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Abstract. Let G be a finite group. For a certain class of CW-complexes
with a G-action which are equivariantly dominated by a finite complex we
define algebraic invariants to decide when the space is equivariantly
homotopy or homology equivalent to a finite complex.

1. Introduction. A connected CW-complex A" is a G-complex if the group G
acts on A" as a group of homeomorphisms which permute the cells of A". The
question we study here is: Suppose that G is a finite group, that A" is a
G-complex and that K is a finite G-complex. Suppose there exist equivariant
cellular maps q>: ÁT-» A" and s: X —> K and an equivariant cellular homotopy
<ps ~ 1^.. (K G-dominates X.) Is A" "equivalent" to a finite G-complex?

Our main result is the following theorem.

Theorem (5.1). Let G be a finite group. Let X be a G-complex such that for
each subgroup H of G,XH is connected, and such that Xe ¥^0. Suppose that X
is G-dominated by a finite G-complex. Then

(i) there exists an invariant EX(X, G) such that X is G-equivalent to a finite
G-complex if and only if EX(X, G) vanishes;

(ii) there exists an invariant E2(X, G) such that X is G-homology-equivalent
to a finite G-complex where the equivalence is G-2-connected if and only if
E2(X, G) vanishes.

The space XH is the subcomplex of A" fixed by the subgroup H. A
G-equivalence is an equivariant homotopy equivalence. As the term suggests,
a G-homology-equivalence is an algebraic concept. (See §5.) The notions are
not equivalent but each is a homotopy equivalence.

The elements EX(X, G) and E2(X, G) are Wall-type invariants [15], [16] of
equivariant homotopy type. They are defined by considering chain complexes
related to the cellular chains of the universal cover of X, C(X). (See §5.)

In §2 we discuss lifting group actions to regular covers of a G-complex A".
§3 then shows how to factor C(X) as needed for the main theorem.
Equivariant cell-attaching is discussed in §4, where we also show that if A" is
G-dominated by a finite G-complex, then it is G-equivalent to a complex of
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306 J. A. BAGLIVO

finite type. §5 is devoted to a proof of Theorem (5.1). Lastly, in §6, we study
the notion of G-homology-equivalence further. The results we obtain here are
more algebraic in flavor than in the rest of the paper.

Most of this work is the author's thesis, written under the direction of
Professor Douglas Anderson of Syracuse University. I wish to thank him for
suggesting the problem to me, and for his advice and support.

2. Definition of G-complex; lifting group actions. Let A" be a connected
CW-complex with fixed cellular decomposition and let C(A") denote the
group of cellular isomorphisms / of X with the property that if/leaves a cell
of A" invariant, then / fixes the cell pointwise. Let G be a group which we
write multiphcatively.

Definition 1. A cellular action of G on A" is a homomorphism a: G->
C(X), denoted by a(g) s g. The space A" with a fixed cellular action of G is
called a G-complex. The action is said to be effective if ker a = {1}.

Whenever possible we suppress mentioning the homomorphism a. If 77 is a
subgroup of G and A" is a G-complex, then A" is an 77-complex by simply
restricting the homomorphism a to 77.

Definition 2. Let A" and Y be G-complexes. A map <p: A" -» Y is said to be
a G-map if <p is a cellular map which respects the action of G, that is, such
that <p(gx) = grp(x), x G A" and g G G.

We follow the notation and terminology of [2]. Thus, in particular, if
S C G we let A"5 denote the fixed-point set of S in X.

In Lemma 3 we list some facts which follow easily from the definitions. If
H is a subgroup of G we let A77 denote the normalizer of 77 in G. We use the
notation H < G if 77 is a subgroup of G, and H < G if 77 is a proper
subgroup of G.

