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Abstract

Comparative studies of performance in screening mammography are often ambiguous. A new method

will frequently show a higher sensitivity or detection rate than an existing standard with a concomitant

increase in false positives or recalls. We propose an equivalent relative utility (ERU) metric based

on signal detection theory to quantify screening performance in such comparisons. The metric is

defined as the relative utility, as defined in classical signal detection theory, needed to make two

systems equivalent. ERU avoids the problem of requiring a predefined putative relative utility, which

has limited application of utility theory in ROC analysis. The metric can be readily estimated from

recall and detection rates commonly reported in comparative clinical studies. An important practical

advantage of ERU is that in prevalence matched populations, the measure can be estimated without

an independent estimate of disease prevalence. Thus estimating ERU does not require a study with

long term follow up to find cases of missed disease. The approach is applicable to any comparative

screening study that reports results in terms of recall and detection rates, although we focus

exclusively on screening mammography in this work. We derive the ERU from the definition of

utility given in classical treatments of signal detection theory. We also investigate reasonable values

of relative utility in screening mammography for use in interpreting ERU using data from a large

clinical study. As examples of application of ERU, we re-analyze two recently published reports

using recall and detection rates in screening mammography.

1. Introduction

Breast cancer screening involves a high volume of examinations of asymptomatic women for

disease with low prevalence in this population. While screening mammography is now

generally established as beneficial [1–3], the exam has nontrivial false-positive and false

negative rates. This has lead to substantial efforts to improve screening mammography through

a variety of approaches. Large scale studies evaluating new methods in screening

mammography typically report endpoints of recall and detection rates, and/or sensitivity and

false-positive rate. Because of the low prevalence of disease, accurate estimation of these

summary statistics in the screening arena requires large samples with many thousands of

patients.

A more fundamental problem is that results of comparative studies in screening mammography

are often ambiguous. An improvement in detection rate or sensitivity often comes with

concomitant increase in recall or false-positive rate. In principle, there is a rigorous and well

known solution to the question of defining optimal performance. According to classical signal

detection theory, the optimal system maximizes the expected utility of the decisions [4]. When

screening mammography is considered as a binary decision (recall or no recall), the expected

utility is based on the frequency of the four decision outcomes (true positive, false positive,
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true negative, and false negative) weighted by the utility of each outcome. Utility theory and

its relation to receiver operating characteristic (ROC) analysis is well documented [4–7], and

is generally used to theoretically identify the optimal operating point on an ROC curve. Some

approaches based on utility theory have been developed to analyze ROC data [8–10]. However,

utility theory is rarely used in practical settings because there is little consensus on what the

weighting of different decision outcomes should be [11,12].

Here we present a method to evaluate screening performance based on the notion of equivalent

relative utility (ERU). The approach is intended for large clinical population studies where

typical endpoints are recall and detection rates or sensitivity and specificity. Surprisingly, when

estimated from recall and detection rates, the ERU does not require an estimate of disease

prevalence. Essentially, prevalence is already factored into the recall and detection rates

appropriately. Disease prevalence can be difficult to measure in a clinical population because

it requires counting all patients that had disease at the time of screening, not just those that

could be detected by the screening procedure. This requires tracking the patient population for

at least one or two years after the study is completed. Not requiring a separate estimate of

prevalence allows our approach to avoid the difficult and time-consuming problem of long-

term follow-up to find cases of missed disease. The measure can be computed as soon as recall

and detection rates for two or more screening methods have been obtained.

We derive the method below, along with a Bayesian approach to performing inference on the

results. We then turn to previously published studies to better understand interpretation of the

ERU in the context of screening mammography.

2. Method

In this section we will show how measurements of recall and detection rates for two screening

methods can be used to determine the ERU– the relative utility of correct and incorrect

decisions that is needed to make the two methods have an equal decision-theoretic utility. We

begin with a brief review of utility analysis for binary decision processes, then define the ERU

measure, and show how it can be estimated from recall and cancer detection rates in matched

populations without a separate estimate of disease prevalence.

