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Abstract

Rebates incentivize clean vehicle adoption but may raise equity concerns because upfront

capital is required for vehicle acquisition, limiting access for low-income households.

Since poorer communities typically experience worse air quality than their wealthier

counterparts, rebates also may not incentivize clean vehicle acquisitions in more polluted

areas where air quality benefits would be greater. We analyzed whether equity-promoting

policy design elements changed the associations between rebate allocation rates and

census tract characteristics including community disadvantage, household income, edu-

cation, race and ethnicity, and ambient air pollution in two California rebate programs.

We found that the Clean Vehicle Rebate Project issued more rebates per household to

advantaged, higher-income, better-educated communities with more White residents and

intermediate levels of ambient nitrogen dioxide (NO2). An income cap and income-tiered

rebate amount introduced part way through the program improved distributional equity,

but fewer rebates were still issued to lower income, less-educated census tracts with

higher percentages of Hispanic and non-Hispanic Black residents. Furthermore, these

policy design elements reduced the overall number of rebates that were distributed. In the

Enhanced Fleet Modernization Program, which incorporates additional equity-related

design elements, rebate allocation rates were positively associated with community

disadvantage, lower income and education, and a higher proportion of Hispanics, and

were the highest in areas with slightly higher NO2 levels. These findings indicate that

design elements such as an income cap, income-tiered rebate amounts, expanded vehicle

eligibility, and increased benefit eligibility in disadvantaged communities, can facilitate

distribution of rebates to more socioeconomically diverse populations with higher air

pollution burdens.
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1 Introduction

Clean vehicles including plug-in hybrid electric vehicles (PHEVs), battery electric vehicles

(BEVs), and fuel cell electric vehicles (FCEVs) reduce emissions of greenhouse gases (GHGs)

and other hazardous co-pollutants from internal combustion engines (Hardman et al. 2017).

Government rebates, or monetary refunds after purchase or lease (hereafter referred to as

acquisition), are used to promote the adoption of clean vehicles in several US states, including

California, in order to meet clean air and climate change mitigation goals (DeShazo 2016).

However, rebates require consumers to acquire a vehicle upfront, presenting a barrier for

lower-income consumers with limited financial assets or access to credit when compared with

point-of-sale incentives such as sales tax exemptions and government purchase discounts

(Hardman et al. 2017; Snelling 2018). Rebate programs can be even less accessible to

lower-income consumers if the rebate amount does not increase according to income. Wealth-

ier consumers are also more likely to take advantage of rebate programs that lack income or

vehicle price caps since these consumers can typically afford higher priced vehicles (DeShazo

2016; Snelling 2018). Such distributional equity issues are found in other policy programs that

inadequately address socioeconomic barriers to entry (Zhou and Noonan 2019). Design

elements to address these equity challenges are therefore necessary to ensure that socioeco-

nomically disadvantaged consumers can benefit from vehicle rebate programs.

1.1 California’s two major clean vehicle rebate programs

Transportation is the largest source of GHG emissions in California and responsible for

substantial portions of hazardous air pollutant emissions of nitrogen oxides (NOx), sulfur

oxides (SOx), carbon monoxide (CO), ozone, and particulate matter (PM) (California Air

Resource Board 2018a; Anderson et al. 2018). Clean vehicle rebate programs were established

to control emissions from transportation and support emission reduction goals set by

California’s Global Warming Solutions Act (AB 32) passed in 2006 (Rubin and St-Louis

2016; California Air Resource Board 2018b). The rebate programs are partially funded

through proceeds from the state’s cap-and-trade program. State law (SB 535) requires that

25% of these proceeds benefit disadvantaged communities, which are defined as having

disproportionate pollution burden and population vulnerability using a statewide environmen-

tal justice screening tool, CalEnviroScreen (California Environmental Protection Agency

2017). Therefore, equity is also an inherent goal of these rebate programs.

In this study, we analyze the distributional equity of two major clean vehicle rebate

programs in California, which differ in design. We emphasize equity (whether benefits accrue

to socioeconomically disadvantaged populations that are disproportionately impacted by

transportation-related emission of GHG and co-pollutants) over equality (whether benefits

are equally shared). The first program is the statewide Clean Vehicle Rebate Project (CVRP),

which since 2010 has issued rebates after the acquisition of a new plug-in hybrid electric

vehicle (PHEV), battery electric vehicle (BEV), or fuel cell electric vehicle (FCEV). During

the first iteration of this program (March 2010 to March 2016), the rebate amount ranged

between $1500 and $5000, depending only on vehicle technology. Beginning in April 2016,

an income cap was instituted to exclude PHEV and BEV consumers with a gross annual

individual income greater than $150,000. The CVRP also started an income-tiered rebate

amount by offering an additional $2000 to lower-income consumers with an annual household

income below 300% of the Federal Poverty Level (Center for Sustainable Energy 2016). Prior
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research suggests that income caps and income-tiered rebate amounts can improve the equity

and effectiveness of clean vehicle rebate programs in terms of enhancing access for lower-

income consumers and incentivizing more clean vehicle adoption (DeShazo 2016; DeShazo

et al. 2017; Snelling 2018).

The second clean vehicle rebate program, the Enhanced Fleet Modernization Program

(EFMP), was launched in 2015 and sought to address equity concerns by expanding eligible

vehicles, setting stricter income caps for participation, and offering higher rebate amounts for

lower-income consumers and disadvantaged communities (Pierce and DeShazo 2017;

California Air Resource Board 2018b). EFMP includes a Retire and Replace component,

which replaces older and higher emitting vehicles with more efficient, new, and used (less than

8 years old) vehicles or other transportation options (e.g., car sharing or public transit).