Lemma 3. Let X be a G-complex and let H be a subgroup of G.
(i) The subspace XH is NH-invariant. In particular, if H is normal in G then

XH is invariant under the action of G.
(ii) There is an induced action of NH/H on XH. Thus X" is also an

NH / H-complex.
(iii) The restriction of g to XH yields a homeomorphism g: XH —» XgHg ,for

each g G G.
(iv) Let X>H = \JH>>HXH'. Then X>H is an NH-complex, and an

NH/H-complex.   □

We will be interested in considering group actions defined on a regular
cover of X, X, which lift the action of G on A". If an action exists the group
involved is, in general, an extension of G/ker a by the group of deck
transformations of the cover, and it is a split extension of these groups if there
is a fixed point of G in X. (See [2].) For technical reasons we will include here
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AN EQUIVARIANT WALL OBSTRUCTION THEORY 307

actions which are not effective. If G and it aie groups, we use the notation
irxaG to represent the semidirect product of ir and G with respect to an action
a: G -» &(it), where a is a homomorphism whsoe range is the group of
automorphisms of it.

Let A" be a connected G-complex and let e° G XG. Then G acts on
ttx(X, e°) by setting g-y = irx(g)(y)- We denote this action by a. Let p:
X -» A" be a regular cover of X. If im.(trx(p)) is invariant under the action of
G, then there is an induced action (also denoted by a) on
w¿X, e°)/im(vx(p)). Let G - »,(*", e°)/w(irl(p))xaG.

Lemma 4. 7« iAe situation described above, the space X is a G-complex.

Proof. Fix a point ê° G X over e° and use the Lifting Map Theorem to
construct g: (X, ê°) -» (A^, ê°) such thatpg = gp, for g G G.

The action of G on X is defined by (y, g)x = y(g(x)), y G
Vi(X, e°)/im(mx(p)), g G G, x G X.   Q

Notice that the action of G depends on the choices of e° G A"G and ê° G jr.
As a special case of Lemma 4, the universal cover of X, X, is a G-complex,

with G = ^(A^G. If A c A" is a connected subcomplex, then there is a
regular cover /Í of A in A\ We next discuss extensions of actions to A.

Lemma 5. Let X be a connected G-complex such that Xe ^0. Let A G X be
a connected G- invariant subcomplex such that A G i=0. Let A c X be one
component ofp ~ l(A).

(i) The space A with regular cover p\A : A —* A satisfies Lemma 4. Thus, A is
a G-complex where G = irx(A)/'im(irx(p\A))xaG.

(ii) Let G = ■ïïl(X)xaG. Then G is a subgroup of G and A is a G-invariant
subspace of X.

Proof, (i) We need to show that im.(-nx(p\A)) c irx(A) is G-invariant. (We
assume that the basepoint is some e° G A G.) But \m(irx(p\A)) = kei(iTx(i)),
where /: A c^ X is the inclusion map. Since A is G-invariant, i is a G-map.
The group kei(irx(i)) is, therefore, a G-invariant subgroup.

(ii) We assume that the basepoints for the fundamental groups are e° G A G
C Xe and ê° G Â c X. Then

TTx(A)/]m{TTx(p\A)) = vx(A)/kei(mx(í)) » im(w,(0) < »,(*);

and thus G < G under this identification. The rest of the lemma follows from
the construction in Lemma 4.   □

In particular we can apply Lemma 5 to fixed-point sets of a subgroup 77 of
G in X. Suppose that XH and X>H = Uh->h %" are connected. These
complexes are A77-invariant, and thus by Lemma 5, XH and X>H are
ATf-complexes which are A7f-invariant subcomplexes of X.
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308 J. A. BAGLIVO

3. Permutation complexes; the structure of the cellular chain complex C(X).
Let A" be a connected G-complex and p: X-* X be its universal cover.
Suppose that Xa ¥= 0. By the discussion in §2, X is a G-complex, where
G = trx(X)xa G. Then the cellular chain complex C(X) is a complex over the
group ring ZG. The purpose of this section is to study the structure of this
chain complex further. In particular, we prove the following proposition.