2.1 Utility analysis of binary decisions

When screening mammography is regarded as a binary decision – with exam results

dichotomized into categories of follow-up or no follow-up – utility is determined by

probabilities of the four possible outcomes. These are true positives (TP), where patients with

disease are assigned to follow-up; false positives (FP), where patients who do not have disease

are assigned to follow-up; true negatives (TN), where patients without disease are not assigned

to follow-up; and false negatives (FN) where patients with disease are not assigned to follow-

up. The basis for defining utility in binary decisions such as this is to determine a utility value

for each of the outcomes, and then compute the total expected utility

(1)

where P(⋯) indicates the probability of the outcome.

The various outcome probabilities can be decomposed into the TP and FP rates as well as the

prevalence of the disease in the population, π. The true positive rate, RTP, is defined as the

conditional probability of a positive finding given that disease is present, and the false positive

rate, RFP, is the conditional probability of a positive finding given that disease is absent. These

terms can be used to rewrite each of the outcome probabilities. Specifically, we see that P(TP)
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= RTPπ, P(FN) = (1 – RTP)π, P(TN) = (1 – RFP)(1 – π), and P(FP) = RFP(1 – π). This

reparameterization makes explicit the connection to ROC analysis where RTP is plotted as a

function of RFP for a diagnostic test.

Rearrangement of terms in Equation 1 with substitution of terms involving RTP, RFP, and π
results in the following iso-utility equation,

(2)

The important feature of Equation 2 is that for a fixed value of U, iso-utility curves in RTP and

RFP come in the form of a line with positive slope (under the reasonable assumption that correct

decisions have greater utility than incorrect ones). This means that every pair, (RTP,RFP), which

satisfies Equation 2 for a given U has equal utility. As we shall see, the slope of this line will

play an important role in defining the ERU measure.

2.2 Relative utility and equivalent relative utility

We will follow Wagner et al. [12] in defining the relative utility as the difference between

correct and incorrect decisions when the patient has disease divided by this difference when

the patient is not diseased,

(3)

Note that the numerator and denominator in Equation 3 could be switched and the result would

still provide a reasonable definition of relative utility. However, we believe Equation 3 is more

intuitive for screening applications, since the utility of correctly diagnosing patients with

disease is generally considered to be higher than correctly diagnosing normal patients, and thus

relative utility should be large (URel ≫ 1). Using this definition of relative utility, the iso-utility

line in Equation 3 is given by

(4)

where Qπ is an odds ratio based on disease prevalence, Qπ = (1 – π) / π. At typical estimates

of prevalence in breast cancer screening (π ≈ 0.5%), this ratio is roughly 200.

Figure 1 summarizes the standard relationship between utility and the operating point of a

diagnostic test [6]. The ROC curve specifies a set of possible operating points, with the utility

of each point governed by Equation 2. Traditionally, utility has been used to derive the optimal

operating point of the ROC curve, which is seen in Figure 1 to be a point on the ROC curve

which is tangent to the iso-utility lines. The slope of the iso-utility line – and hence the tangent

point on the ROC curve – is highly dependent on the relative utility. This has been considered

a limitation of utility analysis, since there is no universally agreed upon value for this quantity

[11]. The ERU metric we propose essentially uses these same concepts for the purpose of

comparing two screening systems in a way that does not require an a-priori established relative

utility.

Thus far we have considered the process adopting a given utility structure and have seen the

consequences in terms of the true positive and false positive rates that have equal utility. Now
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we reverse the situation and start with the operating points of two diagnostic tests and then

derive the relative utility that makes them both fall on an iso-utility line. Let us imagine a

situation where we sought to compare two well characterized diagnostic tests. Test 1 has an

operating point (RTP,1,RFP,1) and Test 2 has operating point (RTP,2,RFP,2). The slope of the line

connecting these two operating points is given by

(5)

We define the ERU between Test 1 and Test 2 as the relative utility needed for Test 1 and Test

2 to lie on an iso-utility line. Therefore the ERU can be found by equating the slopes in Equation

4 and Equation 5, and solving for the relative utility,

(6)

2.3 Interpretation of ERU

We propose ERU as a measure for comparing screening methods. We therefore need to be able

to interpret the result and say one method is better, assuming statistical significance is achieved.