Research suggests that combining retirement with replacement can maximize the net reduction

of emissions that could be produced from retired vehicles (DeShazo 2016). A complementary

Plus-up component (renamed as Clean Cars 4 All in 2019, however herein we refer to Plus-up

to be consistent with prior research) provides an additional rebate amount for consumers living

in disadvantaged communities as identified by the California Environmental Protection

Agency’s (Cal-EPA) CalEnviroScreen (August 2016; Faust et al. 2017). EFMP also includes

a vehicle-retirement-only component, but we focused our analysis on the Retire and Replace

and the Plus-up components (EFMP hereafter). Compared with CVRP, eligible vehicles in

EFMP are likely more affordable due to the inclusion of fuel-efficient internal combustion

engine vehicles, non-plug-in hybrid vehicles, and used vehicles. EFMP also sets a stricter

income cap limiting participants to those with annual household incomes below 400% of the

Federal Poverty Level. Finally, the rebate amount is greater in EFMP: for example, when

acquiring a PHEV or BEV, the CVRP rebate amount (new vehicles only) ranges from $1500

to $ 4500, whereas the EFMP rebate amount (both new and used vehicles) ranges between

$2500 and $9500. In addition, EFMP can be bundled with CVRP for a new PHEV or BEV,

further increasing the rebate amount to a range from $4000 to $14,000 (see Table 1 for the

rebate amounts that can be received by lower-income consumers from both programs)

(California Air Resource Board 2018b). EFMP covers four air districts, namely South Coast,

San Joaquin Valley, Bay Area, and Sacramento, in California by 2020. Among them, we

focused on South Coast and San Joaquin Valley air districts that were EFMP’s piloting areas

and adopted both Retire and Replace and Plus-up components, allowing analysis on a longer

timeframe since 2015. We did not include the other two air districts as they started in 2019 and

only adopted the Plus-up component. The geography, timeline, and spatial distribution of the

rebates that were the focus of our analysis are shown in Fig. S1.

1.2 Unanswered questions regarding the distribution of clean vehicle rebates

in California

Prior research has shown that CVRP rebates, without an income cap and an income-tiered

rebate amount, were disproportionately allocated to wealthier communities with fewer His-

panic and African-American residents (Rubin and St-Louis 2016). While simulation studies

and early evidence suggest that the income cap and the income-tiered rebate amount intro-

duced later would likely increase participation of lower-income households (DeShazo et al.

2017; Williams 2018), this hypothesis has yet to be tested with empirical models using actual

program data. In addition, it remains unclear whether income-based policy design elements

affect rebate distributions based on other community characteristics including education, race
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and ethnicity, and levels of ambient air pollution. Similarly, the first-year operation of EFMP

shows that rebates were largely distributed to consumers in the lowest income bracket of

program eligibility and in disadvantaged communities (Pierce and DeShazo 2017), but

subsequent work has not confirmed these findings with a more comprehensive set of commu-

nity characteristics nor compared the distributional patterns with CVRP in areas where both

programs overlap. Finally, studies have yet to analyze rebate allocation with respect to ambient

air pollution, to understand whether the rebates have been allocated to more polluted commu-

nities where benefits from air quality improvements could be greater.

Accordingly, we use publicly available data to evaluate how specific program designs

elements in CVRP and EFMP have influenced the associations between rebate allocation and:

(1) community disadvantage as defined by CalEnviroScreen; (2) community-level socioeco-

nomic and demographic characteristics; and (3) ambient air pollution of nitrogen dioxide

(NO2) and particulate matter (PM2.5). Results from this analysis can inform future iterations of

rebate programs, ensuring their benefits are shared across diverse communities and enhancing

their potential to improve air quality in the most polluted areas. This study also contributes to

broader discussions of distributional equity of climate change mitigation and GHG emission

reduction programs and how equity goals can be advanced by policy design elements (Jenkins

et al. 2017; Graff et al. 2019; Zhou and Noonan 2019).

2 Materials and methods

We conducted two sets of analyses:

(1) A CVRP-only analysis, which investigated rebate allocations statewide between

March 2010 and December 2017 and assessed how patterns of rebate allocation changed

after the introduction of an income cap and an income-tiered rebate amount providing an

additional $2000 for lower-income consumers in April 2016;

(2) A comparison between CVRP and EFMP, focusing on the South Coast and San Joaquin

Valley air districts between July 2015 and December 2017, where and when the two

programs overlapped.

2.1 Rebate allocation rate

We used the number of rebates issued to individual applicants per thousand households in a

census tract monthly (CVRP-only analysis) or quarterly (CVRP-EFMP comparison) to measure

rebate allocation rate. Although individual-level participant data were available, they did not

include socioeconomic or demographic characteristics of rebate program participants. To

investigate distributional equity regarding socioeconomic and demographic characteristics,

we therefore aggregated the individual-level data to the census tract level so that the data could

be joined to sociodemographic information from the American Community Survey, a dataset

used later in the analysis. In addition, we did not have information on all clean vehicle buyers to

construct an individual-level outcome on the likelihood of getting rebates among these buyers.

We downloaded publicly available participant-level data between March 2010 and Decem-

ber 2017 for CVRP (Center for Sustainable Energy 2019) and between July 2015 and

December 2017 for EFMP (California Air Resource Board 2019a). For comparability, we

2091Climatic Change (2020) 162:2087–2105



restricted these data to rebates assigned to individual applicants who acquired a vehicle, as

CVRP included non-individual participants (e.g., businesses) and EFMP had participants

funded for alternative options (e.g., public transit passes or car-sharing). While more recent

CVRP and EFMP data were available, we chose a shorter time frame based on the availability

of the socioeconomic and demographic variables from the American Community Survey. We

obtained household counts from a time series of American Community Survey 5-year

estimates ending at each year of our analysis (United States Census Bureau 2019). For the

CVRP-only analysis, we aggregated the number of rebates by month; for the comparison

between the CVRP and EFMP, we aggregated at the quarterly scale at which the EFMP

rebates data were reported.

