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Abstract: Governments must consider different issues when deciding on the location of healthcare
centers. In addition to the costs of opening such centers, three further elements should be addressed:
accessibility, demand, and equity. Such locations must be chosen to meet the corresponding demand,
so that they guarantee a socially equitable distribution, and to ensure that they are accessible to
a sufficient degree. The location of the centers must be chosen from a set of possible facilities to
guarantee certain minimum standards for the operational viability of the centers. Since the set of
potential locations does not necessarily cover the demand of all geographical zones, the efficiency
criterion must be maximized. However, the efficient distribution of resources does not necessarily
meet the equity criterion. Thus, decision-makers must consider the trade-off between these two
criteria: efficiency and equity. The described problem corresponds to the challenge that governments
face in seeking to minimize the impact of the pandemic on citizens, where healthcare centers may
be either public hospitals that care for COVID-19 patients or vaccination points. In this paper, we
focus on the problem of a zone-divided region requiring the localization of healthcare centers. We
propose a non-linear programming model to solve this problem based on a coverage formula using
the Gini index to measure equity and accessibility. Then, we consider an approach using epsilon
constraints that makes this problem solvable with mixed integer linear computations at each iteration.
A simulation algorithm is also considered to generate problem instances, while computational
experiments are carried out to show the potential use of the proposed mathematical programming
model. The results show that the spatial distribution influences the coverage level of the healthcare
system. Nevertheless, this distribution does not reduce inequity at accessible healthcare centers, as the
distribution of the supply of health centers must be incorporated into the decision-making process.

Keywords: facility location problem; Gini index; linear programming; multi-objective optimization;
SARS-CoV-2; simulations; spatial accessibility; two-step floating catchment area method

MSC: 90C05; 90C29

1. Introduction and State-of-the-Art

In this section, we discuss introductory aspects of our investigation, detail the
bibliographical review, give an illustrative example to facilitate understanding of the
problem under analysis, and describe the contribution of this study, as well as detailing
the contents of the sections of the paper.

Mathematics 2022, 10, 1825. https://doi.org/10.3390/math10111825 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10111825
https://doi.org/10.3390/math10111825
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5933-4839
https://orcid.org/0000-0003-3128-001X
https://orcid.org/0000-0002-8797-681X
https://orcid.org/0000-0003-4755-3270
https://orcid.org/0000-0002-5075-5968
https://doi.org/10.3390/math10111825
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10111825?type=check_update&version=1


Mathematics 2022, 10, 1825 2 of 24

1.1. Introductory Aspects

In public policy, social investment is one major concern for governments, especially
when improving public healthcare systems. Access to these systems embraces a number
of dimensions, including acceptability, accommodation, affordability, availability, and
geographical location [1–3]. Some authors have addressed other barriers to be considered
when measuring accessibility, such as dimensions related to age, behavior, ethnicity,
financial status, information access, sex, and social class [4,5]. These dimensions allow
the clustering of different accessibility measures according to whether spatial barriers
are included in their quantification or not.

Certain decisions related to adequate health access focus on locating healthcare
centers/facilities. This location is chosen, for example, to situate a set of additional
centers or to provide a good supply of services, such as hospital beds, which improves
the relationship between supply and demand. Unlike other facility location problems
that focus on minimizing costs, decision-makers face complex challenges when deciding
on locating the best sites for healthcare centers due to their possible inadequate spatial
distribution or an insufficient number of them. These possibly counterproductive decisions
can have a direct impact on the healthcare workers, increase the mortality and morbidity of
the community [6], as well as limiting access to medical treatment [5,7–10].

Although the location of healthcare centers may meet an efficiency criterion, it must
also guarantee an equitable distribution of resources [8], which can increase the inequity
of access to healthcare centers [11,12]. If the focus is on a zone-divided region requiring
the localization of healthcare centers, in each zone, it is necessary to select a geographical
site (discrete center) where the demand is concentrated. Then, the decision-makers must
determine where to situate the healthcare centers based on a set of possible locations that
guarantee minimum and maximum thresholds for the operational viability of these centers.
Since the set of potential locations does not necessarily cover the demand of all zones,
decision-makers must maximize an efficiency criterion. However, efficient distribution of
resources does not necessarily meet the equity criterion. Therefore, decision-makers must
also consider the trade-off between these two criteria: efficiency and equity.

There are two types of accessibility: (i) revealed, which focuses on measuring the
employment of the healthcare system; and (ii) potential, which measures the probable
use of healthcare centers and not their utilization [5]. Some spatial measures have been
studied on healthcare accessibility [13], many of which are based on the gravity model
given by Ai = ∑j aj/ f (cij), where i and j denote the healthcare demand i and supply j
points, respectively; aj is the healthcare supply of the point j; cij is the total cost between
points i and j; and f is an impedance function. This function is decreasing and weights the
supply from point j captured by the demand point i, that is, as the cost between points i
and j increases, the supply of point j captured by point i decreases.

Some variants of the gravity model have been analyzed [1]. One of them is the two-
step floating catchment area (2SFCA) method [5]. This method involves two stages: (i) the
first calculates the ratio between the supply of healthcare centers of location j and the
population that is distanced (or has a travel time) to a maximum threshold D of point
j; and (ii) in the second, the accessibility of each demand point i is obtained as the sum
of the supply-to-population ratio (calculated at the first stage) of all providers that are
separated (or have a travel time) at most D from point i. Several studies adopted the 2SFCA
method, or a variant of it, for analyzing accessibility to healthcare centers [14–16]. This
accessibility is a non-medical factor that influences inequities in healthcare outcomes [11];
that is, there is a relation between inequity access to healthcare and inequitable distribution
of illness [11,12,17,18]. For this reason, the World Healthcare Organization has issued
recommendations for government actions. These actions are related to strengthening equity
by improving investment in healthcare infrastructure, among other initiatives, to close the
gap in healthcare outcomes [12].
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1.2. Bibliographical Review

Several optimization models have been formulated for locating a set of healthcare
facilities. Some of these models optimize an efficiency criterion, for example, to minimize
the total travel distance or time [19–21], or to minimize the total operating and installation
costs [22,23]. Other studies have focused on characterizing the location of healthcare
facilities as a maximal covering location problem, which aims to situate a fixed number of
healthcare facilities to maximize the demand coverage by these facilities [24]. The notion of
covering a demand point refers to whether there is at least one facility at a maximum travel
distance or threshold (or travel time) D from the demand point.

Various applications have adopted different coverage thresholds for demand points
by healthcare facilities. For example, a travel distance threshold of fifteen miles was
stated in [25] when studying spatial accessibility to healthcare centers in Illinois, United
States (US), using a geographic information system. Similarly, a travel time threshold of
three hours was assumed in [26] when analyzing spatial accessibility to major cancer care
facilities in the US. In addition, a threshold defined as the third quartile of the data set
was employed in a mobility survey in Florida, US [15]. A variant of the maximal covering
location problem that included capacity and budget constraints was addressed in [27,28].
These authors assumed the number of facilities as a decision variable.

Other studies have adopted a multi-objective approach when locating a set of facilities.
These objectives include costs, environment, equity concerns, and service level. For
example, a two-criteria mathematical model was proposed in [29] for solving a multi-
objective facility location problem. This model deals with efficiency (to minimize total
costs) and equity concerns (to minimize the maximum distances from the facilities to the
demand points). For an extensive literature review of the facility location problem under
a multi-criteria approach, see [30], and for other p-center variants in a 2D Pareto front,
see [31].