As a first step, we consider the case when one method increases the true-positive rate and

reduces the false-positive rate. In this case one test is clearly superior to the other. We also note

that a test with a lower recall rate and simultaneously higher detection rate will always have

higher sensitivity and a lower false-positive rate. In this case, the ERU will be negative because

the slope between the two operating points is negative. Thus the interpretation of a negative

ERU is that one method is superior, and it would take a fundamentally flawed utility structure

to make them equivalent. The superior method should be readily apparent from sensitivity/

specificity data or alternatively recall/detection rate data.

Now let us assume without loss of generality that test 1 has the lower false positive rate and a

lower true positive rate as well, as shown in Figure 2. We can say that for a putative relative

utility greater than the ERU, test 2 is superior since it would reside on a better iso-utility line.

Conversely, for a putative relative utility less than the ERU, test 1 is superior since it would

then reside on a better iso-cost line. While the ultimate judgment of the systems still requires

definition of the appropriate relative utility for interpretation, the ERU itself can be readily

estimated without it. We will discuss this issue further in Section 3.

2.4 Determination of ERU from recall and detection rates

We have shown how ERU can be determined from true-positive and false-positive rates.

However, as mentioned in the introduction, it is often easier to acquire recall and cancer

detection rates in practical studies. In this section we describe how these measures can be used

to find the ERU. As we shall see, a surprising result of using recall and detection rates to

determine the ERU is that explicit reference to disease prevalence cancels, and thus a separate

estimate of disease prevalence for the population is not required.

The cancer detection rate, RD, is simply the probability of a true-positive outcome, and therefore

it is related to the true positive rate by

(7)
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The recall rate, RR, is the rate of true-positive and false positive outcomes, and is therefore

related to the true-positive and false-positive rates by

(8)

From the recall and detection rates we can solve for the true-positive and false-positive rates

by

(9)

Let us now assume a situation similar to Equation 5, except that now we have cancer-detection

and recall rate data for two tests instead of true-positive and false-positive rate data. Let

(RD,1, RR,1) be the detection rate and recall rate for test 1 and (RD,2,RR,2) be the corresponding

measures for test 2. Using Equation 9 to determine (RTP,1,RFP,1) and (RTP,2,RFP,2), and then

using these to determine the slope in Equation 5 yields

(10)

Substituting this into Equation 6 specifies the ERU between test 1 and test 2 as

(11)

Equation 11 shows that the ERU is defined by the difference in the rate of false positive recalls

(RR – RD) divided by the difference in the rate of detected cancers. Cancelling terms yields a

final form in terms of the difference between recall and detection rates,

(12)

Note that in Equation 11 and Equation 12, all prevalence terms have canceled and so there is

no need to know π explicitly in order to determine the ERU. Viewed another way, the

prevalence dependence of ERU is built implicitly into the recall and cancer-detection rates,

and thus does not require separate measurement.

2.5 Estimation of ERU from measured detection and recall rates

Estimation of the ERU consists of replacing recall and detection rates in Equation 12 with

sample estimates R̂D and R̂R. Let N1 be the total sample size (i.e. the total number of patients

evaluated by method 1), and let NR,1 be the number of these patients recalled for follow-up

and ND,1 be the number of patients with detected cancer. The estimated recall and detection

rates are determined from the sample proportions

(13)
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An analogous procedure is used to produce R̂D,2, and R̂R,2. These estimates of recall and

detection rates can be used in Equation 12 to produce an estimate of the ERU.

However, as we shall see, ERU is difficult to estimate precisely, and hence it is probably more

useful to describe it in terms of confidence intervals than a point estimate. In Appendix 1 we

describe a posterior sampling method for computing Bayesian confidence intervals on ERU

estimates computed from observed proportions as in Equation 13. For relative utilities within

the confidence interval, the data is indeterminate for which system is optimal.

