0.008 0.009 0.042 0.105
Panel B: Quadratic
All factors —0.812 —0.364 —0.092 —0.094 —0.378 —0.858
Individual factors
x4 0.046 0.020 0.005 0.004 0.017 0.038
T 0.000 0.000 0.000 0.000 0.000 0.000
Ty —0.002 -0.001 0.000 0.000 —0.001 —0.002
T —0.695 —0.307 —0.076 —0.074 —0.289 —0.635
Panel C: Linear ~; with jumps in consumption and dividend growth
All factors —0.099 —0.047 —0.013 —0.015 —0.064 —0.155
Individual factors
x4 0.047 0.020 0.005 0.005 0.018 0.039
T 0.000 0.000 0.000 0.000 0.000 0.000
Ty —0.004 —0.002 0.000 0.000 —0.001 —0.003
T 0.000 0.000 0.000 0.000 0.000 0.001

Table Al: Approximation errors of l/{‘P
The value function is approximated as v
in percentage terms, where ey; stands for a pseudo approximation error defined as ex; =
Ey|(vfif eAerr1)l=m)8/(1=m) _ y AP These errors are evaluated when the values of the factors
are above or below k (= 1,2,3) standard deviations (S.D.) from the mean (i.e., zero). In each
panel, the label “All factors” indicates that all factors change proportionally, whereas the label
“Individual factors” indicates that only a factor in each row changes with the other factors fixed
at the mean. By construction of the approximation, ea; = 0 at ; = 0. Panels A and B are for
a linear risk-aversion and a quadratic risk-aversion, respectively, evaluated at parameter values
given in Tables 2 and 4. Panel C is for a linear risk-aversion with jumps in consumption and

= exp{u, + b,z;}. The table reports eg;/vi'"

dividend processes, evaluated at parameter values given implicitly in Table 6.
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Figure 1: Unconditional distributions of state-dependent preferences

The distributions are drawn at Solution (e) of Table 3. The risk-aversion coefficient is specified

as vy = by + bi,«Tt and the subjective discount factor as f; = 1 — exp{ug + b/’b)xt}, where z; is a

Gaussian state vector.
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Figure 2: Log price loadings on state variables B! (i = {R, N, D})

The log prices for real bonds (R), nominal bonds (N), and dividend strips (D) are given by
In P, = Al + Bi'z; (i = {R,N,D}). Panel (a) plots against n (quarters) the loadings on the
expected dividend-growth factor 24, divided by the unconditional volatility of 4. Panels (b)—-

plot the analogous loadings on the expected inflation-growth factor 44, the risk-free-rate
d) plot th log loading th ted inflation-growth fact +, the risk-fi t
factor x4, and the price-of-risk factor x) ;, respectively.
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Figure 3: Average term structures of interest rates and volatilities
In Panels (a) and (b), the term structures of 4E[Y},] (i = {R,N}) (annualized) are plotted
against n (quarters), where Y;ln is the yield to maturity of a zero-coupon bond at time ¢. In

Panels (c) and (d), the term structures of

The solid (dotted) line is for the proposed (LW) model.
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4var[Yy,] (i = {R,N}) (annualized) are plotted.



(a) Real; z; = 0, +2SD, —2SD (b) Nominal; 2, = 0, +2SD, —2SD
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Figure 4: Conditional term structures of interest rates for the proposed model
Panels (a) and (b) plot the term structures when the risk-free-rate factor zy; is above (+2SD)
or below (—2SD) two standard deviations from the mean with the other factors fixed at the
mean. Panels (c) and (d) plot the term structures when the price-of-risk factor ), is above
(+2SD) or below (—2SD) two standard deviations from the mean with the other factors fixed
at the mean. Panels (e) and (f) plot the term structures when the economy is “Good” or “Bad”
with a good (bad) state defined as when x) ; is below (above) two standard deviations from the
mean and the other factors are above (below) two standard deviations from the mean.
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Figure 5: Average term structures of risk premiums, volatilities, and Sharpe ratios
for dividend strips (annualized)
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(a) Risk premiums (b) Sharpe ratios
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Figure 6: Conditional term structures of dividend risk premiums and Sharpe ratios
for the proposed model

The term structures are plotted when the price-of-risk factor z, is above (+2SD) or below
(—2SD) two standard deviations from the mean.
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(a) Real interest rates (b) Nominal interest rates
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Figure 7: Average term structures of zero-coupon bonds and equities for pg,3 = 0.1
pdz3 stands for the correlation between innovations in dividend growth and risk-free-rate factor.
It is first changed from —0.3 to 0.1 in the LW model, and then the parameters of the proposed
model are re-calibrated in the same procedure as explained in Section 3.2.
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a) Real; 049 = 0, ominal; 0y2 = U,
(a) Real; byp = 0,90 (b) Nominal; b,o = 0,90
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Figure 8: Average term structures of interest rates for b,o = 90 or bgy = 2

by2 is the coefficient of the expected inflation-growth factor z,; in the risk aversion ; and bgo
is the analogous coefficient in the log subjective discount rate In(1 — ;). These coefficients,
originally set at zero, are changed as indicated above while the other parameters are held fixed
at the values presented in Table 5. In each panel, the plot labeled as b,o = 0 or bgy = 0 is the
same as shown in Figure 7(a) (real) or Figure 7(b) (nominal).
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Figure 9: Unconditional distributions of state-dependent preferences with and with-

out jumps when the mean and volatility of z,; are reduced

The distributions are drawn at parameter values given implicitly in Table 6. The risk-aversion co-

efficient is specified as y; = ,uy—l—b'yxt and the subjective discount factor as f; = 1—exp{ug +b’ﬁxt},

where z; is a Gaussian state vector.
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Figure 10: Average term structures of interest rates and volatilities with and with-

out jumps when the mean and volatility of z,; are reduced
In panels (a) and (b), the term structures of 4E[Y}",] (i = {R,N}) (annualized) are plotted
against maturity n (quarters), where an is the yield to maturity of a zero-coupon bond at

time ¢. In panels (c) and (d), the term structures of |/4var[V} ] (i = {R, N}) (annualized) are

plotted. They are drawn at parameter values given implicitly in Table 6.
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Figure 11: Average term structures of risk premiums, volatilities, and Sharpe ra-
tios for dividend strips (annualized) with and without jumps when the mean and
volatility of z,; are reduced
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