In the context of healthcare facility locations, under a multi-objective approach, a
mathematical model was proposed in [23] for locating and sizing a set of medical departments
based on finding a trade-off among costs, total travel distance, uncovered demand, and the
number of changes to be implemented in the system. A similar approach was adopted in [21]
for an application in a hierarchical healthcare system. Other investigations on this topic can
be found in [32–34]. Similarly, a three-objective mathematical model was presented in [35]
to locate preventive healthcare facilities, which included financial, coverage, and service
level (waiting time) concerns.

Various metrics have been adopted to measure resource distribution and inequity.
Among the measures of equity used in the context of facility location analysis, we have the
standard deviation, variance, mean absolute deviation, and sum of absolute deviation [36,37].
These statistical metrics cannot be employed in any comparative study since they are not
normalized metrics. Among normalized equity metrics, we have the Gini index, the Schutz
index, and the coefficient of variation [38,39].

In the context of equity, the Gini index has been used in the selection of socioeconomic
variables, in the establishment of relations of econometric models [40], and in the determination
of conditioning factors for environmental equity [41], as a helpful method to establish equity
in network programming problems [42].

1.3. Illustrative Example

To illustrate the problem that we address, let us suppose that a study region has
been divided into six zones, each characterized by a discrete center in which a person is
concentrated; see Figure 1a,b. Two healthcare centers, namely A and B, are located, with a
healthcare supply of 1 and 2 units, respectively. The figures also show the coverage zones
of each healthcare center (to which this center potentially offers its service).

Analyzing the scenario represented in Figure 1a, note that healthcare center A potentially
offers one center to the four patients in its coverage region (zones 1, 2, 4, and 5). Hence,
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each zone receives 1/4 health units of center A, while healthcare center B potentially offers
two centers to the four patients in its coverage region (zones 2, 3, 5 and 6).

Thus, each patient receives from center B 2/4 = 1/2 health units. Given that zones 2
and 5 can potentially access health centers offered by both centers A and B, the potential
spatial accessibility to such centers of these zones is the sum of what they potentially receive
from the centers A and B. Then, the potential spatial accessibility from zones 1, 2, 3, 4, 5
and 6 to healthcare centers is 1/4, 3/4, 1/4, 1/4, 3/4, and 1/4, respectively, yielding a Gini
index of 0.267, as computed in [38,39]. Moreover, if the locations of the health centers are
those shown in Figure 1b, center A offers to each patient in zones 1, 2, 4 and 5 a value of
1/4 units of healthcare centers, while center B offers to each patient in zones 3 and 6 a value
of 2/2 = 1 unit of healthcare center. Therefore, the potential spatial accessibility of zones
1, 2, 3, 4, 5 and 6 to healthcare centers is 1/4, 1/4, 1, 1/4, 1/4 and 1, respectively, which
produces a Gini index of 0.333. Although all the zones of the hypothetical study region are
covered by the health system in both scenarios, it is evident that an inadequate location of
the centers could increase the inequity in the distribution of resources, evidenced by the
difference in the value of the Gini index.
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Figure 1. Hypothetical spatial distribution of health centers and their coverage zone in: (a) scenario 1;
and (b) scenario 2; where “A” and “B” in both plots are the healthcare centers, whereas “1–6” are the
geographical zones, with• and � sketching a zone discrete center and a center location, respectively.

1.4. Contributions and Description of Sections

Since an efficient resource distribution does not necessarily guarantee equity and vice-
versa [8], we propose a multi-objective approach. Our main contribution here is to solve the
problem of location for healthcare centers considering, in addition to the costs of opening
such centers, the trade-off among three elements: accessibility, demand, and equity, based
on a mathematical programming model. To the best of our knowledge, these three elements
have not been considered together until now in a multi-objective nonlinear programming
model to solve this problem based on a coverage formulation using the Gini index to
measure equity and accessibility. Our proposal seeks to set an efficiency criterion when
covering the locations of healthcare centers subject to the criteria of equity and accessibility.
The problem described fits perfectly with the challenge that governments face to minimize
the impact of the pandemic on citizens, where healthcare centers can be either public
hospitals that care for COVID-19 patients or vaccination points [43–46]. In this study, we
focus on a type of accessibility named potential, due to confidentiality, and on the problem
of locating healthcare centers in a zone-divided region.

From an algorithmic point of view, the problem to be solved here is relevant, since this
is a discrete p-center problem, which has been proven to be NP-hard [47,48]. Although some
variants of this problem can be solved in polynomial time [49,50], unfortunately, in the
variant that we want to solve, this does not happen. Then, approximation algorithms are
necessary to solve instances in a reasonable time.

Our study is structured in the following way. First, in Section 2, we formulate the
proposed mathematical model. Then, in Section 3, an algorithm is presented for solving
the optimization model. Next, in Section 4, numerical experiments are carried out based
on simulations and examples. Finally, we end the article in Section 5 with discussion of
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some advantages and limitations of our study, as well as providing recommendations for
further research.

2. Mathematical Model

In this section, we describe some notations and propose a three-objective mathematical
programming model for the problem considered in this study that embeds efficiency and
equity in the decision-making process of locating a set of healthcare centers.

2.1. Notations and Symbols

Before formulating the model, Table 1 presents a summary of some notations to be
used throughout the document.

Table 1. Acronyms, notations and symbols.

Acronym
Notation/Symbol Definition

Sets

N ≡ {1, . . . , n} Set of demand zones.
M ≡ {1, . . . , m} Set of potential locations for a healthcare center.

Parameters

k Number of healthcare facilities to be installed.
D Threshold of travel distance (or travel time).
wi Demand of zone i.
dij Distance between zone i and zone j.

smin(smax) Minimum (maximum) supply of a healthcare center measured in terms of
hospital bed units.

HBImin(HBImax) Minimum (maximum) hospital bed index measured in terms of
hospital bed units per 1000 inhabitants.

B A big number.

Decision variables

yj One (1) if a healthcare center is located at j, and zero (0) otherwise.
xi One (1) if the demand zone i is covered by the healthcare center,

that is, there is at least one operational healthcare center located at
most D of zone i), and zero (0) otherwise.

sj ≥ 0 Supply of healthcare center located at zone j measured in terms of
hospital beds.

ai ≥ 0 Potential spatial accessibility of zone i measured in terms of
hospital beds.

rj ≥ 0 Supply-to-population ratio within the coverage zone of the
healthcare center j measured in terms of hospital beds per inhabitants.

Ai ≥ 0, hil ≥ 0, z ≥ 0 Auxiliary variables.

2.2. Objective Functions

We define a three-objective mathematical model according to:

(i) Coverage. Maximize the coverage of the demand points, that is, maximize an
efficiency criterion given by

max

{
f1 =

n

∑
i=1

wixi

}
, (1)

with n, wi and xi being defined in Table 1.
(ii) Equity. Minimize inequity in access to healthcare centers. For this purpose, we use

the Gini index as an inequity measure [51], which is defined as one-half of the relative
mean absolute difference between all pairs of potential spatial accessibility (a measure
of the potential use of the healthcare center) ai, with i ∈ N, that is, one-half of the mean
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absolute difference between all pairs of potential spatial accessibility ai divided by the
average of the values of a. Specifically, to minimize inequity in access to healthcare
centers, we formulate the objective function given by

min

{
f2 =

n

∑
i=1

n

∑
l=1
|ai − al |/

(
2n

n

∑
i=1

ai

)}
, (2)

with n and ai being defined in Table 1.
(iii) Accessibility. The third objective incorporated into our model is focused on maximizing

the minimum potential spatial accessibility difference to zero and is stated as

max
{

f3 = min
i∈N:ai 6=0

{ai}
}

, (3)

with N and ai being defined in Table 1.