2.6 Limitations of the approach

As a final step in presenting the general methodology for evaluating and interpreting the ERU,

we review some important limitations of the approach. The first is the critical assumption of

equal disease prevalence in the two (or more) cohorts being evaluated. This issue is endemic

to comparisons of recall and detection rates in general since these are dependent on disease

prevalence. As an example, consider two hypothetical tests with identical true-positive and

false-positive rates of 70% and 5% respectively. Now assume that test 1 is evaluated in a cohort

with a disease prevalence of 5/1000, and test 2 is evaluated in a cohort with a prevalence of

7/1000. The recall and detection rates will be (5.33%,3.5/1000) for test 1 and (5.46%,4.6/1000)

for test 2. This results in a negative ERU suggesting that test 2 is superior. Thus differences in

underlying prevalence can bias the ERU. The ERU measure, as defined here, is only appropriate

for comparison in cohorts that have been selected in a way that does not lead to a systematic

mismatch in prevalence.

A second important issue is to recognize that the analysis here is based on decision utility,

which is not equivalent to a cost/benefit analysis. A screening modality that has a favorable

ERU may still be prohibitively costly.

A third potential limitation of the analysis is that it strongly links the screening modality with

an operating point. A suboptimal operating point used in one modality may result in a poor

ERU in the comparison. This may be the consequence of an unfamiliar new method leading

to the adoption of an overly strict or lax decision criterion. For criterion-free analysis, ROC

type studies are more appropriate. The ERU is most appropriate for use analyzing clinical

performance when the operating point as well as the technology or methodology is under

evaluation.

3. Retrospective analysis of published data

In this section we reanalyze previously published data from three studies to better understand

and interpret the ERU in clinical data sets related to screening mammography. The large

retrospective study of screening mammography by Barlow and colleagues [13] is used to get

a rough estimate of the operating relative utility, and we compare this to the rationale used by

Wagner et al. [12] in arriving at a putative relative utility of 150. We then consider two case

studies for application of the ERU measure. The first is a recent study of Hambly et al. [14],

comparing full-field digital mammography (FFDM) to standard screen-film mammography

on a large clinical population in Ireland. This case study closely fits the two-modality

comparison paradigm we have used above to develop the approach. The second is a comparison

of recall and detection rates in screening mammography amongst a group of practicing

radiologists by Gur et al. [15]. This serves as an example of how the ERU concept can be

adapted to analyze other types of data.

3.1 Determining reasonable values of ERU

As mentioned previously, the ERU measure does not specify what the appropriate relative

utility should be, but interpreting the ERU does. In this section we devote some effort to getting
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a rough sense of what an appropriate relative utility for screening mammography should be.

Wagner and colleagues [12] have addressed this issue briefly for the purpose of showing how

reader skill can influence the operating point on an ROC curve. They argue that for

mammography to have any advantage over simply not screening at all, the relative utility must

be at least 50. Positing a definite benefit to the exam, they settle on a lower limit of 150. Wagner

et al. also argue for an upper limit based on exam cost compared to the value in quality-adjusted

life years and arrive at a value of 500.

To investigate this issue in a direct data-driven fashion, we analyzed screening mammography

data from a large recently published study by Barlow and colleagues [13]. The study

investigated screening performance on 469,512 patients from three breast cancer registries

participating in the Breast Cancer Surveillance Consortium. The purpose of the study was to

investigate the sources of variability amongst radiologists, but for the purposes here we will

only consider the aggregate data. They considered seven possible outcomes from a screening

mammography exam. These essentially followed the BI-RADS interpretation codes (0 to 5)

with code 3 split into two groups (3A and 3B) depending on whether immediate work-up was

recommended. The codes were ordered by the increasing likelihood of cancer (1, 2, 3A, 3B,

0, 4, 5), which was determined by biopsy or a one-year follow-up interval.

