
An Equivalence between Network Coding and

Index Coding

M. Effros

California Institute of Technology

effros@caltech.edu

S. El Rouayheb

Princeton University

salim@princeton.edu

M. Langberg

The Open University of Israel

mikel@openu.ac.il

Abstract—We show that the network coding and index coding
problems are equivalent. This equivalence holds in the general
setting which includes linear and non-linear codes. Specifically,
we present an efficient reduction that maps a network coding
instance to an index coding one while preserving feasibility.
Previous connections were restricted to the linear case.

I. INTRODUCTION

In the network coding paradigm, a set of source nodes

transmits information to a set of terminal nodes over a net-

work while internal nodes of the network may mix received

information before forwarding it. This mixing (or encoding)

of information has been extensively studied over the last

decade (see e.g., [1], [2], [3], [4], [5] and references therein).

While network coding in the multicast setting is currently well

understood, this is far from being the case for the general

multi-source multi-terminal setting. In particular, determining

the capacity of a general network coding instance remains an

intriguing central open problem, e.g., [6], [7], [8], [9], [10].

A special instance to the network coding problem intro-

duced in [11], which has seen significant interest lately, is the

so-called index coding problem [11], [12], [13], [14], [15],

[16]. Roughly speaking, the index coding problem encapsu-

lates the “broadcast with side information” problem in which

a single server wishes to communicate with several clients

each requiring potentially different information and having

potentially different side information (see Figure 1(a) for an

example).

One may consider the index coding problem as a simple

and representative instance of network coding. The instance

is “simple” in the sense that any index coding instance can be

represented as a topologically simple network coding instance

in which only a single internal node has in-degree greater than

one and thus only a single internal node can perform encoding

(see Figure 1(b) for an example). It is “representative” in

the sense that the index coding paradigm is broad enough to

characterize the network coding problem under the assumption

of linear encoding [17]. Specifically, given any instance to

the network coding problem I, one can efficiently construct

an instance of the index coding problem Î such that: (a)

The work of Michael Langberg was supported in part by ISF grant 480/08
and BSF grant 2010075. The work of S. El Rouayheb was supported in part
by the National Science Foundation under Grant CCF-1016671. Work done
while Michael Langberg was visiting the California Institute of Technology.
Authors appear in alphabetical order.

server

Wants:

(a) Index coding instance (b) Equivalent network

Terminals:

Sources:Wants: X4
Has: X1

Wants: X1
Has: X2 X3

Wants: X2
Has: X1 X3

Wants: X1 X3
Has: X2 X4

X1 X2 X3 X4

t
1

t
4

t
3

t
2

X1 X2 X3 X4

t1 t2 t3 t4

X4 X1 X2 X1 X3

c
c

c

c

c

Fig. 1. (a) An instance of the index coding problem. A server has 4 binary
sources X1, . . . , X4 and there are 4 terminals with different “wants” and
“has” sets (corresponding to the communication demand and side information
respectively). How can we satisfy the terminals’ demands with a minimum
number of bits broadcasted by the server? The server can trivially transmit all
the 4 sources. However, this is not optimal and it is sufficient to broadcast only
2 bits, namely X1+X2+X3 and X1+X4 (‘+’ denotes the xor operation).
(b) Index coding is a special case of the network coding problem. All links
are of unit capacity (non-specified) or of capacity c. Links directly connecting
between sources and terminals represent the “has” sets. Any solution to the
index coding problem with c broadcast bits can be efficiently mapped to a
solution to the corresponding network coding instance and visa versa. This
implies that the index coding problem is a special case of the network coding
problem. The focus of this work is on the opposite assertion. Namely, that
the network coding problem is a special case of the index coding problem.

There exists a linear solution to I if and only if there exists

an optimal linear solution to Î, and (b) any optimal linear

solution to Î can be efficiently turned into a linear solution to

I. All undefined notions above (and those that follow), such

as “solution,” “feasibility,” and “capacity”, will be given in

detail in Section II.

The results of [17] hold for (scalar and vector) linear coding

functions only, and the analysis there breaks down once one

allows general coding (which may be non-linear) at internal

nodes. The study of non-linear coding functions is central to

the study of network coding as it is shown in [18] that non-

linear codes have an advantage over linear solutions, i.e., that

there exist instances in which linear codes do not suffice to

achieve capacity.

In this work, we extend the equivalence between network

coding and index coding to the setting of general encoding

functions (which may be non-linear). Our results imply that,

effectively, when one wishes to solve a network coding

instance I, a possible route is to turn the network coding

instance into an index coding instance Î (via our reduction),

ar
X

iv
:1

21
1.

66
60

v1
 [

cs
.I

T
]

 2
8

N
ov

 2
01

2

solve the index coding instance Î, and turn the solution to

Î into a solution to the original network coding instance I.

Hence, any efficient scheme to solve index coding will yield

an efficient scheme for network coding. Stated differently, our

results imply that an understanding of the solvability of index

coding instances will imply an understanding of the solvability

of network coding instances as well.

The remainder of the paper is structured as follows. In

Section II, we present the models of network and index

coding. In Section III, we present an example based on the

“butterfly network” that illustrates our proof techniques. In

Section IV, we present the main technical contribution of this

work: the equivalence between network and index coding.

In Section V, we show a connection between the capacity

regions of index coding and network coding in networks with

collocated sources. Finally, in Section VI, we conclude with

some remarks and open problems.

II. MODEL

In what follows we define the model for the network coding

and index coding problems. Throughout this paper, “hatted”

variables (e.g., x̂) will correspond to the variables of index

coding instances, while “unhatted” variables will correspond

to the network coding instance. For integers k > 0, we use

[k] to denote the set {1, . . . , k}.

A. Network coding

An instance I = (G,S, T,B) of the network coding

problem includes a directed acyclic network G = (V,E), a

set of sources nodes S ⊂ V , a set of terminal nodes T ⊂ V ,

and an |S| × |T | requirement matrix B. We assume, without

loss of generality, that each source s ∈ S has no incoming

edges and that each terminal t ∈ T has no outgoing edges.

Let ce denote the capacity of each edge e ∈ E, namely for

any block length n, each edge e can carry one of the 2cen

messages in [2cen]. In our setting, each source s ∈ S holds a

rate Rs random variable Xs uniformly distributed over [2Rsn].
The variables describing different messages are independent.

We assume that values of the form 2cen and 2Rsn are integers.

A network code, (F ,X) = {(fe, Xe)} ∪ {gt}, is an

assignment of a pair (fe, Xe) to each edge e ∈ E and a

decoding function {gt} to each terminal t ∈ T . For e = (u, v),
fe is a function taking as input the random variables associated

with incoming edges to node u, and Xe ∈ [2cen] is the random

variable equal to the evaluation of fe on its inputs. If e is an

edge leaving a source node s ∈ S, then Xs is the input to fe.