2.2 Community characteristics

Disadvantaged communities were defined by Cal-EPA’s CalEnviroScreen 3.0, a census tract-

level index combining measures of population vulnerability (including sensitive populations

and socioeconomic status) and pollution burden (including exposure to pollutants and prox-

imity to hazardous sites) (August 2016; Faust et al. 2017). Cal-EPA designates census tracts

within the top 25th percentile of CalEnviroScreen 3.0 scores, and 22 tracts in the top 5th

percentile of pollution burden but without a reliable population vulnerability score (due to

missing data or low population) as disadvantaged communities (California Environmental

Protection Agency 2017). These disadvantaged communities are prioritized for climate miti-

gation and adaptation projects, including eligibility for an additional rebate amount from the

EFMP Plus-up program (Table 1).

We included the following measures of tract-level socioeconomic and demographic char-

acteristics: median household income, education (percent of the over-25-year-old population

with postgraduate degrees), racial/ethnic composition (percent Hispanic, non-Hispanic Black,

non-Hispanic Asian/Pacific Islander), home ownership (percent of renter-occupied housing

units), the average number of vehicles per household, and population density. We selected

these measures to facilitate comparisons with the results of prior equity or clean vehicle studies

(Rubin and St-Louis 2016; Narassimhan and Johnson 2018; Zhou and Noonan 2019). These

measures were time variant and collected from a time series of American Community Survey

5-year estimates ending at each year of the analysis (United States Census Bureau 2019). We

calculated population density by normalizing total population by developed area, rather than

total area, of a census tract. Developed areas were calculated based on the percentage of

developed impervious surfaces in the National Land Cover Database 2011 (Multi-Resolution

Land Characteristics Consortium 2011). Using developed rather than total area better charac-

terizes population density, particularly in rural areas where tracts are large and often contain

uninhabited areas (e.g., forest and water bodies). Developed areas have been used to spatially

allocate populations within census units (Mennis 2003).

We also developed two time-invariant measures: density of electric and hydrogen charging

stations, and urbanicity. Locations of currently open electric and hydrogen charging stations

were obtained from the National Renewable Energy Laboratory (National Renewable Energy

Laboratory 2019). We included public- and private-access stations as both can facilitate clean

vehicle adoption (Rubin and St-Louis 2016). As with population density, the density of open

charging stations was calculated according to the developed areas within a census tract. We

treated the density of these open charging stations as a time-invariant covariate, as only 38% of

the stations had their opening date reported. We derived our urbanicity indicator by

2092 Climatic Change (2020) 162:2087–2105



intersecting the census tract centroids with urban areas from the 2010 Census (United States

Census Bureau 2010). Urban represents areas with high population density and/or a large

amount of developed area, whereas rural represents the rest of the areas (Ratcliffe et al. 2016).

2.3 Air pollution

We used area-weighted average concentrations of NO2 and PM2.5 between 2010 and 2016 to

assess whether more polluted areas received more rebates. We chose NO2 and PM2.5 because

mobile sources are significant sources of both of these pollutants (Anderson et al. 2018), which

could be reduced locally by uptake of clean vehicles. We acquired NO2 concentrations from

the Berkeley High-Resolution (BEHR) dataset (The Berkeley Satellite Group 2019) and PM2.5

concentrations from van Donkelaar et al. (Atmospheric Composition Analysis Group 2019;

van Donkelaar et al. 2019). The NO2 dataset provides daily ambient concentration estimates

gridded at 0.05 × 0.05° (≈ 5.56 × 5.56 km) resolution, and we first calculated mean concentra-

tion annually between 2010 and 2016 for each grid cell. We then calculated a time-invariant,

area-weighted mean NO2 concentration averaged across 2010 and 2016 for each census tract.

The PM2.5 dataset provides mean concentrations annually between 2010 and 2016 at 0.01 ×

0.01° (≈ 1.11 × 1.11 km) resolution, and a similar procedure was used to calculate a time-

invariant, area-weighted mean PM2.5 concentration for each census tract. We did not treat NO2

and PM2.5 as time variant, as their respective data sources were 1 year shorter than our time

frame of analysis. Consequently, we assumed that the average concentration between 2010 and

2016 was representative of the spatial variations in air pollution in 2017.

After linking census-tract-level rebate allocation rates with the covariates, we omitted 2% of

the tract-month observations from the CVRP-only analysis and 7% of the tract-quarter

observations from the CVRP-EFMP comparison due to missing data regarding community

characteristics.

2.4 Analytical approach

We compared means and correlations to examine whether disadvantaged communities re-

ceived fewer rebates than non-disadvantaged communities under the CVRP or EFMP, and

whether the pattern for CVRP changed after the introduction of an income cap and an income-

tiered rebate amount. We conducted the mean comparisons using a permutation t test (Millman

2015) and measured the correlations by Spearman rank correlation coefficient to account for

non-normality and autocorrelation in the data.