2.3. Constraints

To meet the three objectives described previously in (i)–(iii), a set of constraints must
be satisfied, which defines its domain set detailed below.

The following inequalities allow us to identify, through variable xi, whether a demand
zone i is covered by the healthcare center; that is, if there is at least one operational
healthcare center at most distance D of zone i. In fact, if there is not a healthcare center
located at most D of zone i, then ∑m

j=1:dij≤D yj = 0, which leads to xi = 0. Reciprocally,
if xi = 0, then it leads to yj = 0. Therefore, we have the constraints established as

m

∑
j=1:dij≤D

yj ≥ xi, ∀i ∈ N, (4)

xi ≥ yj, ∀i ∈ N, ∀j ∈ M, dij ≤ D,

with dij, D, m, M, and yj being defined in Table 1. The constraints also ensure the opening
of a fixed number of facilities specified in advance, which are given by ∑m

j=1 yj = k.
To compute the potential spatial accessibility of a zone i according to the 2SFCA method,
the constraints are stated as

rj =
sj

n

∑
i=1:dij≤D

wi

, ∀j ∈ M, (5)

ai =
m

∑
j=1:dij≤D

rj, ∀i ∈ N, (6)

with rj being defined in Table 1. Specifically, the constraint given in (5) calculates the supply-
to-population ratio (within the coverage zone of a healthcare center j) of the healthcare
center j, while the constraint defined in (6) computes the potential spatial accessibility of
zone i to the healthcare centers.

To guarantee the minimum and maximum supply of a health center, based on the
constraint given in (7), and the minimum and maximum global index of supply at the
analyzed region, based on the constraint expressed in (8), the corresponding constraints
are specified as

sminyj ≤ sj ≤ smaxyj, ∀j ∈ M, (7)

HBImin ≤
m

∑
j=1

sj ≤ HBImax, (8)
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with sj being defined in Table 1 and HBI denoting the hospital bed index also stated in this
table. The basic domain constraints of our proposed model are presented as

yj, xi ∈ {0, 1}, ∀i ∈ N, ∀j ∈ M,

sj ∈ Z+ ∪ {0}, ∀j ∈ M,

ai, rj ≥ 0, ∀i ∈ N, ∀j ∈ M, (9)

3. Solution Algorithm for the Three-Objective Optimization Model

In this section, we describe the ε-constraint approach for obtaining the Pareto optimal
set of the multi-objective mathematical model and the corresponding algorithm to optimize
the model.

3.1. ε-Constraint Approach

To meet the different objectives described in the expressions given in (1)–(3), we
adopt an ε-constraint method [52] for obtaining the Pareto optimal set and establishing
the equilibrium point where we find the highest achievable well-being for society. For this
purpose, we define as our primary objective to maximize the coverage of the demand
points stated in (1). In contrast, the objectives of inequity defined in (2) and accessibility
established in (3) are set as additional constraints. Thus, we define εacc and εGI as lower
and upper bounds of inequity in minimum potential spatial accessibility and access to
healthcare centers, respectively. Based on the above, the constraints derived when defining
upper and lower bounds to the objectives defined in (2) and (3) are stated as

f2 ≤ εGI, f3 ≥ εacc, (10)

respectively. Note that the constraints defined in (10) are non-linear, so we proceed to
linearize them by introducing auxiliary variables and constraints.

Given that there is a minimum supply of healthcare centers, ∑n
i=1 ai > 0 namely,

the expression given in (10) can be formulated as

n

∑
i=1

n

∑
l=1
|ai − al | ≤ εGI

(
2n

n

∑
i=1

ai

)
. (11)

Let hil be a positive variable for each i, l ∈ N. Then, the constraints stated in (11) can
be linearized by the expressions defined as

n

∑
i=1

n

∑
l=1

hil = εGI

(
2n

n

∑
i=1

ai

)
, (12)

where −hil ≤ ai − al ≤ hil , ∀i, l. Note that we must choose the minimum potential spatial
accessibility among all zones. Hence, we define, for each zone i, a positive variable Ai
that takes the value ai providing that zone i is covered by a healthcare center, which is
characterized by xi = 1 or xi = 0. Let B be a large number and z be a positive variable such
that z = mini∈N:ai 6=0{ai}. Hence, the inequality stated in (10) can be replaced by z ≥ εacc as
long as for each zone i, Ai = ai + B(1− xi), and z ≤ Ai, that is,

εacc ≤ z ≤ ai + B(1− xi), ∀i ∈ N. (13)
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Based on the above, the Pareto optimal set can be obtained by solving it iteratively.
Then, the single-objective model is given by

max{ f1}, (14)

subject to
m

∑
j=1:dij≤D

yj ≥ xi, ∀i ∈ N,

xi ≥ yj, ∀i ∈ N, ∀j ∈ M, dij ≤ D,
m

∑
j=1

yj = k,

rj = sj/
n

∑
i=1:dij≤D

wi, ∀j ∈ M,

ai =
m

∑
j=1:dij≤D

rj, ∀i ∈ N,

sminyj ≤ sj ≤ smaxyj, ∀j ∈ M,

HBImin ≤
m

∑
j=1

sj ≤ HBImax,

n

∑
i=1

n

∑
l=1

hil = εGI

(
2n

n

∑
i=1

ai

)
,

εacc ≤ z ≤ ai + B(1− xi), ∀i ∈ N,

yj, xi ∈ {0, 1}, ∀i ∈ N, ∀j ∈ M,

sj ∈ Z+ ∪ {0}, ∀j ∈ M,

ai, rj, hil , z ≥ 0, ∀i, l ∈ N, ∀j ∈ M,

for different values of εGI and εacc, where f1 is defined in (1).
One of the disadvantages of the ε-constraint approach for solving a multi-objective

mathematical model is the computational time spent when exploring εGI and εacc values
that generate infeasible solutions. Hence, we must define a range for both values. By
definition, the Gini index has a maximum value of one, whereas the minimum index Gini
can be obtained by solving the mathematical model stated as

εlower
GI = max{ f2}, (15)

subject to
m

∑
j=1:dij≤D

yj ≥ xi, ∀i ∈ N,

xi ≥ yj, ∀i ∈ N, ∀j ∈ M, dij ≤ D,
m

∑
j=1

yj = k,

rj = sj/
n

∑
i=1:dij≤D

wi, ∀j ∈ M,

ai =
m

∑
j=1:dij≤D

rj, ∀i ∈ N,

sminyj ≤ sj ≤ smaxyj, ∀j ∈ M,

HBImin ≤
m

∑
j=1

sj ≤ HBImax,

yj, xi ∈ {0, 1}, ∀i ∈ N, ∀j ∈ M,

sj ∈ Z+ ∪ {0}, ∀j ∈ M,

ai, rj ≥ 0, ∀i ∈ N, ∀j ∈ M,

where f2 is defined in (2).
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Note that the lower minimum potential spatial accessibility is zero, whereas its upper
minimum value can be obtained by solving the mathematical model expressed as

ε
upper
acc = max{ f3}, (16)

subject to
m

∑
j=1:dij≤D

yj ≥ xi, ∀i ∈ N,

xi ≥ yj, ∀i ∈ N, ∀j ∈ M, dij ≤ D,
m

∑
j=1

yj = k,

rj = sj/
n

∑
i=1:dij≤D

wi, ∀j ∈ M,

ai =
m

∑
j=1:dij≤D

rj, ∀i ∈ N,

sminyj ≤ sj ≤ smaxyj, ∀j ∈ M,

HBImin ≤
m

∑
j=1

sj ≤ HBImax,

yj, xi ∈ {0, 1}, ∀i ∈ N, ∀j ∈ M,

sj ∈ Z+ ∪ {0}, ∀j ∈ M,

ai, rj ≥ 0, ∀i ∈ N, ∀j ∈ M,

so that εGI ∈ [εlower
GI , 1] and εacc ∈ [0, ε

upper
acc ], where f3 is defined in (3).