The input to the decoding function gt consists of the random

variables associated with incoming edges to terminal t. The

output of gt is required to be a vector of all sources required

by t.
Given the acyclic structure of G, the functions {fe} and

their evaluation {Xe} can be defined by induction on the

topological order of G. Namely, given the family {fe} one

can define a function family {f̄e}
1 such that each f̄e takes

1In the network coding literature, {fe} and {f̄e} are sometimes referred
to as the local and global encoding functions, respectively.

as input the source information {Xs} and outputs the random

variable Xe. More precisely, for e = (u, v) in which u is a

source node, define f̄e = fe. For e = (u, v) in which u is

an internal node with incoming edges In(e) = {e′1, . . . , e
′
ℓ},

define f̄e = fe(f̄e′1 , . . . , f̄e′ℓ). Namely, the evaluation of f̄e on

source information {Xs} equals the evaluation of fe given the

values of f̄e′ for e′ ∈ In(e). We will use both {fe} and {f̄e}
in our analysis.

The |S| × |T | requirement matrix B = [bi,j] has entries in

the set {0, 1}, with bs,t = 1 if and only if terminal t requires

information from source s.

A network code (F ,X) is said to satisfy terminal node t
under transmission (xs : s ∈ S) if the decoding function gt
outputs (xs : b(s, t) = 1) when (Xs : s ∈ S) = (xs : s ∈ S).
The Network code (F ,X) is said to satisfy the instance I
with error probability ε ≥ 0 if the probability that all t ∈ T
are simultaneously satisfied is at least 1 − ε. The probability

is taken over the joint distribution on random variables (Xs :
s ∈ S).

For a rate tuple R = (R1, . . . , R|S|), an instance I to

the network coding problem is said to be (ε,R, n)-feasible

if there exists a network code (F ,X) with block length n
that satisfies I with error at most ε when applied to source

information (X1, . . . , X|S|), where Xs is uniformly distributed

over [2Rsn]. An instance I to the network coding problem is

said to be R-feasible if for any ε > 0 and any δ > 0 there

exists a block length n such that I is (ε,R(1−δ), n)-feasible.

Here, R(1− δ) = (R1(1− δ), . . . , R|S|(1− δ)). The capacity

region of an instance I refers to all rate tuples R for which

I is R-feasible.

B. Index coding

The index coding problem captures the “broadcast with

side information” problem in which a single server wishes

to communicate with several clients each having different

side information. Specifically, an instance to index coding

includes a set of terminals T̂ = {t̂1, . . . , t̂|T̂ |} and a set of

sources Ŝ = {ŝ1, ŝ2, . . . , ŝ|Ŝ|} available at the server. Given a

block length n, source ŝ holds a rate R̂ŝ random variable X̂ŝ

uniformly distributed over [2R̂ŝn] (and independent from other

sources). Each terminal requires information from a certain

subset of sources in Ŝ. In addition, information from some

sources in Ŝ are available a priori as side information to each

terminal. Specifically, terminal t̂ ∈ T̂ is associated with sets:

• Ŵt̂ is the set of sources required by t̂, and

• Ĥt̂ is the set of sources available at t̂.

We refer to Ŵt̂ and Ĥt̂ as the “wants” and “has” sets of t̂,
respectively. The server uses an error-free broadcast channel

to transmit information to the terminals. The objective is to

design an encoding scheme that satisfy the demands of all

the terminals while minimizing the number of uses of the

broadcast channel (See Figure 1).

Formally, an instance Î to the index coding problem is

the tuple (Ŝ, T̂ , {Ŵt̂}, {Ĥt̂}). An index code (ÊB , D̂) for Î
with broadcast rate ĉB , includes an encoding function ÊB

e5e1

e2 e3

e4

e6
e7

t2 t1

X2X1

s1 s2

(a) Butterfly Network (b) Equivalent Index Coding Instance

Wants HasTerminal

t̂e1

t̂e2

t̂e3

t̂e4

t̂e5

t̂e6

t̂e7

t̂1

t̂2

t̂allX̂e5
X̂e2

X̂e3

X̂e1

X̂e2

X̂e3

X̂e4

X̂e6

X̂e7

X̂1

X̂2

X̂1

X̂2

Wants HasTerminal

X̂e5

X̂e5

X̂e6
X̂e1

X̂e7
X̂e4X̂1

X̂2

X̂1 X̂2X̂e1
. . . X̂e7

X̂1, X̂2

X̂e1
, . . . , X̂e7

Wants: X2
X1

Fig. 2. (a) The butterfly network with two sources X1 and X2 and two
terminals t1 and t2. (b) The equivalent index coding instance. The server has

9 sources: one for each source, namely {X̂1, X̂2}, and one for each edge in

the network, namely {X̂e1 , . . . , X̂e7}. There are 7 clients corresponding to
the 7 edges in the network, 2 clients corresponding to the two terminals of
the butterfly network and one extra terminal t̂all.

for the broadcast channel, and a set of decoding functions

D̂ = {D̂t̂}t̂∈T̂ with one function for each terminal. The

function ÊB is a function that takes as input the source

random variables {X̂ŝ} and outputs a rate ĉB random variable

X̂B ∈ [2ĉBn]. The input to the decoding function D̂t̂ consists

of the random variables in Ĥt̂ (the source random variables

available to t̂) and the broadcast message X̂B . The output of

D̂t̂ is intended to be a vector of all sources in Ŵt̂ required by

t̂.
An index code (ÊB , D̂) of broadcast rate ĉB is said to satisfy

terminal t̂ under transmission (x̂ŝ : ŝ ∈ Ŝ) if the decoding

function D̂t̂ outputs (x̂ŝ : ŝ ∈ Ŵt̂) when (X̂ŝ : ŝ ∈ Ŝ) =
(x̂ŝ : ŝ ∈ Ŝ). Index code (ÊB , D̂) is said to satisfy instance Î
with error probability ε ≥ 0 if the probability that all t̂ ∈ T̂
are simultaneously satisfied is at least 1−ε. The probability is

taken over the joint distribution on random variables {X̂ŝ}ŝ∈Ŝ .