In Figure 3A we show the results of fitting binormal ROC curves to the aggregate Barlow et

al. data using well tested software (ROCKIT) for categorical rating data [16]. A global fit is

obtained by fitting to all seven possible outcome categories. A close inspection of Figure 3A

suggests that the binormal fit appears to slightly underestimate sensitivity in the neighborhood

of a 10% false positive rate. We find this to be due to fitting the two very low false-positive

rate categories corresponding to BI-RADS Codes 4 and 5, which are rare and considered by

many to be outside the purview of a screening exam [17]. To reduce the influence of these

points, we also fit a binormal ROC curve by combining the 0, 4, and 5 codes into a single

category leaving a total of 5 categories. We refer to this as the local fit, and Figure 3A shows

that it does fit the observed data near the 10% false positive rate more closely.

Figure 3B shows the results of our utility analysis on the Barlow et al. data. The relative utility

necessary for a given operating point to be optimal is found by dividing the prevalence odds

ratio, Qπ, by the slope of the ROC curve, similar to the computation in Equation 6 and depiction

in Figure 1. In these data, the prevalence is 0.512%, resulting in Qπ = 194.5 . The relative

utilities for the global and local fits are somewhat divergent over the range of false-positive

rates tested. At a false positive rate of 10%, the global fit suggests a relative utility of 117,

whereas the local fit is as high as high as 222. The large difference between the two estimates

shows the strong dependency on the shape of the ROC curve. Nonetheless, the two estimates

appear to bracket the lower bound of 150 as suggested by Wagner et al., and thus provide some

additional quantitative data to support their rationale.

3.2 Case Study 1: Assessment of full-field digital mammography compared to conventional

screen film mammography

A recently reported study by Hambly et al. [14] serves as an example of how ERU can be used

in the comparison of two different screening methods. Their study compared recall and

detection rates of standard screen-film mammography (SFM) to full field digital

mammography (FFDM) in the Irish National Breast Screening Program from 2005 to 2007. A

total of 163,031 patients were evaluated for the study with 26,593 (16%) screened with FFDM

and 136,438 (84%) screened with standard SFM. Within each screening method, mammograms

were partitioned into two groups depending on whether it was the patient’s first screening exam

or a subsequent exam. Disease prevalence was generally higher in initial screening exams,

which comprised a slightly larger proportion of the SFM cases compared to FFDM cases

(30.6% and 27.6% respectively). Stratifying the data into these two groups helped match
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prevalence across comparisons. The recall and detection rates for each group reported by

Hambly et al. are given in Table 1. In both groups, FFDM raised the cancer detection rate along

with a simultaneous increase in the recall rate. Thus arguing that FFDM offers a benefit over

SFM requires some justification that the additional detections are worth the additional recalls.

Table 1 also gives the results of the ERU analysis. For the initial scan patients, the ERU

estimated from Equation 12 is 78.9, but it is important to realize that this estimate has low

precision. A 90% confidence interval computed using the methods in Appendix 1 (with 100,000

Monte-Carlo samples) ranged from 6.6 to over 1000, and the posterior probability that the ERU

exceeds the nominal value of 150 is 0.48. Hence the ERU assessment is equivocal for the initial

scan data using the nominal relative utility of 150. In the subsequent exam group, the ERU is

more definitive. Here the estimated ERU is 4.1 with a 90% confidence interval ranging from

1.8 to 28.8. The posterior probability that the ERU is greater than 150 is 0.03, suggesting a

significant benefit to screening mammography from FFDM.

3.3 Case Study 2: Comparisons of recall and detection rates between individual radiologists

A study by Gur and colleagues [15] evaluated the recall and detection rates of 10 radiologists

at a university medical center. They find that the relationship between recall and detection

across radiologists is reasonably well fit by a regression line indicating a significant positive

association between recall and detection rates (ρ = 0.76, p < 0.01). They argue that programs

to reduce recall rates may produce a similar reduction in detection rates. This argument assumes

that the linear model determined from a sample of radiologists will also apply to an individual

who has been induced to adopt a lower recall rate. However, we can also frame the issue as

trying to determine whether the radiologists with higher recall rates are giving better or worse

performance than those with lower recall rates. In this case, the fitted line serves as an aggregate

measure of the tradeoff, and permits an evaluation of ERU.