3.2. Algorithm

Since εGI and εacc belong to a continuous set, we discretize their respective domains
in intervals δ1 and δ2 defined in advance and we choose εGI and εacc as the limits for each
interval. Thus, the procedure for obtaining the Pareto optimal set of the problem, Ω namely,
is defined as {max{ f1}, min{ f2}, max{ f3}}, subject to the constraints stated in (4) to (9),
and formulated in Algorithm 1.

Algorithm 1 ε-constraint approach for obtaining the Pareto optimal set of the multi-
objective mathematical model
begin

input : δ1, δ2 numbers of discrete intervals of [εlower
GI , 1] and [0, ε

upper
acc ], respectively

output : Pareto optimal set Ω
Initialize Ω = ∅
Compute εlower

GI by solving (15)
Calculate ε

upper
acc by solving (16)

εGI ← 1
while εGI > εlower

GI do
εacc ← 0
εGI ← εGI − (1− εlower

GI )/δ1

while εacc < ε
upper
acc do

εacc ← εacc + ε
upper
acc /δ2

Find the optimal value of (14) denoted by f ∗1
Determine f2 by means of the argument of (2)
Obtain f3 by means of the argument of (3)
Ω← Ω∪ { f ∗1 , f2, f3}

end
end

end
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4. Numerical Results

In this section, we propose an algorithm to generate instances of the location problem
of healthcare centers and another algorithm to solve them. In addition, application
examples of the proposed mathematical model are included and discussed. Furthermore,
the computational burden to evaluate the efficiency of the proposed procedure is reported.

4.1. Simulation Algorithm

We propose Algorithm 2 to generate an instance of the problem defined in Section 2.
To build the algorithm, we need to establish:

• h: Upper limit on the horizontal axis and the vertical axis.
• p: Number of inhabitants who may require healthcare.
• l1: Real number between 0 and 1 that allows us to determine the radius of the interval

to generate the demand of the zones.
• l2: Real number between 0 and 1 that permits us to state the radius of the interval for

the total zone demand.
• K: Set of possible values for k.
• smin

u : Upper limit for smin.
• smax

l : Lower limit for smax.
• U: A random variable with a continuous uniform distribution in (α, β), denoted

as U(α, β).

Regarding other input and output parameters of Algorithm 2, see Table 1. It is
important to mention that, on the one hand, Step 3 of Algorithm 2 allows us to assign a
uniformly distributed demand to each zone in an interval centered on the ratio p/n with a
radius of l1 p/n. On the other hand, its Step 4 permits us to ensure that the value of the total
demand of the zones is in an interval centered on p and with a radius of l2 p. Similarly, smin

must satisfy the condition smin ≤ smin
u , while smax must satisfy the condition smax ≥ smax

l ,
with smin < smax.

Algorithm 2 Simulation algorithm for generating instances of the location problem for
healthcare centers
begin

input : n, h, p, HBImin, HBImax, l1, l2, K.
output : smin

u , smax
l , ∀i ∈ {1, . . . , n} : (ui, vi), wi.

Step 1: Generate a value ui from U(0, h) for i = 1 to n
Step 2: State a value vi from U(0, h) for i = 1 to n
Step 3: Determine a value wi from U(p(1− l1)/n, p(1 + l1)/n) for i = 1 to n
Step 4: Set P = ∑n

i=1 wi
Step 5: Go back to Step 3 if P < p(1− l2) or P > p(1 + l2)
Step 6: Fix smin

u = min
k∈K
{HBImaxP/1000k}

Step 7: Assume smax
l = max

k∈K

{
HBIminP/1000k

}
end

To solve instances of the location problem for healthcare centers, we design Algorithm 3
that uses a sensor in a database. This algorithm achieves its objective by relying on
a simulation algorithm, a database, a sensor located in it, and a solver responsible for
obtaining the solution of the corresponding mathematical model.
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Algorithm 3 Approach for solving instances of the location problem for healthcare centers
using a database-sensor.

1: Generate an instance of the problem based on Algorithm 2 and store it in a database.

2: Detect the generation of the instance by means of a sensor in the database and build the
corresponding mathematical model with the data from the instance at run-time.

3: Send the built mathematical model to a solver by using a sensor.

4: Receive the mathematical model from the solver and compile it.

5: Store the results in the database and use them for later analysis and discussion.

4.2. Application Example

To analyze the impact of this novel approach when locating healthcare centers,
an instance was obtained when applying Algorithm 2 with the values n = 10, h = 1.7, p = 1
million of inhabitants, l1 = 0.4, l2 = 0.1, and k ∈ {3, 4, 5, 6}. The values of these parameters
have been set for experimental purposes. However, they depend on the criteria of decision-
makers when looking for a balance between the service level and available budget.

To test with an adequate minimum and maximum global index of healthcare center
supply (HBImin and HBImax), we analyzed data from the World Bank Group [53] related to
hospital beds in several countries worldwide. For example, in 2018, Colombia reported
that the HBI was 1.7 hospital beds per 1000 inhabitants, while it was 1.4 in Ecuador in 2014.
Based on the above, we adopted 1 and 2 hospital beds per 1000 inhabitants as the minimum
and maximum global index of healthcare centers, respectively, a more realistic condition in
South America. The execution of Algorithm 2 does not only provide us with the spatial
location of the study zones and their respective demands, but it also offers upper and lower
bounds for smin and smax, respectively. Based on the bounds calculated by the algorithm,
the values smin = 250 and smax = 400 are obtained.

Figure 2 shows the spatial distribution of ten zones, denoted from 1 to 10, each
one represented by a discrete center whose diameter is proportional to the demand for
healthcare centers in each zone. In other words, zone 8 is the area with the least demand,
while zone 5 has the highest demand. Each line in Figure 2 indicates a connection between
a pair of zones whose length is given by the Euclidean metric. Otherwise, the distance
between each pair of nodes is provided by the shortest path between the nodes.
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Figure 2. Spatial location of zones in a hypothetical instance 1, where 1 to 10 are the geographical
zones, with• sketching a discrete center whose diameter is proportional to the demand for healthcare
centers in the indicated zone.

As described in Algorithm 1, the Pareto optimal set of the instance is obtained from
the application of the ε-constraint method. We vary both εacc and εGI in a fine grid. In this
application example, we assume δ1 = δ2 = 500 as the number of intervals in which the
domain of εGI and εacc is divided. We implement the models in GAMS 24.0.2 and use
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ILOG CPLEX 12.5 on a computer equipped with an Intel Core i7-5500U 2.66 Ghz processor
and 8 GB of RAM.

The application results of the proposed instance for k ∈ {3, 4, 5, 6} are shown in
Table 2. For each value of k, the Pareto-frontier set is shown, in which each point in the set
is identified as a scenario. In addition, Table 3 presents the values of objective functions for
each scenario described in Table 2.

