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In this paper we wish to prove the following theorem.

Theorem 1. Suppose that each of A o and Ai is a compact absolute

neighborhood retract (ANR) of dimension k in Euclidean n-space E"

(2¿4-2 á«, «^5) such thatEn — Ai is l-ULC (uniformly locally simply

connected) for i = 0, 1, and f: Aq—*Ai is a homeomorphism such that

d(a,f(a)) <efor each aEA0. Then there exists an e-push h of (En, A0)

such that h\ Ao=f.

In [2] the authors showed that if A is a ¿-dimensional polyhedron

topologically embedded in En (2k+ 2-¿n, m^5) such that Fn — A is

1 =ULC, then for each e>0, there is an e-push h of (F", A) such that

h\A:A-^>En is piecewise linear. Hence, a well-known theorem of

Bing and Kister [l, Theorem 5.5] applies to prove Theorem 1 when

Ao is a polyhedron. In fact, Theorem 5.5 of [l], together with the

techniques of Homma [4] and Gluck [3] and the following engulfing

theorem proved in [2], make our result possible.

Theorem 2. Suppose that A is a k-dimensional compact ANR in

En (» — ¿ — 3, »^5) such that E" — A is l-ULC and e>0. Then there

exists S>0 such that if f: A^>En is a h-homeomorphism and U is an

open subset ofE" containing f (A), then there exists an e-push h of (En, A)

such thath(U)~Z)A.

Following Gluck [3], we define an e-push h of the pair (X, A), where

X is a metric space and A is a subset of X such that A is compact, to

be a homeomorphism of X onto itself that is e-isotopic to the iden-

tity by an isotopy ht (/G [0, l]) of X such that for each /G[0,l],

ht\ X — Nt(A) = identity. Other terminology used here is standard, and

we shall assume that it is familiar to the reader.

Actually, the proof of Theorem 1 follows from known results, once

we prove a

Lemma. Suppose that A is a compact ANR of dimension k in E"

(2¿4-2í£», »^5) such that En — A is l-ULC and f: A-^E" is an em-

bedding such that d(a,f(a)) <efor each aEA. Then for each S>0 there

exists an e-push h of (En, A) such that d(h(a), f(a)) <8 for each aG^4-
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Theorem 1 is then proved exactly as is Theorem 4.4 of [3], and we

shall not repeat the details of the constructions involved.

Proof of the Lemma. Given ¿>>0, there exists 17>0 such that if

a, bEA with d(a, b) <n, then d(f(a),f(b)) <J5. Let TV be a polyhedral
neighborhood of A in En that retracts onto A by a retraction r: N—*A

such that d(x, r(x)) <%r) and d(x,fr(x)) <e for each xEN. Let F be a

triangulation of N with mesh less than \r¡ and let Tk denote the k-

skeleton of T, with TV* = | Tk\, the polyhedron of Tk.

The mapping/r: Nk—*E" has the property that if xENk, aEA, and

d(x, a) <%■", then d(fr(x),f(a)) <§ô, since d(r(x), a) <r¡.

Let g':./V*—>£" be a piecewise linear embedding such that

d(g'(x),fr(x)) <§5 and d(x, g'(x)) <e for each xENk. Since 2k+2^n,

we may apply Theorem 5.5 of [l] to obtain an e-push g of (En, Nk)

such that g I Nk =g'. Notice that if x G Nk, aEA, and <i(x, a) < §77, then

d(g(x),f(a)) ^d(g(x), fr(x))+d(fr(x), f(a)) <8. Thus there is an open

set U in En containing Nk such that the above implication is true for

xEU; that is, if xEU, aEA, and d(x, a) <%r¡, then d(g(x), f(a)) <5.

We need one additional fact concerning the open set U.

Sublemma. There exists a f n-push cf> of (En, A) such that <b(A)E U.

Proof. Let f"-*-1 be the dual (n — k — l)-skeleton of T with

fin-h-i — j 2>»-*-i|, Choose 77' >0 corresponding to \r\ as in Theorem 2.

From the construction in the proof of Theorem V5 of [5], we can

obtain an embedding \}/ of A into En such that d(a, t//(a)) <i»' for each

aEA and \p(A)r\Ñn~k~1 = 0. Let V be an open subset of En contain-

ing^^) such that Vr\Nn~k-l = 0.

By Theorem 2, there exists a Jij-push <j>i of (£", A) such that

<pi(V) DA. Then ^r1 is a Jij-push of (£", 4) and d>í1(A)r\Ñn-k-1 = 0-

Since the mesh of T is less than \rj, the technique of Stallings [7] may

be used to obtain a \ 77-push c62 of (£", c6f1 (A ) ) such that c6üc&¡" l(A)EU.

Then c¿> =<&0i"' is the desired |??-push of (£", ¿4).
We complete the proof of the Lemma by setting h=g4>. We may

assume that 77 is chosen sufficiently small so that the composition gc/>

is an e-push of (£", A). Given a G A, we have d(qb(a), a) <\t) and

<p(a)EU, so that d(g<p(A),f (a)) =d(h(a),f(a)) <ô.
The question as to whether Theorem 1 is true when k = \ and

w = 4 seems very hard to answer. The method used to prove Theorem

1 involves engulfing techniques that are valid only for w^5. It might

be possible, however, to improve the codimension restriction by one

if certain other conditions are satisfied. For example, Price has shown

[ó] that any two piecewise linear embeddings of a ¿-complex K into

En (w = 2£ + l) are equivalent by an isotopy of En that is the identity

outside a compact set if Hh(K, Z) =0. A natural question then is
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Question 1. Is Theorem 1 true with » = 2¿-fl if Hk(Ao, Z)=0? In

particular, one might consider a special case.

Question 2. Is Theorem 1 true with » = 2¿4-l if A0 is an absolute

retract?
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