Figure 4 plots the Gur et al. data along with the best fit line from their publication. When a line

describes the relationship between recall and detection rates (i.e. RD = aRR +b), then Equation

12 shows that any two points on the line have an ERU value directly related to the inverse of

the slope,

(14)

Therefore the slope of the fitted line is equivalent to a particular value of the ERU, which

characterizes the tradeoff between recall and detection in an aggregate sense. The ERU

determined from the slope of the line fitted to the Gur et al. data is 46.3, which is well below

the putative relative utility derived from the Barlow data. For a relative utility of 150, the slope

of the recall/detection line is 0.066, which falls just outside the 95% confidence interval on the

observed slope (0.068 to 0.378). Thus the slope predicted by a relative utility of 150 is not

supported by the Gur et al. data. A line of this slope with a least-squares fitted intercept is

plotted on Figure 4 for comparison. Generally, radiologists with lower recall and detection

rates operate at a correspondingly lower overall utility under a putative relative utility of 150.

A notable exception to this is the radiologist with the lowest recall rate, who operates at almost

the same total utility as the radiologist with the highest recall rate.

These findings reinforce the conclusions of Gur et al. who argue that programs and policies

that cause radiologists to reduce their recall rate may be reducing detection rates at an

unacceptable rate. To the extent that the model they find for a sample of radiologists can be

used to model the effect of such policies on an individual, lowering recall rates lowers the

overall utility of the exam for the putative relative utility derived from the Barlow data. We
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contend that utility based arguments such as this should be part of the careful evaluation of

such policies that Gur et al. suggest.

4. Summary and Conclusions

We have introduced equivalent relative utility as a measure of diagnostic performance for

comparing two or more screening methods. The approach is grounded in signal-detection

theory as it is used in classical ROC analysis, where relative utility specifies the tradeoff

between errors and is used to define the optimal operating point on an ROC curve. However,

for the purpose of comparing two screening methods, the ERU measure gives the relative utility

needed for the two systems to be considered equal. In this way the approach avoids having to

decide a-priori what constitutes an acceptable relative utility, which has limited the use of

utility in ROC studies. In comparisons of two screening methods, investigators can simply

report the ERU and let the community decide whether one method clearly constitutes an

improvement.

We show that the ERU is readily computed from commonly reported recall and detection rates,

and we describe a technical but relatively simple posterior sampling approach towards

determining a Bayesian confidence interval on the estimate. Surprisingly, when estimated in

this way, the ERU does not require a separate estimate of disease prevalence within the target

population. This has important practical consequences in a clinical setting because it means

that the measure can be computed after the last recalled patient has been evaluated. Long term

follow-up to find cases of missed disease is not necessary.

Three retrospective analyses of published data sets have been presented as a way to better

understand and interpret ERU in the context of screening mammography. The large screening

evaluation described by Barlow et al. [13] is used to get a rough idea of the relative utility being

used implicitly at clinical operating points. We find this to be consistent with a value of 150,

which is the lower limit suggested by Wagner et al. [12] on the basis of a general assessment

of mammographic effectiveness. A recently completed comparison of screen-film and full-

field digital mammography in Ireland by Hambly et al. [14] is used to demonstrate the ERU

approach on a clinical dataset. In that study, digital mammography was found to increase the

detection rate in both first-time and subsequent exams with a simultaneous increase in recall

rate as well. Because of the smaller sample size, the ERU was indeterminate for the first-time

exams. For the subsequent-exam data, ERU was found to be approximately 4.1 with a 90%

confidence interval ranging from 1.8 to 28.8. At the putative relative utility implied from the

Barlow study, FFDM would be considered to have significantly greater utility than the screen

film standard. In the Gur et al. study of individual radiologists [15], the line they fit to recall

and detection rate data implies an ERU of 46 with the putative relative utility derived from the

Barlow study predicting a significantly lower slope. Therefore, by this criterion radiologists

with higher recall rates are generally operating at higher utility.