We further conducted a multivariate regression analysis to estimate the associations

between tract-level rebate allocation rate and key covariates including tract-level household

income, education, racial/ethnic composition, and air pollution levels, while controlling for the

density of charging stations, vehicle and home ownership, population density, and urbanicity

(model specified as Eq. (1)). Covariates were standardized when applicable to facilitate

comparisons between the coefficients and to identify the most influential covariates. We added

a quadratic term for air pollution to account for prior research suggesting a non-monotonic

relationship between pollution and income (Bechle et al. 2011; Pastor et al. 2016). We also

added an interaction term between population density and urbanicity, as previous studies have

found the association between population density and participation in similar programs is

different between rural and urban areas (Lachapelle 2013). In addition, we included a linear

time trend (t) as the number of months (CVRP-only analysis) or quarters (CVRP-EFMP

2093Climatic Change (2020) 162:2087–2105



comparison) since the start of the rebate programs to control for the overall secular increase in

market penetration of clean vehicles and awareness of the rebate programs.

logY i; j;m;n ¼ βX i; j;n þ γZ i; j þ δt þ c j þ dm þ εi; j;m:n ð1Þ

where Yi, j, m, n is the number of rebates received per thousand households in census tract i of

county j during month or quarter m in year n, Xi, j, n represents the covariates varying by census

tract, county and year, Zi, j represents the covariates varying by census tract and county, t

estimates a linear temporal trend measured as number of months (CVRP-only analysis) or

quarters (CVRP-EFMP comparison) since the start of the programs, cj denotes county fixed

effects, dm is month or quarter fixed effects, and εi, j, m. n is the error term.

To estimate the combined effect of an income cap and an income-tiered rebate amount

implemented in the CVRP in April 2016 statewide, we used an interrupted time series model

(Eq. (2)) (Bernal et al. 2017). We selected this model since the income and the income-tiered

rebate amount were instituted for the entire state of California at the same time point. The

model included a dummy variable (Dm, n) indicating the presence (coded as 1) or absence

(coded as 0) of these newer design elements in the CVRP-only model. We interacted this

dummy variable with the linear time trend, socioeconomic and demographic characteristics,

and air pollution variables to estimate whether their associations with rebate allocation

changed after introducing these two policy design elements.

logY i; j;m;n ¼ βX i; j;n þ γZ i; j þ δt þ θDi; j;m;n þ ρDi; j;m;n � X i; j;n þ τDi; j;m;n � Z i; j

þ μDi; j;m;n � t þ c j þ dm þ εi; j;m:n ð2Þ

where Di, j, m, n is a dummy variable indicating the presence (coded as 1) or absence (coded as

0) of equity-promoting policy design elements including an income cap and an income-tiered

rebate amount, Di, j, m, n × Xi, j, n, Di, j, m, n × Zi, j, Di, j, m, n × t are interaction terms between the

equity-promoting policy design elements and (1) time-variant socioeconomic and demograph-

ic characteristics, (2) time-invariant air pollution, (3) a linear time trend.

We accounted for the fixed effects of time and place to reduce omitted-variable bias.We added

dm to reflect monthly (CVRP-only analysis) or quarterly fluctuations (CVRP-EFMP comparison)

in vehicle acquisitions. We included cj for unobserved, time-invariant county-level characteristics

(e.g., abundance in occupations requiring heavy duty vehicles that are not eligible for rebate

programs) in 52 California counties. We did not use tract fixed effects for two reasons: first,

although time variant, many of our covariates of interest had limited temporal variability during

the study period (shown as limited within-tract variations in Tables S1 and S2), thus applying tract

fixed effects can lead to unreliable estimates (Beck and Katz 2001; Plümper and Troeger 2007);

second and perhaps more importantly, we were interested in between-tract effects (e.g., if

wealthier tracts were associated with higher rebate allocation rates) rather than within-tract effects

(e.g., in a given tract, whether an increase in income in time led to higher rebate allocation rates).

Adding tract fixed effects means that we would only use within-tract variations to estimate the

models, therefore preventing us from estimating between-tract effects.

We estimated all models as pooled negative binomial models with cluster-robust standard

errors. We chose negative binomial models because the outcome (rebate allocation rate) was a

count variable with a mean that did not equal its variance (Tables S1 and S2) (Allison 2009).

The pooled estimator identifies coefficients for both time-variant (Xi, j, n) and time-invariant (Zi,

j) covariates. The estimator also identifies coefficients for the fixed effects (specified as dummy
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variables), allowing further estimations. We used cluster-robust standard errors to account for

heteroscedasticity and the clustering of our observations by census tracts within counties. This

tends to produce wider but more accurate confidence intervals and consequently more

conservative estimates of statistical significance (Allison 2009; Colin Cameron and Miller

2015).

We used incidence rate ratios (IRR) to interpret the associations between sociodemographic

and air pollution covariates and the outcome. IRR is a factor by which the outcome, rebate

allocation rate, changes given a 1-unit increase of a covariate, when holding all other

covariates constant. An IRR greater or less than 1 indicates a positive or negative association,

respectively, between a covariate and rebate allocation rate.

Based on the interrupted time series model (Eq. (2)) in the CVRP-only analysis, we

estimated the IRRs for socioeconomic, demographic, and air pollution covariates under two

scenarios: (1) if the income cap and income-tiered rebate amount implemented in April 2016

had been implemented throughout the time period of our analysis (March 2010–December

2017); (2) if the income cap and income-tiered rebate amount had never been implemented.

The differences in IRRs between the two scenarios reveal how the income cap and income-

tiered rebate amount could have changed the association between the outcome and the

sociodemographic and air pollution covariates.

3 Results and discussion

3.1 Rebate allocation rates and community disadvantage

Disadvantaged communities (as defined by CalEnviroScreen) had significantly lower CVRP

rebate allocation rates compared with their more advantaged counterparts (Fig. 1a). Disadvan-

taged communities on average received 77% fewer CVRP rebates per thousand households

monthly between March 2010 and December 2017 (0.05 (standard deviation (SD) = 0.07) vs.