Table 2. Pareto frontier set for the listed k, scenario, zone, and other indicators in instance 1.

k Scenario εGI

εacc (Hospital
Beds/ 1000

Inhabitants)

Coverage
(Inhabitants)

Healthcare Supply (Hospital Beds by Zone) Total
(Hospital

Beds)1 2 3 4 5 6 7 8 9 10

3

3–1 0.707400 2.78100 315,742 0 0 0 0 400 0 395 250 0 0 1045
3–2 0.401325 1.94052 597,625 0 0 400 0 0 0 362 0 399 0 1161
3–3 0.401325 1.79220 633,727 0 0 347 0 0 400 0 0 400 0 1147
3–4 0.330100 1.32870 708,572 400 0 0 0 0 350 0 297 0 0 1047
3–5 0.212675 1.25454 803,882 400 0 0 0 0 0 250 0 0 400 1050
3–6 0.214600 1.24218 807,832 400 0 0 400 0 0 250 0 0 0 1050
3–7 0.166475 0.97026 915,367 0 0 400 0 0 0 251 0 0 394 1045

4

4–1 0.301225 1.94052 727,037 0 0 400 0 252 0 362 0 399 0 1413
4–2 0.201125 1.79220 820,057 0 0 344 0 0 400 337 0 400 0 1481
4–3 0.237700 1.32870 837,984 400 0 0 0 250 298 250 0 0 0 1198
4–4 0.110650 1.25454 915,367 0 0 250 0 0 0 250 0 275 400 1175
4–5 0.151075 1.25454 933,294 400 0 0 0 250 0 252 0 0 400 1302
4–6 0.153000 1.24218 937,244 400 0 0 400 250 0 251 0 0 0 1301
4–7 0.114500 0.97026 1,044,779 0 0 0 0 250 0 252 0 400 400 1302

5

5–1 0.337800 1.80456 729,037 0 250 343 0 0 263 0 0 400 400 1656
5–2 0.339725 1.92198 729,037 0 262 394 0 0 297 0 0 399 400 1752
5–3 0.341650 1.94052 729,037 0 269 400 0 0 285 0 0 399 400 1753
5–4 0.343575 2.14446 729,037 352 0 0 377 0 260 0 0 400 310 1699
5–5 0.345500 2.21244 729,037 372 0 0 399 0 276 0 0 400 309 1756
5–6 0.106800 1.79220 949,469 0 0 343 0 250 400 336 0 399 0 1728
5–7 0.052900 1.25454 1,044,779 0 0 302 0 250 0 250 0 250 400 1452

6

6–1 0.339725 2.49054 729,037 371 0 267 397 0 274 0 0 250 400 1959
6–2 0.245400 2.17536 858,449 362 0 400 388 282 268 0 0 0 309 2009
6–3 0.247325 2.21244 858,449 372 0 400 400 287 277 0 0 0 308 2044
6–4 0.145300 2.10738 915,367 341 0 0 366 0 253 0 393 400 309 2062
6–5 0.147225 2.13210 915,367 348 0 0 374 0 258 0 400 400 309 2089
6–6 0.158775 1.34724 949,469 250 0 306 0 278 400 0 400 250 0 1884
6–7 0.160700 1.39050 949,469 250 0 250 0 278 400 400 0 324 0 1902
6–8 0.162625 1.43994 949,469 250 0 250 0 277 400 400 0 343 0 1920
6–9 0.164550 1.48938 949,469 250 0 363 0 278 400 400 0 250 0 1941

6–10 0.166475 1.79220 949,469 0 0 400 0 252 400 250 250 400 0 1952
6–11 0.047125 1.25454 1,044,779 310 0 0 250 260 0 374 0 400 399 1993
6–12 0.087550 1.32870 1,044,779 400 274 0 400 252 400 363 0 0 0 2089

Where GI: Gini index.

Table 3. Objective values in the listed scenario, zone, and other indicators for instance 1.

Scenario Coverage GI (∗∗)
Potential Spatial Accessibility (Hospital Beds by Zone/1000 Inhabitants)

MPSA (∗)
1 2 3 4 5 6 7 8 9 10

3–1 315,742 0.70740 0 0 0 0 3.0909 0 3.4616 3.4616 0 0 3.0909
3–2 597,625 0.40001 1.9426 1.9426 1.9426 0 0 0 1.9428 1.9428 1.9426 0 1.9426
3–3 633,727 0.40132 1.8162 1.8162 1.8162 0 0 1.7983 0 0 1.8162 1.7983 1.7983
3–4 708,572 0.32976 1.3342 0 1.3342 0 0 1.5735 1.5939 1.5939 1.3342 1.5735 1.3342
3–5 803,882 0.21166 1.3342 0 1.3342 1.2589 0 1.2589 1.3417 1.3417 1.3342 1.2589 1.2589
3–6 807,832 0.21394 1.3342 1.2434 1.3342 1.2434 0 0 1.3417 1.3417 1.3342 1.2434 1.2434
3–7 915,367 0.16646 0.9725 0.9725 0.9725 1.2400 0 1.2400 1.3471 1.3471 0.9725 1.2400 0.9725

4–1 727,037 0.30021 1.9426 1.9426 1.9426 0 1.9473 0 1.9428 1.9428 1.9426 0 1.9426
4–2 820,057 0.20089 1.8089 1.8089 1.8089 0 0 1.7983 1.8086 1.8086 1.8089 1.7983 1.7983
4–3 837,984 0.23756 1.3342 0 1.3342 0 1.9318 1.3397 1.3417 1.3417 1.3342 1.3397 1.3342
4–4 915,367 0.11063 1.2765 1.2765 1.2765 1.2589 0 1.2589 1.3417 1.3417 1.2765 1.2589 1.2589
4–5 933,294 0.15089 1.3342 0 1.3342 1.2589 1.9318 1.2589 1.3524 1.3524 1.3342 1.2589 1.2589
4–6 937,244 0.15295 1.3342 1.2434 1.3342 1.2434 1.9318 0 1.3471 1.3471 1.3342 1.2434 1.2434
4–7 1,044,779 0.11421 0.9725 0.9725 0.9725 1.2589 1.9318 1.2589 1.3524 1.3524 0.9725 1.2589 0.9725
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Table 3. Cont.

Scenario Coverage GI (∗∗)
Potential Spatial Accessibility (Hospital Beds by Zone/1000 Inhabitants)

MPSA (∗)

1 2 3 4 5 6 7 8 9 10

5–1 729,037 0.33775 1.8065 2.4422 2.4422 1.8946 0 2.4413 0 0 2.4422 2.4413 1.8065
5–2 729,037 0.33971 1.9281 2.5943 2.5943 1.9251 0 2.5941 0 0 2.5943 2.5941 1.9251
5–3 729,037 0.34162 1.9426 2.6266 2.6266 1.9429 0 2.5402 0 0 2.6266 2.5402 1.9426
5–4 729,037 0.34350 2.1466 2.1445 2.1466 2.1476 0 2.1445 0 0 2.1466 3.3165 2.1445
5–5 729,037 0.34451 2.2133 2.2129 2.2133 2.2128 0 2.2133 0 0 2.2133 3.4536 2.2128
5–6 949,469 0.10677 1.8041 1.8041 1.8041 0 1.9318 1.7983 1.8033 1.8033 1.8041 1.7983 1.7983
5–7 1,044,779 0.05128 1.3421 1.3421 1.3421 1.2589 1.9318 1.2589 1.3417 1.3417 1.3421 1.2589 1.2589