For a rate tuple R̂ = (R̂1, . . . , R̂|Ŝ|) and broadcast rate

ĉB , an instance Î to the index coding problem is said to be

(ε, R̂, ĉB , n)-feasible if there exists an index code (ÊB , D̂)
with broadcast rate ĉB and block length n that satisfies Î with

error at most ε when applied to source information (X̂ŝ : ŝ ∈
Ŝ) where each X̂ŝ is uniformly and independently distributed

over [2R̂ŝn]. An instance Î to the network coding problem is

said to be (R̂, ĉB)-feasible if for any ε > 0 and δ > 0 there

exists a block length n such that Î is (ε, R̂(1 − δ), ĉB , n)-
feasible. As before, R̂(1− δ) = (R̂1(1− δ), . . . , R̂|Ŝ|(1− δ)).

The capacity region of an instance Î refers to all rate tuples

R̂ and capacities ĉB for which Î is (R̂, ĉB)-feasible.

III. EXAMPLE

Our main result states that the network coding and index

coding problems are equivalent (for linear and non-linear

coding). Theorem 1 in Section IV gives a formal statement of

this result. The proof is based on a reduction that constructs for

any given network coding problem an equivalent index coding

problem. In this section, we explain the main elements of our

proof by applying it to the butterfly network [1] example in

Fig. 2(a). For simplicity, our example does not consider any

error in communication. Our reduction goes along the lines of

the construction in [17], while our analysis differs to capture

the case of non-linear encoding.

We start by briefly describing the butterfly network depicted

in Fig. 2(a). The network has two information sources s1 and

s2 that hold two uniform i.i.d binary random variables X1 and

X2, respectively. There are also two terminals (destinations) t1
and t2 that want X1 and X2, respectively. All the edges in the

network, e1, . . . , e7, have capacity 1. Following the notation

in Section II-A, let f̄ei(X1, X2) be the one-bit message on

edge ei. Then, the following is a network code that satisfies

the demands of the terminals:

f̄e1 = f̄e2 = X1

f̄e3 = f̄e4 = X2 (1)

f̄e5 = f̄e6 = f̄e7 = X1 +X2,

where ‘+’ denotes the xor operation. Terminal t1 can decode

X1 by computing X1 = f̄e4 + f̄e7 , and t2 can decode X2

by computing X2 = f̄e1 + f̄e6 . Thus, the butterfly network is

(ǫ, R, 1) = (0, (1, 1), 1)-feasible.

The problem now is to construct an index coding instance

that is “equivalent” to the butterfly network, i.e., any index

code for that instance would imply a network code for the

butterfly network, and vice versa. We propose the following

construction, based on that presented in [17], in which the

server has 9 sources split into two sets (see Figure 2).

• X̂1 and X̂2 corresponding to the two sources X1 and X2

in the butterfly network.

• X̂e1 , . . . , X̂e7 corresponding to the edges e1, . . . , e7 in

the butterfly network.

There are 10 clients, as described in the Table in Fig. 2(b).

These clients are split into 3 sets:

• A client t̂ei for each edge ei. Client t̂ei wants X̂ei and

has the variables X̂ej for each edge ej in the butterfly

network that is incoming to ei.
• A client t̂i for each network terminal ti. t̂i wants X̂i and

has the variables X̂ej for each edge ej in the butterfly

network that is incoming to ti. Namely t̂1 wants X̂1 and

has X̂e4 and X̂e7 , whereas t̂2 wants X̂2 and has X̂e1 and

X̂e6 .

• One client t̂all that wants all variables that correspond

to edges of the butterfly network (i.e., X̂e1 , . . . , X̂e7) and

has all variables that correspond to sources of the butterfly

network (i.e., X̂1 and X̂2).

Next, we explain how the solutions are mapped between

these two instances. While “Direction 1” strongly follows the

analysis appearing in [17], our major novelty is in “Direction

2” (both proof directions are presented below for completion).

Direction 1: Network code to index code. Suppose we

are given a network code with local encoding functions fei ,
and global encoding functions f̄ei(X1, X2), i = 1, . . . , 7. We

construct the following index code solution in which the server

broadcasts the 7-bit vector X̂B = (X̂B(e1), . . . , X̂B(e7)),

where

X̂B(ei) = X̂ei + f̄ei(X̂1, X̂2), i = 1, . . . , 7. (2)

For instance, the index code corresponding to the network code

in (1) is

X̂B(e1) = X̂e1 + X̂1

X̂B(e2) = X̂e2 + X̂1

X̂B(e3) = X̂e3 + X̂2

X̂B(e4) = X̂e4 + X̂2 (3)

X̂B(e5) = X̂e5 + X̂1 + X̂2

X̂B(e6) = X̂e6 + X̂1 + X̂2

X̂B(e7) = X̂e7 + X̂1 + X̂2.

One can check that this index code allows each client to

recover the sources in its “wants” set using the broadcast X̂B

and the information in its “has” set. For example, in the case

of the index code in (3), terminal t̂e5 computes

X̂e5 = X̂B(e5)− (X̂B(e2)− X̂e2)− (X̂B(e3)− X̂e3).

Here, both ‘+’ and ‘-’ denote the xor operation. More specif-
ically, terminal t̂e5 first computes f̄e′ for its incoming edges

via its “has” set and X̂B (i.e., f̄e2 = X̂B(e2) − X̂e2 and

f̄e3 = X̂B(e3)− X̂e3). Then using the fact that

f̄e5(X̂1, X̂2) = fe5

(

f̄e′(X̂1, X̂2)|e
′

is an incoming edge of e5

)

,

terminal t̂e5 can compute f̄e5(X̂1, X̂2). Finally, by the defi-

nition of X̂B in (2) terminal t̂e5 recovers X̂e5 = X̂B(e5) −
f̄e5(X̂1, X̂2). By a similar process, every terminal in the index

coding instance can decode the sources it wants.

Direction 2: Index code to network code. Let ĉB equal the

total capacity of edges in the butterfly network, i.e., ĉB = 7.

Suppose we are given an index code with broadcast rate ĉB
that allows each client to decode the sources it requires (with

no errors). We want to show that any such code can be mapped

to a network code for the butterfly network. Let us denote by

X̂B = (X̂B,1, . . . , X̂B,7) the broadcast information where X̂B

is a function, possibly non-linear, of the 9 sources available at

the server X̂1, X̂2 and X̂e1 , . . . , X̂e7 .

For every client t̂, there exists a decoding function D̂t̂ that

takes as input the broadcast information X̂B and the sources
in its “has” set and outputs the sources it requires. Namely,
we have the following functions:

D̂
t̂e1

(X̂B , X̂1) = X̂e1 D̂
t̂e2

(X̂B , X̂1) = X̂e2

D̂
t̂e3

(X̂B , X̂2) = X̂e3 D̂
t̂e4

(X̂B , X̂2) = X̂e4

D̂
t̂e5

(X̂B , X̂e2 , X̂e3) = X̂e5 D̂
t̂e6

(X̂B , X̂e5) = X̂e6 (4)

D̂
t̂e7

(X̂B , X̂e5) = X̂e7 D̂
t̂1
(X̂B , X̂e4 , X̂e7) = X̂1

D̂
t̂2
(X̂B , X̂e1 , X̂e6) = X̂2 D̂

t̂all
(X̂B , X̂1, X̂2)

= (X̂e1 , . . . , X̂e7).