0.22 (SD = 0.25)). Implementing an income cap and an income-tiered rebate amount providing

an additional $2000 for lower-income consumers in April 2016 helped to reduce this relative

gap, but the absolute difference widened: before April 2016, disadvantaged communities on

average received 78% fewer rebates than non-disadvantaged communities per thousand

households monthly (0.04 (SD = 0.05) vs. 0.18 (SD = 0.23)), whereas after April 2016 disad-

vantaged communities received 70% fewer rebates (0.10 (SD = 0.14) vs. 0.33 (SD = 0.34))

(Fig. 1a).

In the South Coast and San Joaquin Valley air districts between July 2015 and December

2017, the CVRP issued 74% fewer rebates on average to disadvantaged communities (0.29

(SD = 0.36)) vs. non-disadvantaged communities (1.10 (SD = 0.92)) (Fig. 1b). In contrast,

during this same period the EFMP on average issued 133% more rebates to disadvantaged

communities (0.07 (SD = 0.11)) vs. non-disadvantaged communities (0.03 (SD = 0.07)). In

sum, CVRP differentially benefitted non-disadvantaged communities, even after implementing

an income cap and an income-tiered rebate amount, whereas EFMP differentially benefitted

disadvantaged communities.

CVRP and EFMP rebate allocation rates were also correlated with CalEnviroScreen 3.0

scores (Fig. S2). CVRP rebate allocation rates consistently showed negative correlations with

CalEnviroScreen 3.0 scores, even after implementing an income cap and an income-tiered

rebate amount. In contrast, EFMP rebate allocation rates were positively correlated with
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CalEnviroScreen 3.0 scores, likely due to the program’s expanded vehicle eligibility, stricter

income cap, income-tiered rebate amounts, and extra rebate amount offered to disadvantaged

communities with high CalEnviroScreen scores. For both programs, rebate allocation corre-

lated more strongly with CalEnviroScreen’s population vulnerability score than with its

pollution burden score. This pattern likely reflects the rebate program’s stronger focus on

consumer income rather than pollution burden - a factor only considered in EFMP Plus-up.

3.2 Multivariate models for the statewide CVRP program

Full results from the statewide CVRP-negative binomial models are shown in Table S3. Model 1

(Eq. (1)) estimates the associations between rebate allocation rate, standardized community

characteristics, and standardized ambient air pollutant concentrations, after controlling for a linear

temporal trend, and county and month fixed effects. Model 2 is an interrupted time series model

(Eq. (2)) that additionally estimates the effect of the April 2016 implementation of an income cap

and an income-tiered rebate amount. Since both models 1 and 2 produced similar directions of

effect for the covariates and becausemodel 2 provides additional estimates for the income cap and

the income-tiered rebate amount, we focus on model 2 in the following discussion. We present

IRRs from model 2 for the main socioeconomic and demographic covariates in Table 2.

Median household income had a positive and statistically significant association with rebate

allocation rate. A 1-standard-deviation increase in tract-level median household income

Fig. 1 Rebate allocation rates between non-disadvantaged and disadvantaged communities as defined by
CalEnviroScreen. a California-wide Clean Vehicle Rebate Project (CVRP) between March 2010 and December
2017 and before and after implementation of an income cap and an income-tiered rebate amount providing an
additional $2000 for lower-income consumers in April 2016. b CVRP and Enhanced Fleet Modernization
Program (EFMP) in South Coast and San Joaquin Valley air districts between July 2015 and December 2017,
when the programs ran concurrently. Rebate allocation rate is the number of rebates received by individual
applicants per thousand households monthly (a) or quarterly (b) in a census tract. About 25% of California
census tracts are designated as disadvantaged by CalEnviroScreen 3.0 (August 2016; Faust et al. 2017). ***p
value < 0.01, statistically significant differences in mean rebate allocation rates between non-disadvantaged and
advantaged communities which was measured by a two-tailed permutation t test (Millman 2015)
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(roughly $32,407/year) was associated with a 25.8% increase ((1.258–1) × 100%= 25.8%,

similar calculations hereafter) in rebate allocation rate (Table 2). This is consistent with

consumers needing upfront capital to acquire a new eligible vehicle before receiving the

rebate, and that clean vehicles cost more than comparable internal combustion engine vehicles

(Potoglou and Kanaroglou 2007; Erdem et al. 2010; Poder and He 2017). A similar phenom-

enon has been observed in other rebate programs to encourage uptake of environmentally-

friendly technologies that require a substantial upfront investment, such as rooftop solar

(Soskin and Squires 2013; Briguglio and Formosa 2017).

Education, measured as percent of the over-25-year-old population with postgraduate

degrees, had strong positive associations with rebate allocation rate (Table S3). A 1-

standard-deviation increase in education level was associated with a 17.0% increase in rebate

allocation rate (Table 2). The positive association between education and rebate allocation

aligns with a CVRP survey identifying that about 49% of the recipients are from households

with postgraduate degrees (Johnson et al. 2017), as well as prior studies showing positive

associations between education and clean vehicle adoption (Vergis and Chen 2015; Javid and

Nejat 2017).