6–1 729,037 0.33972 2.4945 2.4911 2.4945 2.4930 0 2.4907 0 0 2.4945 3.7248 2.4907
6–2 858,449 0.24536 2.1800 2.1787 2.1800 2.1786 2.1791 2.1773 0 0 2.1800 3.3835 2.1773
6–3 858,449 0.24614 2.2133 2.2160 2.2133 2.2128 2.2177 2.2147 0 0 2.2133 3.4581 2.2128
6–4 91,536 0.14529 2.1099 2.1103 2.1099 2.1102 0 2.1099 2.1092 2.1092 2.1099 3.2476 2.1092
6–5 91,536 0.14629 2.1333 2.1351 2.1333 2.1351 0 2.1324 2.1467 2.1467 2.1333 3.2950 2.1324
6–6 949,469 0.15877 2.1857 1.3518 2.1857 0 2.1482 1.7983 2.1467 2.1467 2.1857 1.7983 1.3518
6–7 949,469 0.16062 2.2295 1.3956 2.2295 0 2.1482 1.7983 2.1467 2.1467 2.2295 1.7983 1.3956
6–8 949,469 0.16261 2.2756 1.4418 2.2756 0 2.1405 1.7983 2.1467 2.1467 2.2756 1.7983 1.4418
6–9 949,469 0.16450 2.3243 1.4904 2.3243 0 2.1482 1.7983 2.1467 2.1467 2.3243 1.7983 1.4904
6–10 949,469 0.16634 1.9451 1.9451 1.9451 0 1.9473 1.7983 2.6834 2.6834 1.9451 1.7983 1.7983
6–11 1,044,779 0.04704 2.0065 1.7497 2.0065 2.0329 2.0091 1.2557 2.0072 2.0072 2.0065 2.0329 1.2557
6–12 1,044,779 0.08755 1.3342 1.9401 2.0309 1.9401 1.9473 1.7983 1.9482 1.9482 2.0309 3.0417 1.3342

Where (∗) MPSA: Minimum potential spatial accessibility; GI (∗∗): Gini index.

The results of the proposed instance for k = 6 show that the Pareto optimal set
corresponds to the mesh sets (Figure 3a), where the Pareto-frontier set is made up of
twelve non-dominated solutions (Figure 3b). Figure 4 presents the location of healthcare
centers when k = 6 for different coverage values, where a black square represents the
healthcare center.

(a) (b)

Figure 3. Solution for k = 6 with: (a) Pareto optimal set; and (b) Pareto-frontier set; where black
planes to the left indicate the mesh sets and black dots to the right are the non-dominated solutions.

An aspect worth noting is that the increase in the number of healthcare centers to
be installed does not necessarily increases the level of system coverage and additionally
it could increase inequity. Indeed, taking the results of Table 2, note that the maximum
coverage level obtained when k = 3 (scenario 3–7) is less compared to that obtained when
k = 4 (scenario 4–7). From there, when k = 5 and k = 6, the maximum coverage level
remains constant because it is the maximum value that can be achieved in instance 1.
Nevertheless, when increasing from k = 5 to k = 6 healthcare facilities, the Gini index
might improve, although the minimum potential spatial accessibility decreases (see Table 3
scenarios 5–7 and 6–11). However, the opposite effect happens if we compare scenarios 5–7
and 6–12 in Table 3.

The location of the facilities and healthcare center supply play an essential role in
reducing inequity. From Figure 5c,d, note that, in both cases, the same level of coverage
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exists. Nonetheless, the inequity level in scenario 6–12 is greater compared to scenario 6–11
(Table 3). Thus, we can see that, although a zone has the largest population, a health center
should not necessarily be installed (Figure 5b), even if its sanitary supply is the largest
allowed when it is installed (see scenario 6–12 on Table 2 and Figure 5d).
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Figure 4. Spatial location of healthcare centers for different coverage levels with k = 6 and: (a) 858,449
inhabitants; (b) 915,367 inhabitants; (c) 949,469 inhabitants; and (d) 1,044,779 inhabitants; where 1 to
10 are the geographical zones, with• and � sketching a zone discrete center and a healthcare center
location, respectively.

A similar pattern can be seen in another random instance (Figure 6a), which was
generated according to Algorithm 2 with its parameters such as instance 1. To solve that,
we applied Algorithm 1. By analyzing a non-dominated Pareto solution set (Figure 6b),
observe that, when k = 7, the coverage level increases from 722,229 (square marks) to
751,945 (plus marks), producing a decrease in both inequity and accessibility of healthcare
systems (increasing in the Gini index) and also a decrease in the minimum potential
accessibility in some cases (see Tables 4 and 5).

An exhaustive analysis of the Pareto-frontier sets shows that, in some scenarios,
an increase in the total healthcare center supply of the system does not necessarily cause
a decrease in inequity. For example, the total healthcare center supply in scenario 5–1 is
1723 hospital beds (Table 4) and its Gini index is 0.439 (Table 5). However, in scenario 5–7,
its Gini index decreases to 0.289 although its total healthcare center supply goes down to
1549 hospital beds. A similar situation can be seen in scenarios 6–1 and 6–8 reported in
Tables 4 and 5. In addition, we can observe that, although the total healthcare center supply
of the system is the same, its efficiency (measured by coverage) and inequality (measured
by the Gini index) are different, which clearly highlights the need to adequately manage
the available resources (see all scenarios where k = 7 in Tables 4 and 5).
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Figure 5. Spatial location of healthcare centers with a maximum coverage level (1,044,779) for
different values of k in instance 1 with: (a) k = 3; (b) k = 4; (c) k = 5; and (d) k = 6; where 1 to 10
are the geographical zones, with• and � sketching a zone discrete center and a healthcare center
location, respectively.
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Figure 6. A randomly generated instance 2 for: (a) spatial zone distribution; and (b) non-dominated
Pareto solutions when k = 7; where 1 to 10 are the geographical zones, with• sketching a discrete
center whose diameter is proportional to the demand for healthcare centers in the indicated zone;
and the indicated optimum coverage level f ∗1 .
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Table 4. Pareto frontier set for the listed k, scenario, zone, and other indicators in instance 2.

k Scenario εGI

εacc
(Hospital Beds/

1000 Inhabitants)

Coverage
(Inhabitants)

Healthcare Supply (Hospital Beds by Zone)
Total

(Hospital
Beds)1 2 3 4 5 6 7 8 9 10

3

3–1 0.701650 3.09000 305,751 0 315 0 0 0 0 0 400 365 0 1080
3–2 0.641980 1.88490 429,267 0 0 0 0 400 0 0 332 296 0 1028
3–3 0.555362 1.76130 522,146 0 0 400 0 0 0 395 0 0 329 1124
3–4 0.557287 1.77366 522,146 0 0 400 0 0 0 400 0 0 347 1147
3–5 0.430247 1.52646 637,082 0 0 308 0 324 400 0 0 0 0 1032
3–6 0.432172 1.59444 637,082 0 0 344 0 339 400 0 0 0 0 1083
3–7 0.434097 1.67478 637,082 0 0 384 0 355 400 0 0 0 0 1139
3–8 0.436022 1.70568 637,082 0 0 400 0 365 400 0 0 0 0 1165
3–9 0.476444 1.21128 657,008 0 0 0 0 378 0 0 250 0 400 1028
3–10 0.416773 1.06914 751,945 400 0 0 0 0 0 0 250 0 378 1028

4

4–1 0.601558 3.09000 390,898 0 274 0 264 0 0 0 355 317 0 1210
4–2 0.441796 1.73658 637,082 297 0 0 0 250 400 0 0 0 342 1289
4–3 0.443721 1.86636 637,082 345 0 0 0 250 400 0 0 0 384 1379
4–4 0.445646 1.98996 637,082 391 0 0 0 250 400 0 0 0 400 1441
4–5 0.349404 1.70568 751,945 0 0 400 0 362 400 0 250 0 0 1412
4–6 0.405224 1.21128 759,482 0 0 0 0 400 0 0 250 250 400 1300
4–7 0.351329 1.06914 854,419 399 0 0 0 0 0 0 250 250 400 1299