We will use these decoding functions to construct the network

code for the butterfly network. Consider for example edge e5.

Its incoming edges are e2 and e3, so we need to define a local

encoding fe5 which is a function of the information Xe2 and

Xe3 they are carrying. In our approach, we fix a specific value

σ for X̂B , and define

fe5(Xe2 , Xe3) = D̂t̂e5
(σ,Xe2 , Xe3).

Similarly, we define the encoding functions for every edge in

the butterfly network, and the decoding functions for the two

terminals t1 and t2. The crux of our proof lies in showing that

there exists a value of σ for which the corresponding network

code allows correct decoding. In the example at hand, one may

choose σ to be the all zero vector 0 (or actually any vector

for that matter). The resulting network code is:

fe1 = D̂t̂e1
(0, X1) fe2 = D̂t̂e2

(0, X1)

fe3 = D̂t̂e3
(0, X2) fe4 = D̂t̂e4

(0, X2) (5)

fe5 = D̂t̂e5
(0, fe2 , fe3) fe6 = D̂t̂e6

(0, fe5)

fe7 = D̂t̂e7
(0, fe5).

Terminals t1 and t2 can decode using the functions

D̂t̂1
(0, fe4 , fe7) and D̂t̂2

(0, fe1 , fe6), respectively.

To prove correct decoding, we show that for any fixed values

of X̂1 and X̂2, there exists a unique value for the vector

(X̂e1 , . . . , X̂e7) that corresponds to X̂B = 0. Otherwise, it can

be seen that t̂all cannot decode correctly since ĉB = 7 and X̂B

is a function of X̂1, X̂2 and X̂e1 , . . . , X̂e7 . Roughly speaking,

this correspondence allows us to reduce the analysis of correct

decoding in the resulting network code, to correct decoding in

the original index code. Full details of this reduction, and on

how to choose σ appear in the upcoming Section IV.

IV. MAIN RESULT

We follow the proof of [17] to obtain our main result.

Theorem 1: For any instance to the network coding prob-

lem I one can efficiently construct an instance to the index

coding problem Î and an integer ĉB such that for any rate

tuple R, any integer n, and any ε ≥ 0 it holds that I is

(ε,R, n) feasible iff Î is (ε, R̂, ĉB , n) feasible. Here, the

rate vector R̂ for Î can be efficiently computed from R;

and the corresponding network and index codes that imply

feasibility in the reduction can be efficiently constructed from

one another.

Proof: Let G = (V,E), and I = (G,S, T,B). Let n be

any integer, and let R = (R1, . . . , R|S|). We start by defining

Î = (Ŝ, T̂ , {Ŵt̂}, {Ĥt̂}), the integer ĉB , and the rate tuple

R̂. See Figure 2 for an example. To simplify notation, we

use the notation X̂ŝ to denote both the source ŝ ∈ Ŝ and

the corresponding random variable. For e = (u, v) in E let

In(e) be the set of edges entering u in G. If u is a source s
let In(e) = {s}. For ti ∈ T , let In(ti) be the set of edges

entering ti in G.

• Ŝ consists of |S| + |E| sources: one source denoted X̂s

for each original source s in I and one source denoted X̂e

for each edge e in G. Namely, Ŝ = {X̂s}s∈S∪{X̂e}e∈E .

• T̂ consists of |E| + |T | + 1 terminals: |E| terminals

denoted t̂e corresponding to the edges in E, |T | terminals

denoted t̂i corresponding to the terminals in I, and a

single terminal denoted t̂all. Namely, T̂ = {t̂e}e∈E ∪
{t̂i}i∈[|T |] ∪ {t̂all}.

• For t̂e ∈ T̂ we set Ĥt̂e
= {X̂e′}e′∈In(e) and Ŵt̂e

=

{X̂e}.

• For t̂i ∈ T̂ , let ti be the corresponding terminal in T . We

set Ĥt̂i
= {X̂e′}e′∈In(ti) and Ŵt̂i

= {X̂s}s:b(s,ti)=1.

• For t̂all set Ĥt̂all
= {X̂s}s∈S and Ŵt̂all

= {X̂e}e∈E .

• Let R̂ be a vector of length |S| + |E| consisting of two

parts: (R̂s : s ∈ S) represents the rate R̂s of each X̂s

and (R̂e : e ∈ E) represents the rate R̂e of X̂e. Set

R̂s = Rs for each s ∈ S and R̂e = ce for each e ∈ E.

(Here Rs is the entry corresponding to s in the tuple R,

and ce is the capacity of the edge e in G.)

• Set ĉB to be equal to
∑

e∈E ce =
∑

e∈E R̂e.

We now present the two directions of our proof. The fact

that I is (ε,R, n) feasible implies that Î is (ε, R̂, ĉB , n)
feasible was essentially shown in [17] and is presented here

for completeness. The other direction is the major technical

contribution of this work.

I is (ε,R, n) feasible implies that Î is (ε, R̂, ĉB , n):

For this direction we assume the existence of a network

code (F ,X) = {(fe, Xe)} ∪ {gt} for I which is (ε,R, n)
feasible. As mentioned in Section I, given the acyclic structure

of G, one may define a new set of functions f̄e with input

{Xs}s∈S such that the evaluation of f̄e is identical to the

evaluation of fe, which is Xe. We construct an index code

(ÊB , D̂) = (ÊB , {D̂t}) for Î. We do this by specifying the

broadcast encoding ÊB and the decoding functions {D̂t̂}t̂∈T̂ .

The function ÊB will be defined in chunks, with one chunk

(of support size [2cen]) for each edge e ∈ E denoted ÊB(e).
We denote the output of ÊB(e) by X̂B(e) and the output of ÊB

by the concatenation X̂B of the output chunks X̂B(e). In what

follows we use ‘a+b’ as the bitwise xor operator between equal

length bit vectors a and b. For each e ∈ E, the corresponding

chunk in ÊB(e) will be equal to X̂e + f̄e(X̂1, . . . , X̂|S|). It

follows that ÊB is a function from the source random variables

of Î to X̂B with support
[

2
∑

e∈E R̂en
]

= [2ĉBn].