We found substantial disparities in rebate allocation rates with respect to community racial

and ethnic composition. Increases in the percentages of non-Hispanic Black and Hispanic

populations were significantly associated with lower rebate allocation rates (with non-Hispanic

Table 2 Incidence rate ratios (IRRs) of CVRP rebate allocation statewide, March 2010–December 2017 for
socioeconomic and demographic covariates, estimated given: (1) an income cap and income-tiered rebate amount
were implemented in April 2016 as actually occurred; (2) an income cap and income-tiered rebate amount either
were or were not implemented from the start of the program in March 2010

(1) Overalla (income cap
and income-tiered rebate
implemented since April
2016)

(2) Conditional (income cap and income-
tiered rebate amount either implemented or
not throughout the analysis timeframe of
March 2010–December 2017)

Implementedb Not implementedb

Median household income 1.258*** (1.196, 1.323) 1.168*** (1.100,
1.240)

1.285*** (1.223,
1.352)

% over-25 population
with postgraduate degrees

1.170*** (1.075, 1.273) 1.104** (1.014,
1.203)

1.189*** (1.092,
1.296)

% Non-Hispanic Black 0.891*** (0.858, 0.925) 0.893*** (0.858,
0.928)

0.891*** (0.857,
0.925)

% Hispanic 0.667*** (0.617, 0.720) 0.674*** (0.614,
0.739)

0.665*** (0.618,
0.716)

% Non-Hispanic Asian/Pacific
Islander

1.039 (0.974, 1.108) 1.088** (1.020,
1.160)

1.025 (0.961, 1.094)

n observations (census
tract—month)

740,010 740,010 740,010

Note: A coefficient, or incidence rate ratio (IRR), is the factor by which the rebate allocation rate (monthly
rebates received per thousand households) changes for a 1-unit increase in the corresponding covariate, when
holding other covariates constant; 95% confidence intervals are in parentheses

*p value < 0.10; **p value < 0.05; ***p value < 0.01—levels of significance

aOverall IRR, with the income and the income-tiered rebate amount implemented as they are since April 2016

b “If implemented” and “not implemented” represent IRRs conditioned on whether the income cap and the
income-tiered rebate amount are implemented throughout the timeframe of the analysis. All IRRs are based on
model 2, Table S3 in the Supporting Information
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White as the reference group) (Table S3). For example, for a 1-standard-deviation increase in

tract-level percent of Hispanic residents (roughly 27%) was associated with a decrease by

33.3% in rebate allocation rate (Table 2). In contrast, an increase in the percentage of non-

Hispanic Asian/Pacific Islander population was associated with a small and statistically

insignificant increase of 3.9% in rebate allocation rate. A similar disparity in CVRP rebate

allocation for non-Hispanic Blacks and Hispanics has been previously reported (Rubin and St-

Louis 2016). Racial disparities in clean technology access are not unique to CVRP, although

the directions of associations are not always consistent. For example, Kwan and colleagues

found that across the US, communities with higher percentages of Black and Asian residents

have lower rates of residential solar PV installation, whereas installation rates are higher for

communities with more Hispanics, controlling for solar radiation (Kwan 2012). The racial/

ethnic disparities we observed may result from differences in unmeasured, wealth-related

factors (other than median household income and home ownership that we included in our

analysis) and other factors affecting vehicle requirements (e.g., occupations requiring heavy

duty vehicles or availability of charging stations at work), differential marketing, and

language-appropriate outreach about rebate programs in diverse communities.

We observed a pollution-level dependent relationship between ambient air pollutant con-

centrations and CVRP rebate allocation rates. In less polluted census tracts, an increase in

either NO2 and PM2.5 was associated with an increase rebate allocation rates, or an IRR greater

than 1 (Fig. 2a, b). However, the IRRs decreased to less than 1 as average NO2 and PM2.5

concentrations continued to increase, indicating negative associations between these air

pollutants and rebate allocation rate in more polluted census tracts. At most pollution levels,

the IRRs were statistically significant for NO2 but remained insignificant for PM2.5. Therefore,

in general, CVRP rebate allocation rates were higher in areas with moderate levels of air

pollution, but lower in areas with very high or low air pollution levels, suggesting a possible

lost opportunity to improve air quality in the most polluted communities.

The density of electric and hydrogen charging stations showed a statistically insignificant

association with rebate allocation rates (Table S3). Prior research has found that access to a

charging station is one of the consumer concerns about electric vehicles (Egbue and Long

2012) and can be the most influential factor for nationwide electric vehicle adoption

(Sierzchula et al. 2014). The insignificant association we observed may be due to the fact that

we only measured these stations by where the rebates were allocated, rather than where actual

car charging took place.

The percent of renter-occupied housing units showed a statistically significant negative

association with rebate allocation rate, which could be due to renters being less able or willing

to install charging facilities at their homes compared with homeowners (Table S3).

There was a negative association between rebate allocation rate and population density,

and this association was only statistically significant in urban areas (Table S5). Addition-

ally, urbanicity itself showed a statistically significant negative association with rebate

allocation rate (Table S3). A similar trend was observed in an early vehicle retirement

program in Quebec, in which the participation rate was higher in low-density metropolitan

areas (Lachapelle 2013). Densely populated urban areas may indicate more walkability

and availability of alternative modes of transport, including public transit, which reduces

the demand for personal vehicles. Furthermore, while in our dataset urbanized areas have

higher non-personal charging station densities, these areas may have limited off-street

parking for installing personal charging facilities, making operation of PHEVs and BEVs

more challenging.
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The average number of vehicles per household showed a positive and statistically signif-

icant association with rebate allocation rate (Table S3). This differs from findings by Rubin

et al., in which CVRP rebate allocation rate between 2010 and 2015 was negatively associated

with vehicle ownership (Rubin and St-Louis 2016). However, our results align with research

suggesting that consumers concerned about battery range tend to view electric vehicles as

secondary cars rather than replacements for existing internal combustion engine vehicles

(Skippon and Garwood 2011; Tamor and Milačić 2015).
Finally, we found a statistically significant and increasing temporal trend in rebate alloca-

tion (Table S3), which could be explained by growing market penetration of clean vehicles,

likely due partially to the rebate programs themselves. Combined PHEV and BEV sales in the

US increased by 446% from 2011 (17,763 vehicles) to 2013 (97,102 vehicles), and incentives

such as rebates likely had strong positive influences on this increase (Zhou et al. 2015). A

CVRP consumer survey shows that receiving a rebate is the most important deciding factor for

purchasing a PHEV or BEV, with 41 and 50% of the respondents indicating they would not

have made a purchase without the rebate (Johnson et al. 2017). We also hypothesize that the

temporal increase in rebate allocation may be partially due to a growing awareness of CVRP

over time.