5

5–1 0.437947 2.50290 637,082 297 0 400 0 362 400 0 0 0 264 1723
5–2 0.439872 2.65122 637,082 352 0 400 0 362 400 0 0 0 312 1826
5–3 0.441796 2.77482 637,082 400 0 398 0 361 400 0 0 0 354 1913
5–4 0.347479 1.97142 751,945 386 0 0 0 250 400 0 254 0 400 1690
5–5 0.349404 2.00850 751,945 400 0 0 0 256 398 0 262 0 400 1716
5–6 0.268561 1.70568 854,419 0 0 400 0 370 400 0 250 250 0 1670
5–7 0.289734 1.06914 942,833 399 250 0 0 0 0 0 250 250 400 1549

6

6–1 0.457195 2.71302 637,082 308 0 293 0 400 400 250 0 0 400 2051
6–2 0.345554 2.6265 725,496 388 250 337 0 336 400 0 0 0 344 2055
6–3 0.339780 2.28042 751,945 282 0 305 0 323 400 0 262 0 250 1822
6–4 0.341705 2.53998 751,945 312 0 398 0 361 400 0 292 0 277 2040
6–5 0.343630 2.5647 751,945 379 0 317 0 328 400 0 295 0 336 2055
6–6 0.255087 2.0085 854,419 400 0 0 0 257 398 0 263 250 400 1968
6–7 0.195417 1.70568 942,833 0 250 400 0 370 400 0 250 250 0 1920
6–8 0.218515 1.06914 1,027,980 400 250 0 250 0 0 0 255 250 400 1805
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Table 4. Cont.

k Scenario εGI

εacc
(Hospital Beds/

1000 Inhabitants)

Coverage
(Inhabitants)

Healthcare Supply (Hospital Beds by Zone)
Total

(Hospital
Beds)1 2 3 4 5 6 7 8 9 10

7

7–1 0.362878 2.33604 722,229 250 0 250 250 353 397 250 0 0 305 2055
7–2 0.364803 2.36694 722,229 250 0 250 250 360 320 250 0 0 375 2055
7–3 0.362878 2.32986 725,496 250 250 250 0 354 400 250 0 0 301 2055
7–4 0.364803 2.36076 725,496 250 250 250 0 359 333 250 0 0 363 2055
7–5 0.364803 2.31132 739,556 250 0 250 0 348 361 250 0 271 325 2055
7–6 0.366728 2.36076 739,556 250 0 250 0 359 306 250 0 256 384 2055
7–7 0.368652 2.37312 739,556 250 0 250 0 361 294 250 0 250 400 2055
7–8 0.366728 2.29278 751,945 250 0 250 0 345 316 250 290 0 354 2055
7–9 0.368652 2.33604 751,945 250 0 250 0 354 277 250 274 0 400 2055
7–10 0.370577 2.34222 751,945 250 0 250 0 355 280 250 270 0 400 2055
7–11 0.245463 2.26188 854,419 318 0 250 0 299 396 0 260 250 282 2055
7–12 0.178093 1.86636 942,833 349 250 0 0 250 400 0 250 250 306 2055
7–13 0.139597 1.55736 1,027,980 0 250 322 250 333 400 0 250 250 0 2055

Where GI: Gini index.
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Table 5. Objective values in the listed scenario, zone, and other indicators for instance 2.

Scenario Coverage GI (∗∗)

Potential Spatial Accessibility

MPSA (∗)(Hospital Beds by Zone/1000 Inhabitants)

1 2 3 4 5 6 7 8 9 10

3–1 305,751 0.70152 0 3.5628 0 0 0 0 0 3.4824 3.5619 0 3.4824
3–2 429,267 0.64197 1.8874 0 0 0 1.8874 0 0 2.8904 2.8885 0 1.8874
3–3 522,146 0.55535 1.7637 0 2.7600 0 0 2.7600 1.7637 0 0 1.7624 1.7624
3–4 522,146 0.55719 1.7763 0 2.8271 0 0 2.8271 1.7763 0 0 1.8169 1.7763
3–5 637,082 0.43019 2.1187 0 1.5307 0 1.5288 1.5307 1.5307 0 0 1.5307 1.5288
3–6 637,082 0.43212 2.2584 0 1.5997 0 1.5996 1.5997 1.5997 0 0 1.5997 1.5996
3–7 637,082 0.43408 2.4105 0 1.6763 0 1.6751 1.6763 1.6763 0 0 1.6763 1.6751
3–8 637,082 0.43581 2.4883 0 1.7069 0 1.7223 1.7069 1.7069 0 0 1.7069 1.7069
3–9 657,008 0.47587 1.7836 0 1.2113 0 1.7836 1.2113 0 2.17651 0 1.2113 1.2113
3–10 751,945 0.41531 1.0736 0 2.2183 0 1.0736 1.1447 1.0736 2.17651 0 1.1447 1.0736

4–1 390,898 0.60029 0 3.0991 0 3.1005 0 0 0 3.09064 3.09347 0 3.0906
4–2 637,082 0.44171 1.9768 0 2.7737 0 1.9768 1.9765 1.7380 0 0 1.9765 1.7380
4–3 637,082 0.44372 2.1056 0 3.0297 0 2.1056 2.1037 1.8668 0 0 2.1037 1.8668
4–4 637,082 0.44561 2.2291 0 3.2016 0 2.2291 2.1522 1.9903 0 0 2.1522 1.9903
4–5 751,945 0.34917 2.4742 0 1.7069 0 1.7081 1.7069 1.7069 2.1765 0 1.7069 1.7069
4–6 759,482 0.40464 1.8874 0 1.2113 0 1.8874 1.2113 0 2.1765 2.4396 1.2113 1.2113
4–7 854,419 0.35122 1.0709 0 2.2823 0 1.0709 1.2113 1.0709 2.1765 2.4396 1.2113 1.0709

5–1 637,082 0.43793 3.2714 0 3.3036 0 2.5053 2.5064 2.5041 0 0 2.5064 2.5041
5–2 637,082 0.43987 3.4190 0 3.5965 0 2.6529 2.6517 2.6517 0 0 2.6517 2.6517
5–3 637,082 0.44143 3.5393 0 3.8487 0 2.7770 2.7751 2.7767 0 0 2.7751 2.7751
5–4 751,945 0.34747 2.2157 0 3.1882 0 2.2157 2.1522 1.9769 2.2113 0 2.1522 1.9769
5–5 751,945 0.34931 2.2816 0 3.2211 0 2.2816 2.1475 2.0098 2.2810 0 2.1475 2.0098
5–6 854,419 0.26844 2.5119 0 1.7069 0 1.7459 1.7069 1.7069 2.1765 2.4396 1.7069 1.7069
5–7 942,833 0.28905 1.0709 2.8276 2.2823 0 1.0709 1.2113 1.0709 2.1765 2.4396 1.2113 1.0709
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Table 5. Cont.