We now set the decoding functions:

• For t̂e in T̂ we set D̂t̂e
to be the function defined by the

following decoding scheme:

– First, for each e′ ∈ In(e), using the information

in Ĥt̂e
, the decoder computes X̂B(e

′) + X̂e′ =

f̄e′(X̂1, . . . , X̂|S|)+X̂e′ +X̂e′ = f̄e′(X̂1, . . . , X̂|S|).
– Then, let In(e) = {e′1, . . . , e

′
ℓ}. Using the function

fe from network code (F ,X), the decoder computes

fe(f̄e′1(X̂1, . . . , X̂|S|), . . . , f̄e′
ℓ
(X̂1, . . . , X̂|S|)).

By definition of f̄e this is exactly f̄e(X̂1, . . . , X̂|S|).
– Finally, compute

X̂B(e) + f̄e(X̂1, . . . , X̂|S|) = X̂e,

which is the source information client t̂e wants in Î.

• For t̂i ∈ T̂ the process is almost identical to that above.

Let ti be the corresponding terminal in T . The function

gti is used on the evaluations of f̄e′ for e′ ∈ In(ti),
and the outcome is exactly the set of sources Ŵt̂i

=

{X̂s}s:b(s,ti)=1 wanted by ti.

• For t̂all, recall that Ĥt̂all
= {X̂s}s∈S and Ŵt̂all

=

{X̂e}e∈E . To obtain X̂e the decoder evaluates X̂B(e) +
f̄e(X̂1, . . . , X̂|S|).

Let ε ≥ 0. We now show that if the network code (F ,X)
succeeds with probability 1−ε on network I (over the sources

{Xs}s∈S of rate tuple R), then the corresponding index code

also succeeds with probability 1− ε over Î with sources {X̂}
of rate tuple R̂.

Consider any realization x = {xs} of source information

{Xs} of the given network coding instance I for which all

terminals of the network code decode successfully. Denote a

realization of source information {X̂ŝ}ŝ∈Ŝ in Î by (x̂s, x̂e),

where x̂s corresponds to the sources {X̂s}s∈S and x̂e cor-

responds to sources {X̂e}e∈E . Let x̂s(s) be the entry in x̂s

corresponding to source X̂s for s ∈ S, and let x̂e(e) be the

entry in x̂e corresponding to source X̂e for e ∈ E. Consider a

source realization (x̂s, x̂e) in Î “corresponding” to x = {xs}:

namely, for s ∈ S set x̂s(s) = xs and set x̂e to be any

complementary source realization.

For source realization x of I, let xe be the realization of

Xe transmitted on edge e in the execution of the network

code (F ,X). By our definitions, it holds that for any edge

e ∈ E, f̄e(x̂s) = f̄e(x) = xe. It follows that the realization

of X̂B(e) = X̂e + f̄e(X̂1, . . . , X̂|S|) is x̂e(e) + f̄e(x̂s) =
x̂e(e) + xe. In addition, as we are assuming correct decoding

on x, for each terminal ti ∈ T of I it holds that gi(xe′ : e′ ∈
In(ti)) = (xs : b(s, ti) = 1).

Consider a terminal t̂e in Î. The decoding procedure

of t̂e first computes for e′ ∈ In(e) the realization of

X̂B(e
′) + X̂e′ which by the discussion above is exactly

x̂e(e
′) + xe′ + x̂e(e

′) = xe′ . Then the decoder computes

fe(xe′ : e′ ∈ In(e)) = f̄e(x) = f̄e(x̂s) = xe. Finally, the

decoder computes the realization of X̂B(e)+f̄e(X̂1, . . . , X̂|S|)
which is x̂e(e) + xe + xe = x̂e(e) which is exactly the

information that the decoder needs.

Similarly, consider a terminal t̂i in Î corresponding to a

terminal ti ∈ T of I. The decoding procedure of t̂i first

computes for e′ ∈ In(ti) the realization of X̂B(e
′) + X̂e′

which by the discussion above is exactly xe′ . Then the decoder

computes gi(xe′ : e′ ∈ In(ti)) = (xs : b(s, ti) = 1), which

is exactly the information needed by t̂i.
Finally, consider the terminal t̂all. The decoding procedure

of t̂all computes for each e ∈ E the realization of X̂B(e) +
f̄e(X̂1, . . . , X̂|S|) which is x̂e(e) + xe + xe = x̂e(e) which

again is exactly the information needed by t̂all.
All in all, we conclude that all terminals of Î decode cor-

rectly on source realization (x̂s, x̂e) corresponding to source

realization x of I which allows correct decoding in I. This

implies that the instance Î is indeed (ε, R̂, ĉB , n) feasible.

Î is (ε, R̂, ĉB , n) feasible implies that I is (ε,R, n) feasible:

Here, we assume that Î is (ε, R̂, ĉB , n) feasible with ĉB as

defined above. Thus, there exists an index code (ÊB , D̂) =
(ÊB , {D̂t̂}) for Î with block length n and success probability

at least 1 − ε. In what follows we obtain a network code

(F ,X) = {(fe, Xe)}∪{gt} for I. The key observation we use

is that by our definition of ĉB =
∑

e∈E R̂e, the support [2ĉBn]

of the encoding ÊB is exactly the size of the (product of) the

supports of the source variables {X̂e} in Î. The implications

of this observation are described below.

We start with some notation. For each realization x̂s =
{x̂s}s∈S of source information {X̂s} in Î, let Ax̂s

be the re-

alizations x̂e = {x̂e}e∈E of {X̂e}e∈E for which all terminals

decode (x̂s, x̂e) correctly. That is, if we use the term “good”

to refer to any source realization pair (x̂s, x̂e) for which all

terminals decode correctly (X̂s, X̂e) = (x̂s, x̂e), then

Ax̂s
= {x̂e | the pair (x̂s, x̂e) is good}.

Claim 1: For any given σ ∈ [2ĉBn] and any x̂s, there is at

most one x̂e ∈ Ax̂s
for which ÊB(x̂s, x̂e) = σ.

Proof: Let x̂s = {x̂s}s∈S be a realization of the source

information {X̂s}s∈S . Treat the broadcasted value ÊB(x̂s, x̂e)
as a function of x̂e. Namely, set ÊB(x̂s, X̂e) = Ê x̂s

(X̂e).
Now, for any x̂s and any x̂e ∈ Ax̂s

, it holds that terminal

t̂all will decode correctly given the realization of the “has”

set Ĥt̂all
= x̂s and the broadcasted information X̂B via ÊB .

Namely, D̂t̂all
(Ê x̂s

(x̂e), x̂s) = x̂e. We now show (by means

of contradiction) that the function Ê x̂s
(x̂e) obtains different

values for different x̂e ∈ Ax̂s
. This will suffice to prove our

assertion.