3.3 Effects of an income cap and an income-tiered rebate amount on CVRP

Implementing an income cap and an income-tiered rebate amount lessened but did not

eliminate disparities in rebate allocation under the CVRP with respect to income, education,

race and ethnicity, and air pollution. Even if these policy design elements had been

Fig. 2 Incidence rate ratios (IRRs) of CVRP rebate allocation statewide, March 2010–December 2017, for
average ambient NO2 and PM2.5 concentrations at different concentrations levels. The IRR is the factor by which
the rebate allocation rate (monthly rebates received per thousand households) changed for a 1-standard-deviation
increase in average ambient NO2 or PM2.5 concentrations, when holding other covariates constant. a, b IRRs for
NO2 and PM2.5, with an income cap and an income-tiered rebate amount implemented as they were since April
2016. c, d The IRRs conditioned on whether the income cap and the income-tiered rebate amount had been
implemented throughout the timeframe of the analysis. The IRRs are estimated based on model 2, Table S3 in the
Supporting information; 95% confidence intervals of the IRRs are shown in shaded areas
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implemented throughout the timeframe of our analysis (March 2010–December 2017), we

estimated that rebates would still more frequently be allocated to higher-income and better-

educated communities and less frequently allocated to communities of color (column “Imple-

mented” in Table 2). However, the income cap and income-tiered rebate amount attenuated the

association between rebate allocation rate and median household income, with the IRRs

decreasing from 1.285 to 1.168 (a 10% decline). The implementation of an income cap and

income-tiered rebate amount was also associated with weaker associations (IRR closer to 1)

between rebate allocation rates and covariates including education, and the percentages of non-

Hispanic Black and Hispanic residents (Table 2).

The income cap and income-tiered rebate amount also changed the associations between

rebate allocation rate and ambient air pollution. These policy design elements slightly atten-

uated the IRRs of NO2 and shifted its tipping point (where the IRR dropped below 1),

suggesting greater rebate allocation in less polluted census tracts (Fig. 2c). In contrast, the

IRRs of PM2.5 remained greater than 1 as the PM2.5 level increased (Fig. 2d), suggesting that

more rebates would have been allocated to communities with greater PM2.5 had the income cap

and income-tiered rebate amount been implemented sooner.

Our analysis also suggests that the income cap and income-tiered rebate amount were

associated with a decrease of 0.095 (95% confidence interval, (0.067, 1.222)) rebates per

thousand households monthly if implemented throughout the analysis. If these policy design

elements were never implemented, a census tract was expected to receive 0.319 (0.223, 0.415)

rebates per thousand households monthly. If these policy design elements were implemented

throughout, the rebate allocation rate would be 0.224 (0.142, 0.307) rebates per thousand

households monthly. This reduction might indicate that the exclusion of high-income con-

sumers by the income cap was not entirely offset by an increase in low-income consumers

attracted by the income-tiered rebate amount. But this finding, along with the effects of the

income cap andincome-tiered rebate amount discussed earlier, should be cautiously interpreted

as they could be confounded by other time-varying factors such as saturation in the clean

vehicle market. The reduction in rebate allocation rates indicates that additional measures, such

as greater increases in rebate amounts for lower income consumers, may be needed to reduce

the income gap in rebate allocation while ensuring similar levels of clean vehicle adoption

facilitated by rebate programs.

3.4 Comparison between CVRP and EFMP

Full model results (based on Eq. (1)) for CVRP and EFMP rebate allocation rates in the South

Coast and San Joaquin Valley air districts between July 2015 and December 2017 are in

Table S4. We present IRRs for the main socioeconomic and demographic covariates in

Table 3. For CVRP, rebate allocation follows the statewide pattern: the IRRs for the two air

districts were similar to those from the statewide model (“Overall” column in Table 2).

In contrast, EFMP presents a different pattern: median household income and education

had negative associations with EFMP rebate allocation rate, and the percentage of Hispanics

was positively associated with rebate allocation rate (Table 3). Furthermore, there was a

statistically insignificant, yet positive association between non-Hispanic Blacks and EFMP

rebate allocation rate, differing from the negative association in CVRP (Table 3). These

different distributional patterns between CVRP and EFMP are likely due to their different

designs: while CVRP had an income cap and offered an additional $2000 to lower-income

consumers during the study period, EFMP set a stricter income cap, offered higher rebate
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amounts to lower-income consumers, expanded vehicle eligibility, gave an additional rebate

amount to consumers living in socioeconomically and environmentally disadvantaged com-

munities, and could be combined with CVRP when purchasing new PHEVs and BEVs to

substantially increase the total rebate amount (Table 1).

For both CVRP and EFMP, the IRRs for NO2 dropped below 1 as NO2 concentration

increased (Fig. 3a), such that the highest rebate allocation rates were associated with census

tracts with moderate NO2 concentrations. In addition, compared with CVRP, we found that

EFMP rebates were likely allocated to census tracts with higher levels of NO2, as the tipping

point (where IRR dropped below 1) was in areas with higher NO2 concentration. This pattern

could be due to the fact that the EFMP, particularly its Plus-up component, attracted more

consumers in lower-income and disadvantaged communities with higher pollution burden.

We found more attenuated patterns for PM2.5 in CVRP such that rebate allocation rates did

not differ much across pollutant levels. In EFMP, the IRR for PM2.5 remained slightly larger

than 1 across pollutant levels. However, the IRRs for PM2.5 in CVRP and EFMP both were

close to 1 and statistically insignificant (Fig. 3b).