Scenario Coverage GI (∗∗)

Potential Spatial Accessibility

MPSA (∗)(Hospital Beds by Zone/1000 Inhabitants)

1 2 3 4 5 6 7 8 9 10

6–1 637,082 0.45680 3.9066 0 4.1714 0 2.7141 3.3447 2.9601 0 0 2.7133 2.7133
6–2 725,496 0.34553 3.2723 2.8276 3.6694 0 2.6268 2.6280 2.6277 0 0 2.6280 2.6268
6–3 751,945 0.33977 2.8651 0 3.0390 0 2.2810 2.2821 2.2819 2.2810 0 2.2821 2.2810
6–4 751,945 0.34168 3.3031 0 3.3794 0 2.5408 2.5419 2.5405 2.5422 0 2.5419 2.5405
6–5 751,945 0.34361 3.1721 0 3.5827 0 2.5649 2.5655 2.5652 2.5683 0 2.5655 2.5649
6–6 854,419 0.25506 2.2863 0 3.2211 0 2.2863 2.1475 2.0098 2.2897 2.4396 2.1475 2.0098
6–7 942,833 0.19534 2.5119 2.8276 1.7069 0 1.7459 1.7069 1.7069 2.1765 2.4396 1.7069 1.7069
6–8 1,027,980 0.21850 1.0736 2.8276 2.2850 2.9361 1.0736 1.2113 1.0736 2.2200 2.4396 1.2113 1.0736

7–1 722,229 0.36262 3.4468 0 3.6386 2.9361 2.3367 2.9676 2.7150 0 0 2.3362 2.3362
7–2 722,229 0.36477 3.4799 0 3.6695 2.9361 2.3697 2.9985 2.5339 0 0 2.3671 2.3671
7–3 725,496 0.36283 3.4516 2.8276 3.6336 0 2.3414 2.9626 2.7220 0 0 2.3312 2.3312
7–4 725,496 0.36475 3.4752 2.8276 3.6637 0 2.3650 2.9927 2.5645 0 0 2.3613 2.3613
7–5 739,556 0.36479 3.4233 0 3.6145 0 2.3131 2.9435 2.6303 0 2.6446 2.3121 2.3121
7–6 739,556 0.36670 3.4752 0 3.6638 0 2.3650 2.9928 2.5009 0 2.4982 2.3614 2.3614
7–7 739,556 0.36759 3.4846 0 3.6841 0 2.3744 3.0130 2.4727 0 2.4396 2.3816 2.3744
7–8 751,945 0.36671 3.4091 0 3.5965 0 2.2989 2.9255 2.5245 2.5247 0 2.2941 2.2941
7–9 751,945 0.36863 3.4516 0 3.6441 0 2.3414 2.9730 2.4327 2.3855 0 2.3417 2.3414
7–10 751,945 0.36907 3.4563 0 3.6511 0 2.3461 2.9801 2.4398 2.3506 0 2.3487 2.3461
7–11 854,419 0.24537 2.7432 0 3.1177 0 2.2644 2.2642 2.2638 2.2636 2.4396 2.2642 2.2636
7–12 942,833 0.17798 2.1164 2.8276 2.8043 0 2.1164 1.8675 1.8776 2.1765 2.4396 1.8675 1.8675
7–13 1,027,980 0.13847 2.1880 2.8276 1.5575 2.9361 1.5713 1.5575 1.5575 2.1765 2.4396 1.5575 1.5575

Where (∗) MPSA: Minimum potential spatial accessibility; GI (∗∗): Gini index.
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4.3. Computational Burden

To evaluate the computational performance of the proposed procedure, we apply
Algorithm 2 to generate instances of different sizes. According to the inputs given in this
algorithm, in all the generated instances, we considered HBImin = 1, HBImax = 2, h = 2,
p = 0.2, l1 = 0.2, l2 = 0.2, and k ∈ {5, 6, 7, 8, 9}.

Table 6 reports the results of the application of our model in instances with 10, 15,
20 and 50 zones. Considering in each case different values of k, healthcare facilities are
installed. Each of these instances was run within a maximum runtime of 2 days (48 h).

Table 6. Computational study results for the indicated n and k.

n k Runtime (in Hours)

10

5 9.33
6 7.25
7 8.30
8 8.01
9 9.20

15

5 11.15
6 13.14
7 12.42
8 11.23
9 12.31

20

5 19.76
6 18.25
7 21.24
8 22.28
9 23.77

30

5 32.21
6 33.02
7 36.12
8 36.53
9 37.10

50 5 >48
6 >48

As can be seen in Table 6, the implementation of the model is adequate in small
instances (less than 20 zones). However, it is evident that, in instances that exceed 50 zones,
more than two days will be required to obtain the Pareto frontier, so the use of meta-
heuristic-based approaches could be considered.

5. Conclusions, Limitations, and Future Research

In this section, we provide the conclusions of our study, as well as some of its
limitations, and ideas for further investigation.

5.1. Concluding Remarks

In this paper, we addressed the location problem for healthcare centers under a multi-
criteria approach that embeds efficiency and equity concerns. For this purpose, we have
adopted the coverage of healthcare systems as an efficiency criterion, and the Gini index as
a proxy variable that measures the inequity level on accessibility to healthcare centers.

The results obtained in this study show that the application of an efficiency criterion
in the location of facilities does not guarantee equity in resource distribution and vice
versa. Therefore, the adopted approach in this study was appropriate. Note that the spatial
distribution influenced the coverage level of the healthcare system. Nevertheless, this is
not decisive for reducing inequity in accessible healthcare centers since the distribution of
healthcare center supply must be incorporated into the decision-making process. In fact,
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there could be situations with a low total healthcare center supply (see Table 2, scenario
6–11) that are more equitable than a scenario with a high healthcare center supply (see
Table 2, scenario 6–12) for the same coverage level. However, the minimum potential spatial
accessibility would be sacrificed. In contrast, a decrease in the total healthcare center supply
could increase inequality and decrease minimum potential spatial accessibility, although it
might increase the coverage of the healthcare system.

For example, results from the numerical application showed 10 non-dominated Pareto
solutions with a coverage level of 915,367 inhabitants (circle marks in Figure 7), which
performed poorly both in equity and minimum potential spatial accessibility compared to
non-dominated Pareto solutions with a coverage level of 949,469 inhabitants (plus marks).
Therefore, the performance of the suggested actions depends to a great extent on the
number of facilities to be installed and on the total healthcare center supply as well. This
gives us an opportunity to expand the study by incorporating budget constraints. In this
context, from the results reported in Tables 2 and 3, we have noticed that an increase in
total healthcare center supply could increase the coverage of the system. Nonetheless,
this does not necessarily reduce inequity. For example, scenario 4–4 had a total healthcare
center supply of 1175 hospital beds distributed in zones 3, 7, 9 and 10, which covered
915,367 inhabitants and produced a Gini index of 0.111. In addition, increasing the total
healthcare center supply up to 1302 hospital beds (scenario 4–5) distributed into zones
1, 5, 7 and 10, the coverage increases up to 933,294 inhabitants, but the Gini index was
0.151. However, this fact cannot be considered a rule since there are cases in which an
increase in the total healthcare center supply produced an increase in the coverage and a
decrease in the Gini index, that is, the inequality declined. For example, this happened
when comparing scenarios 3–1 and 3–2.
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Figure 7. Spatial location of health centers for the indicated optimum coverage level f ∗1 with k = 6.

5.2. Limitations and Future Research

A limitation of the present investigation is that the simulation model could not be used
outside the limits of the parameters studied in which it was constructed. This may cause a
false appreciation of the multi-objective linear programming problem when considering
other scenarios. Undoubtedly, future research should analyze other efficiency criteria that
contribute to reducing the inequality gap. In addition, some variants to this problem can
be addressed in future research, such as the inclusion of decay functions in the expression
measuring potential spatial accessibility. This could reflect a gradual supply capture
according to the distance that separates a demand zone from each healthcare center. It is
also important to consider restrictions on the budgetary availability of resources to install
healthcare centers, which may vary according to geographical zones.

Since the method we use to solve our problem, that is, the ε-constraint method, deals
with mixed integer linear problems at each iteration, it is important to mention that a study
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of techniques that employ, for example, reformulations or relaxations [2,54,55] might be
applied to improve the performance of the method and its execution times.

Finally, due to what was stated in Section 4.3 about runtimes, the utilization of heuristic
techniques is something that should be explored, even when there is no guarantee of
obtaining an optimal solution when this approach is applied.
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