Suppose that there are two values x̂e 6= x̂
′
e

in Ax̂s

such that Ê x̂s
(x̂e) = Ê x̂s

(x̂′
e
). This implies that x̂e =

D̂t̂all
(Ê x̂s

(x̂e), x̂s) = D̂t̂all
(Ê x̂s

(x̂′
e
), x̂s) = x̂

′
e
, which gives a

contradiction.

Claim 2: There exists a σ ∈ [2ĉBn] such that at least a

(1−ε) fraction of source realizations x̂s satisfy ÊB(x̂s, x̂e) =
σ for some x̂e ∈ Ax̂s

.

Proof: Consider a random value σ chosen uniformly

from [2ĉBn]. For any partial source realization x̂s, the prob-

ability that there exists a realization x̂e ∈ Ax̂s
for which

ÊB(x̂s, x̂e) = σ is at least |Ax̂s
|/2ĉBn. This follows by

Claim 1, since for every x̂e ∈ Ax̂s
it holds that ÊB(x̂s, x̂e) is

distinct. Hence, the expected number of source realizations

x̂s for which there exists a realization x̂e ∈ Ax̂s
with

ÊB(x̂s, x̂e) = σ is at least
∑

x̂s

|Ax̂s
|

2ĉBn
≥

(1− ε)2n(
∑

s∈S R̂s+
∑

e∈E R̂e)

2ĉBn
.

We use here the fact that the total number of source realiza-

tions (x̂s, x̂e) for which the index code (ÊB , D̂) succeeds is

exactly
∑

x̂s

|Ax̂s
|, which by the ε error assumption is at least

(1− ε)2n(
∑

s∈S R̂s+
∑

e∈E R̂e).

Since ĉB =
∑

e∈E R̂e,

(1− ε)2n(
∑

s∈S R̂s+
∑

e∈E R̂e)

2ĉBn
= (1− ε)2n(

∑
s∈S R̂s),

which, in turn, is exactly the size of a (1− ε) fraction of all

partial source realizations x̂s.

We conclude that there is a σ ∈ [2ĉBn] which “behaves” at

least as well as expected, namely a value of σ that satisfies

the requirements in the assertion.

We will now define the encoding functions of (F ,X) for

the network code instance I. Specifically, we need to define

the encoding functions {fe} and the decoding functions {gt}
for the edges e in E and terminals t in the terminal set T of

I. We start by formally defining the functions. We then prove

that they are an (ε,R, n) feasible network code for I.

Let σ be the value specified in Claim 2, let Aσ be the set

of partial realizations x̂s for which there exists a realization

x̂e ∈ Ax̂s
with ÊB(x̂s, x̂e) = σ. By Claim 2, the size of Aσ

is at least (1− ε)2n(
∑

s∈S R̂s) = (1− ε)2n(
∑

s∈S Rs).

For e ∈ E let

fe :
[

2n
∑

e′∈In(e) ce′
]

→ [2nce]

be the function that takes as input the random variables (Xe′ :
e′ ∈ In(e)) and outputs Xe = D̂t̂e

(σ, (Xe′ : e′ ∈ In(e))).
Here, we consider Xe′ for e′ ∈ E to be a random variable of

support [2ce′n].

For terminals ti ∈ T in I let

gti :
[

2n
∑

e′∈In(ti)
ce′

]

→
[

2n
∑

s∈S:b(s,ti)=1 Rs

]

be the function that takes as input the random variables (Xe′ :
e′ ∈ In(ti)) and outputs D̂t̂i

(σ, (Xe′ : e
′ ∈ In(ti))).

We will now show that the network code defined above

decodes correctly with probability 1−ε. Consider any rate R =
(R1, . . . , R|S|) realization of the source information in I: x =

{xs}. Consider the source information x̂s of Î corresponding

to x, namely let x̂s = x. Assume that x̂s ∈ Aσ . Using Claim 2,

let x̂e be the realization of source information {X̂e} in Î for

which ÊB(x̂s, x̂e) = σ. Recall that, by our definitions, all

terminals of Î will decode correctly given source realization

(x̂s, x̂e). For s ∈ S, let x̂s(s) = xs be the entry in x̂s that

corresponds to X̂s. For e ∈ E, let x̂e(e) be the entry in x̂e

that corresponds to X̂e.

We show by induction on the topological order of G
that for source information x the evaluation of fe in the

network code above results in the value xe which is equal

to x̂e(e). For the base case, consider an edge e = (u, v)
in which u is a source with no incoming edges. In that

case, by our definitions, the information xe on edge e equals

fe(xs) = D̂t̂e
(σ, xs) = D̂t̂e

(ÊB(x̂s, x̂e), x̂s(s)) = x̂e(e).
Here, the last equality follows from the fact that the index code

(ÊB , D̂) succeeds on source realization (x̂s, x̂e), and thus all

terminals (and, in particular, terminal t̂e) decode correctly.

In general, consider an edge e = (u, v) with incoming edges

e′ ∈ In(e). In that case, by our definitions, the information xe

on edge e equals fe(xe′ : e
′ ∈ In(e)). However, by induction,

each xe′ for which e′ ∈ In(e) satisfies xe′ = x̂e(e
′). Thus

xe = D̂t̂e
(σ, (xe′ : e

′ ∈ In(e))) = D̂t̂e
(ÊB(x̂s, x̂e), (x̂e(e

′) :
e′ ∈ In(e))) = x̂e(e). As before, the last equality follows

from the fact that the index code (ÊB , D̂) succeeds on source

realization (x̂s, x̂e).
Finally, we address the value of the decoding functions

gt. By definition, the outcome of gt is exactly D̂t̂i
(σ, (xe′ :

e′ ∈ In(ti))) = D̂t̂i
(ÊB(x̂s, x̂e), (x̂e(e

′) : e′ ∈ In(ti))) =
(x̂s(s) : b(s, ti) = 1) = (xs : b(s, ti) = 1). As before,

we use the inductive argument stating that xe′ = x̂e(e
′),

and the fact that the index code (ÊB , D̂) succeeds on source

realization (x̂s, x̂e), and thus all terminals (and, in particular,

terminal t̂i) decode correctly. This suffices to show that the

proposed network code (F ,X) succeeds with probability 1−ε
on source input of rate tuple R. We have presented correct

decoding for I when x = x̂s ∈ Aσ , and shown that

|Aσ| ≥ (1−ε)2n(
∑

s∈S Rs). Therefore, we have shown correct

decoding for I with probability at least (1− ε).

V. CAPACITY REGIONS

In certain cases, our connection between network and index

coding presented in Theorem 1 implies a tool for determining

the network coding capacity via the capacity of index coding

instances. Below, we present such a connection in the case

of collocated sources (i.e., for network coding instances in

which all the sources are collocated at a single node in the

network). Similar results can be obtained for “super source”

networks (studied in, e.g., [19], [20]). We discuss general

network coding instances in Section VI.