In both of the comparative studies, the ERU supports the conclusions of the original authors

using the putative relative utility of 150. However, the ERU itself is noncommittal, and these

conclusions could change under a different relative utility. Thus the ERU measure allows the

field to gauge performance as it sees fit while remaining rooted in rigorous signal detection

theory. Therefore, we believe that it is an important summary metric for clinical comparisons

of screening mammography systems, and can be readily applied to other screening procedures

as well.
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Appendix 1

In this appendix we describe a Monte-Carlo approach [18] for computing Bayesian confidence

intervals on the estimated ERU. We will assume two matched patient cohorts of defined size

from which the number of recalled patients (NR) and patients with detected cancers (ND) are

drawn. The method can be easily adapted to other experimental designs such as a fixed total

number of patients with individuals selected randomly for each modality.

For simplicity in the analysis below, we will subdivide each cohort of N patients into three

groups: cases with detected cancers (ND), false-positive recall cases in which patients were

recalled but found not to have disease (NFR = NR – ND), and screening negative cases (NNeg =

N – NR). The total number of cases is the sum of these three groups. In a given sample, we

consider these 3 numbers to be drawn from a multinomial distribution

(A1)

where RD, RFR, and RNeg are the probabilistic rates associated with each patient subdivision.

If we assume a noninformative uniform prior on all possible combinations of rates that satisfy

RD + RFR + RNeg = 1, the posterior distribution is

(A2)

which is a Dirichlet distribution [18,19] with parameters (ND + 1,NFR +1,NNeg + 1).

Data from 2 cohorts, (ND,1,NFR,1,NNeg,1) and (ND,2,NFR,2,NNeg,2) define two posterior Dirichlet

distributions according to Equation A2. The posterior sampling approach [18] proceeds by

drawing an independent sample from each posterior distribution, and using the sampled rates

to determine a sampled ERU. This process is repeated many times to make a large set of

sampled ERU values from which to construct one- or two-sided confidence intervals. Let

 and  for m = 1,⋯,M, be posterior samples for cohort 1 and

2 respectively. Note that a Dirichlet distribution can be sampled using independent draws from

a Gamma distribution, normalized by their sum. The sample ERU is then given by

(A3)

Note that RFR = RR – RD, and hence Equation A3 directly corresponds to Equation 11 from the

text. Confidence intervals and other inferences can then be constructed from these samples.

For example, a 95% confidence interval can be estimated by finding a range of ERU values

that contain 95% of the posterior samples.
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Figure 1. Utility in the ROC domain

A generic ROC curve is shown along with lines of iso-utility as defined in Equation 4. The

iso-lines partition the domain into regions of higher utility (upper left) from lower utility (lower

right). The relative utility (URel) and the odds ratio for disease prevalence (Qπ) define the slope

of iso-utility lines. The optimal operating point on the ROC curve is tangent to an iso-utility

line.
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Figure 2. Interpretation of Equivalent Relative Utility (ERU)

This schematic figure shows the operating points of two hypothetical screening modalities (M1

and M2) in terms of true-positive and false-positive rates. Lines represent points of equal utility

with higher utility to the upper right and lower utility to the lower left. Different lines represent

different values of the putative relative utility (URel) according to Equation 4. When URel is

equal to the ERU, the iso-utility line passes through both operating points. If URel is less than

the ERU, Modality 2 falls on the lower utility side of the iso-line and Modality 1 is superior.

Conversely, if URel is greater than the ERU, Modality 2 is superior.
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Figure 3. Utility Analysis of the Barlow et al. Mammography Data

ROC curves fit to the aggregate data (A) for a 7-point scale (Global Fit) or a reduced 5-point

scale (Local Fit) have similar Az values (0.920 global and 0.916 local). The relative utility (B)

over a limited range of false-positive rates is computed from the slope of the ROC curves using

a prevalence of 0.512%. Relative utilities near the 10% False-positive rate bracket the Wagner

et al.[12] estimate of 150.

Abbey et al. Page 14

Med Decis Making. Author manuscript; available in PMC 2011 January 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 4. Equivalent Relative Utility Analysis of the Gur et al. Mammography Data

Recall and detection rates are plotted along with the best fit line from the Gur et al. publication,

yielding an ERU of 46. We also plot a line with a slope corresponding to an ERU of 150 and

least squares fitted intercept.
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