Table 3 Incidence rate ratios (IRRs) of CVRP and EFMP rebate allocation in the South Coast and San Joaquin
Valley air districts between July 2015 and December 2017 for socioeconomic and demographic covariates

CVRP EFMP

Median household income 1.236*** (1.091, 1.400) 0.680*** (0.508, 0.910)
% Over-25 population with postgraduate degrees 1.096*** (1.027, 1.171) 0.827*** (0.758, 0.902)
% Non-Hispanic Black 0.905*** (0.867, 0.943) 1.019 (0.934, 1.112)
% Hispanic 0.654*** (0.584, 0.732) 1.324* (0.959, 1.829)
% non-Hispanic Asian/Pacific Islander 1.053** (1.004, 1.104) 1.470*** (1.314, 1.645)
Number of observations (census tract—month) 42,260 42,260

Note: A coefficient, or incidence rate ratio (IRR), is the factor by which the rebate allocation rate (quarterly
rebates received per thousand households) changes for a 1-unit increase in the corresponding covariate, when
holding other covariates constant. The IRRs are based on models 3 and 4, Table S4 in the Supporting
Information; 95% confidence intervals are in parenthesis

CVRP, Clean Vehicle Rebate Project; EFMP, Enhanced Fleet Modernization Program retire and replace and
Plus-up components

*p value < 0.10; **p value < 0.05; ***p value < 0.01—levels of significance

Fig. 3 Incidence rate ratios (IRRs) of CVRP and EFMP rate allocation in South Coast and San Joaquin Valley air
districts, July 2015–December 2017, for average ambient NO2 and PM2.5 concentrations at different concentra-
tion levels. IRR is the factor by which the rebate allocation rate (quarterly rebates received per thousand
households) changes for a 1-standard-deviation increase in average ambient NO2 or PM2.5 concentrations, when
holding other covariates constant. The IRRs are estimated based on Model 3 and 4, Table S4 in the Supporting
information; 95% confidence intervals of the IRRs are shown in filled areas
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Another difference between EFMP and CVRP is that, while there was a positive but

statistically insignificant association between charging station density and rebate allocation

rate for CVRP, the association was negative and statistically significant for EFMP. This

negative association could be explained by the fact that EFMP included internal combustion

engine and non-plug-in hybrid vehicles that do not require charging stations. However, we

should interpret these associations with caution due to the fact that tract-level charging station

density may not be a good proxy for where vehicles get charged.

While both CVRP and EFMP showed positive associations between rebate allocation rates

and vehicle ownership, the interpretations might differ. Since CVRP does not require vehicle

retirement, households with any number of vehicles can participate. However, the EFMP

requirement of retiring vehicles means that households must have at least one vehicle to

qualify for the program.

3.5 Limitations and future research directions

Future studies should explore other strategies for reducing disparities in the distribution of

clean vehicle rebates, use individual-level socioeconomic and demographic data (when avail-

able), and measure the distribution of associated environmental benefits and costs (e.g.,

changes in air quality). For example, on January 30, 2018, the CVRP began preapproving

rebate applications in San Diego County in order to remove the barrier facing low-income

households of the upfront capital required to purchase vehicles (Center for Sustainable Energy

2017). The CVRP also proposed to restrict vehicle eligibility (e.g., higher all-electric range and

a cap for vehicle price) and participant eligibility (e.g., one rebate per person and a 3-month

application window after purchase) for fiscal year 2019–2020 (California Air Resource Board

2019b). Research could evaluate how these interventions affect rebate allocation patterns by

income, race/ethnicity, and other factors. If participant-level socioeconomic data become

available, future studies can specify multi-level models that integrate individual- and area-

level information to validate the associations we observed at the census tract level in our

analysis.

While this study used allocation rate of clean vehicle rebates as the main outcome, we did

not investigate potential benefits from the program to disadvantaged communities in the form

of reductions in transportation-related emissions of GHGs and co-pollutants resulting from

increased use of clean vehicles. Since communities of color and low income in California tend

to live in closer proximity to traffic (Gunier et al. 2003; Cushing et al. 2015), clean vehicle

rebate programs may help reduce exposures to transportation-related pollutants in disadvan-

taged communities. On the other hand, power plant air pollutant emissions may increase if

electric vehicle adoption results in increased electricity demand, which could disproportionally

impact disadvantaged communities (Carley et al. 2018).

4 Conclusions

Results of our analysis suggest that California’s CVRP disproportionately benefits higher-

income neighborhoods with higher levels of educational attainment and fewer residents of

color. Introducing an income cap and an income-tiered rebate amount providing an additional

$2000 for lower income consumers reduced, but did not fully close, the gaps in CVRP rebate

allocation with respect to income, education, and race/ethnicity. Additionally, we found that
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the income cap might exclude more potential participants than the ones attracted by the

income-tiered rebate amount, causing a reduction in the total number of rebates that were

distributed.

In contrast, the design of the EFMP, including expanded vehicle eligibility of used fuel-

efficient vehicles, inclusion of non-plug-in hybrids and lower-emission internal combustion

engine vehicles, stricter income caps, more progressive rebate amount increments for lower-

income households, and an additional rebate amount in disadvantaged communities, appear to

have a stronger effect on extending participation to racially and ethnically diverse communities

with lower incomes, higher average ambient NO2 concentrations, and more community

disadvantage. Although we were unable to distinguish which of these design elements had

the greatest impact, our analysis suggests that implementation of equity-related designs beyond

an income cap and income-tiered rebate amounts are needed to make rebate programs more

accessible to those who could benefit the most.

Funding This work was funded by the California Office of Environmental Health Hazard Assessment
(https://oehha.ca.gov/; Contract #16-E0012-2).
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