Corollary 1: For any instance to the network coding prob-

lem I where all sources are collocated, one can efficiently

construct an instance to the index coding problem Î and an

integer ĉB such that for any rate tuple R: R is in the capacity

region of I iff (R̂, ĉB) is in the capacity region of Î. Here,

the rate vector R̂ for Î can be efficiently constructed from R.

Proof: Let I be an instance to the network coding

problem and let R be any rate tuple. The instance Î, the rate

tuple R̂ and the integer ĉB are obtained exactly as presented

in Theorem 1. We now show that any R is in the capacity

region of I iff (R̂, ĉB) is in the capacity region of Î.

From network coding to index coding: Suppose that R
is in the capacity region of the network coding instance

I. Namely, for any ε > 0, any δ > 0, and source rates

R(1 − δ) = (R1(1 − δ), . . . , R|S|(1 − δ)), there exists a

network code with a certain block length n that satisfies I
with error probability ε. As shown in the proof of the first

direction of Theorem 1, this network code can be efficiently

mapped to an index code for Î of block length n, broad-

cast rate equal to ĉBn, error probability ε and source rates

R̂δ = ({R̂s(1 − δ)}s∈S , {R̂e}e∈E). Therefore, for any ε > 0
and any δ > 0, there exists a block length n for which Î
is (ε, R̂δ, ĉB , n) feasible, and thus (R̂, ĉB) is in the capacity

region of Î.

From index coding to network coding: Suppose that

(R̂, ĉB) is in the capacity region of Î. Recall that R̂ =
({R̂s}s∈S , {R̂e}e∈E) and ĉB =

∑

e∈E R̂e. Therefore, for any

ε > 0 and any δ ≥ 0 there exists an index code with a

certain block length n and error probability ε such that Î

is (ε, R̂(1 − δ), ĉB , n)-feasible. Note that we cannot readily

use the proof of the second direction of Theorem 1 to map

this index code into an network code for I. That is because

this map requires that ĉB be equal to the sum of rates of

random variables in Î that correspond to edges in E, namely

that ĉB = (1− δ)
∑

e∈E R̂e. However, in our setting we have

ĉB =
∑

e∈E R̂e. This (small) slackness will not allow the

proof of Theorem 1 to go through. Instead, we proceed by

first stating a claim similar to Claim 2, which will allow us to

prove our results in the setting in which all sources in I are

collocated. The proof of Claim 3 appears at the end of this

section. Throughout, we use the notation set in the proof of

Theorem 1.

Claim 3: There exists a set Σ ⊂ [2ĉBn] of cardinality

|Σ| = n log (4/3)(1− δ)(
∑

s∈S

R̂s)2
nδ

∑
e∈E R̂e

such that least a (1 − 2ε) fraction of source realizations x̂s

satisfy ÊB(x̂s, x̂e) = σ for some x̂e ∈ Ax̂s
and some σ ∈ Σ.

Assuming Claim 3 we will now define the encoding and

decoding functions for the network coding instance I. Suppose

that all the sources s ∈ S are collocated at a single node that

we call the source node. For each source realization xs, the

source node checks whether there exists x̂e ∈ Ax̂s
and some

σxs
∈ Σ such that ÊB(x̂s, x̂e) = σxs

(Case A) or not (Case

B).

In Case A, the network code operates in two phases. During

the first phase, the source node sends an overhead message to

all the nodes in the network2 revealing the value of σxs
using

at most log |Σ| bits (by Claim 3). The rate needed to convey the

overhead message vanishes for arbitrarily small values of δ. In

the second phase, we implement the network code described in

the second direction of the proof of Theorem 1 (with σ = σxs
).

The source xs is transmitted through the network by sending

on edge e the message Xe = D̂t̂e
(σxs

, (Xe′ : e′ ∈ In(e)))
and each terminal ti implementing the decoding function

D̂t̂i
(σxs

, (Xe′ : e′ ∈ In(ti))). The total block length used

is n(1 + δ′) for δ′ = log |Σ|/n that tends to zero as δ
tends to zero. It is not hard to verify (based on the proof of

Theorem 1) that such encoding/decoding functions for I will

allow successful decoding when the source realization for I
is xs.

In Case B, we allow the network to operate arbitrarily,

and consider this case as an error. Claim 3 implies that

Case B will happen with probability at most 2ǫ. Therefore,

for R = (R̂s1 , . . . , R̂s|S|
) the network coding instance I is

(2ε, R(1−δ)
1+δ′

, n(1 + δ′)) feasible for δ′ = log |Σ|/n. As 2ε
tends to zero with ε tending to zero, and similarly δ′ tends

to zero as δ tends to zero, we conclude that I is R-feasible.

We now present the proof of Claim 3.

Proof: (Claim 3) Consider the elements x̂s for which

|Ax̂s
| is at least of size 2n(1−δ)ĉB−1. Recall that ĉB =

2Any node that cannot be reached by a directed path from the source node
can be set to remain inactive (not transmit any message) without altering the
capacity region of the network.

∑

e∈E R̂e. Denote these elements x̂s by the set A. Notice

that

|A| ≥ (1− 2ε) · 2n(1−δ)
∑

s∈S R̂s .

Otherwise the total error in the index code we are considering

is greater than ε, which is a contradiction to our assumption.

Let Σ′ be a subset of [2nĉB] of cardinality |Σ′| = 2δnĉB

chosen uniformly at random (i.e., each element of Σ′ is i.i.d.

uniform from [2nĉB]). For x̂s ∈ [2n(1−δ)
∑

s∈S R̂s] define the

binary random variable Zx̂s
, such that Zx̂s

= 1 whenever there

exist x̂e ∈ Ax̂s
and σ ∈ Σ′ such that ÊB(x̂s, x̂e) = σ, and

Zx̂s
= 0 otherwise.

Using Claim 1, we have for any x̂s ∈ A that

Pr(Zx̂s
= 1) = 1−

(

1−
|Ax̂s

|

2nĉB

)|Σ′|

≥ 1−

(

1−
2n(1−δ)ĉB−1

2nĉB

)|Σ′|

= 1−

(

1−
1

2|Σ′|

)|Σ′|

>
1

4
.

We say that the x̂s ∈ A is covered by Σ′ if Zx̂s
= 1. It suffices

to cover all x̂s ∈ A in order to satisfy our assertion.

In expectation, Σ′ covers at least 1
4 of the elements in A.

Using the same averaging argument as in Claim 2, it follows

that there exists a choice for the set Σ′ that covers 1
4 of the

elements in A. By removing these covered values of x̂s and

repeating on the remaining elements in A in a similar manner

iteratively, we can cover all the elements of A. Specifically,

iterating log |A|/ log (4/3) times (each time with a new Σ′)

it is not hard to verify that all elements of A will eventually

be covered. Taking Σ to be the union of all Σ′
i obtained in

iteration i, we conclude our assertion.

VI. CONCLUSIONS

In this work, we addressed the equivalence between the

network and index coding paradigms. Following the line of

proof presented in [17] for a restricted equivalence in the case

of linear encoding, we present an equivalence for general (not

necessarily linear) encoding functions. Our results show that

the study and understanding of the index coding paradigm

implies a corresponding understanding of the network coding

paradigm.

Although our connection between network and index coding

is very general it does not directly imply a tool for determining

the network coding capacity region as defined in Section II for

general network coding instances. Indeed, as mentioned in the

proof of Corollary 1 for collocated sources, a naive attempt

to reduce the problem of determining whether a certain rate

vector R is in the capacity region of a network coding instance

I to the problem of determining whether a corresponding rate

vector R̂ is in the capacity region of an index coding instance

Î, shows that a stronger, more robust connection between

index and network coding is needed. A connection which

allows some flexibility in the value of the broadcast rate ĉB .

Such a connection is subject to future studies.

Recently, it has been shown [20], [21] that certain intriguing

open questions in the context of network coding are well

understood in the context of index coding (or the so-called

“super-source” setting of network coding). These include the

question of “zero-vs-ε error: “What is the maximum loss in

rate when insisting on zero error communication as opposed

to vanishing decoding error?” [19], [20]; the “edge removal”

question: “What is the maximum loss in communication rate

experienced from removing an edge of capacity δ > 0 from

a given network?” [22], [23]; and the following question

regarding the independence of source information: “What is

the maximum loss in rate when comparing the communication

of source information that is “almost” independent to that of

independent source information?” [21].

At first, it may seem that the equivalence presented in this

work implies a full understanding of the open questions above

in the context of network coding. Although this may be the

case, a naive attempt to use our results with those presented

in [20], [21] again shows the need of a stronger connection

between index and network coding that (as above) allows some

flexibility in the value of ĉB .

VII. ACKNOWLEDGEMENTS

S. El Rouayheb would like to thank Prof. H. Vincent

Poor for his valuable feedback and continuous support, and

Curt Schieler for interesting discussions on the index coding

problem.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network Information
Flow. IEEE Transactions on Information Theory, 46(4):1204–1216,
2000.

[2] S.-Y. R. Li, R. W. Yeung, and N. Cai. Linear Network Coding. IEEE

Transactions on Information Theory, 49(2):371 – 381, 2003.

[3] R. Koetter and M. Medard. An Algebraic Approach to Network Coding.
IEEE/ACM Transactions on Networking, 11(5):782 – 795, 2003.

[4] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and
L. Tolhuizen. Polynomial Time Algorithms for Multicast Network Code
Construction. IEEE Transactions on Information Theory, 51(6):1973–
1982, June 2005.

[5] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong. A Random Linear Network Coding Approach to Multicast.
IEEE Transactions on Information Theory, 52(10):4413–4430, 2006.

[6] T. Cover and J. Thomas. Elements of Information Theory, second edition.
John Wiley and Sons, 2006.

[7] R. W. Yeung. A First Course in Information Theory. Springer (Kluwer

Academic/Plenum Publishers), 2002.

[8] R. W. Yeung, S.Y.R. Li, N. Cai, and Z. Zhang. Network Coding Theory.
Now Publishers Inc, 2006.

[9] R. W. Yeung, S.-Y. R. Li, N. Cai, and Z. Zhang. Network Coding
Theory. Foundations and Trends in Communications and Information

Theory. Now Publishers, 2006.

[10] T. Chan and A. Grant. Dualities Between Entropy Functions and Net-
work Codes. IEEE Transactions on Information Theory, 54(10):4470–
4487, 2008.

[11] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol. Index Coding with
Side Information. In Proceedings of 47th Annual IEEE Symposium on

Foundations of Computer Science, pages 197–206, 2006.

[12] E. Lubetzky and U. Stav. Non-linear Index Coding Outperforming the
Linear Optimum. In Proceedings of 48th Annual IEEE Symposium on

Foundations of Computer Science, pages 161–168, 2007.

[13] S. El Rouayheb, M. A. R. Chaudhry, and A. Sprintson. On the minimum
number of transmissions in single-hop wireless coding networks. In
Information Theory Workshop (ITW), 2007.

[14] N. Alon, E. Lubetzky, U. Stav, A. Weinstein, and A. Hassidim. Broad-
casting with side information. In Proceedings of 49th Annual IEEE

Symposium on Foundations of Computer Science, pages 823–832, 2008.
[15] M. Langberg and A. Sprintson. On the Hardness of Approximating the

Network Coding Capacity. IEEE Transactions on Information Theory,
57(2):1008–1014, 2011.

[16] A. Blasiak, R. Kleinberg, and E. Lubetzky. Lexicographic products and
the power of non-linear network coding. In Proceedings of 52nd Annual

IEEE Symposium on Foundations of Computer Science, pages 609 – 618,
2011.

[17] S. Y. El Rouayheb, A. Sprintson, and C. Georghiades. On the Relation
Between the Index Coding and the Network Coding Problems. In

proceedings of IEEE International Symposium on Information Theory

(ISIT), 2008.
[18] R. Dougherty, C. Freiling, and K. Zeger. Insufficiency of Linear

Coding in Network Information Flow. IEEE Transactions on Information

Theory, 51(8):2745–2759, 2005.
[19] T. Chan and A. Grant. On capacity regions of non-multicast networks.

In International Symposium on Information Theory, pages 2378 – 2382,
2010.

[20] M. Langberg and M. Effros. Network coding: Is zero error always
possible? In In proceedings of Forty-Ninth Annual Allerton Conference

on Communication, Control, and Computing, pages 1478–1485, 2011.
[21] M. Langberg and M. Effros. Source coding for dependent sources. In

proceedings of IEEE Information Theory Workshop (ITW)., 2012.
[22] T. Ho, M. Effros, and S. Jalali. On equivalences between network topolo-

gies. In Forty-Eighth Annual Allerton Conference on Communication,

Control, and Computing, 2010.
[23] S. Jalali, M. Effros, and T. Ho. On the impact of a single edge on

the network coding capacity. In Information Theory and Applications

Workshop (ITA), 2011.

	I Introduction
	II Model
	II-A Network coding
	II-B Index coding

	III Example
	IV Main Result
	V Capacity regions
	VI Conclusions
	VII Acknowledgements
	References