Proposition 1. Let X be a connected G-complex such that for every subgroup
H of G, XH is connected. Suppose also that XG =£0. Then the following
statements hold:

(i) The complex C(X) is a ZG-permutation complex.
(ii) Let XH represent the universal cover of XH. The subcomplex

C(p-\XH))^-L(mx(X)xaNH) ® C(X»),
Z(wt(X»)xaNH)

as complexes of Z(irx(X)xaNH)-modules.

We will first state the relevant definitions, facts and conventions. Recall
that if S is a set and 9> (S) is the group of bijections of S, an action of G on S
as a group of permutations is a homomorphism a: G -* 9j(S). We use the
usual notation of Gx for the isotropy group of a point x, and G(x) for its orbit.
Let R be a ring with unit.

Definition 2. An RG-permutation module, M, is a left i?G-module which is
free as an Ä-module with a distinguished basis S on which G acts as a group
of permutations, and whose ÄG-module structure extends this action on S
linearly. We distinguish several R-fiee submodules of M, with 77 < G a
subgroup:

MH is R-fiee with basis S" = {x G S: Gx > H};
M>H is Ä-free with basis S>H = {x G S: Gx > H);
MH is jR-free with basis SH = {x G S: Gx = 77}.
If the distinguished basis of Af is G (x), the orbit of one element x G S, we

can identify G(x) with G/77, the set of cosets of 77 = Gx, with action defined
by left multiplication. This identification depends on the choice of x G S.
However, once a choice is made, we can write M = R(G/H). In fact, all
.RG-permutation modules are i?G-direct sums of such modules. We can write
M - Z„<c ®R MH = U„<c MH.

As an Ä-module MH decomposes into M>H © MH. The modules
M", MH, M>H are not in general /?G-invariant submodules of M. They are,
however, invariant submodules of M under the action of the normalizer of 77
in G.

Lemma 3. Let M be an RG-permutation module.
(i) The modules MH, M„ and M>" are R(NH)-and R(NH/Hy-

permutation modules. The module MH is a free R(NH/ H)-module;

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



AN EQUIVARIANT WALL OBSTRUCTION THEORY 309

(ii) The modules \JgeG MgHg'\ \JgsGMgHg-< and Ugec M>gHg" are
RG-invariant submodules of M;

(iii) For each g G G, the action of g induces an R-isomorphism g: MH ^*
MgHg", so thatg(MH) = MgHg-x andg(M>") = M>gHg";

(iv) For each g G G, the group isomorphism g: A77-» NgHg~l defined by
k —» gkg ~ ' extends linearly to an isomorphism of the group rings. We can
represent

MgHg" m R(NgHg-1)    0     MH,
R(NH)

and we can represent MgHg-1 and M>gHg   similarly.
(v) For each g G G, the group isomorphism g: NH/H-» NgHg~x/gHg~x

induced from the isomorphism in (iv) extends linearly to an isomorphism of the
group rings. We can represent

M*»*" -RiNgHg-'/gHg-1)      0       M",
R(NH/H)

and we can represent the other distinguished submodules similarly.

Proof. All parts are straightforward applications of the definitions.   □
Definition 4. Let M and M ' be ÄG-permutation modules. An ÄG-homo-

morphism <p: M -» M' is said to be an RG-permuatation homomorphism if
im(<f>\MH) c Af'" for each subgroup H of G. We let <pH denote q>\Mn,
<P>H = <p\m>"- M>h -* M'>H and (<pH, <p>H): MH^>M'H® M'>H = Af '*.

The reader should note that .RG-homomorphisms are not in general .RG-
permutation homomorphisms. As an example of this, consider the trivial
permutation module R and the free .RG-module RG. Let G be a finite group.
Define an .R-homomorphism A: R -» RG by 1h»o- = 2gSC g. Since g'o = o
for every g' G G, A is also an .RG-homomorphism. Now, h(RG) = h(R) =
R {o-} <2 (RG)G = 0.

The following facts are easily checked using the definitions and Lemma 3.

Lemma 5. Let <p: Af —> M' be an RG-permutation homomorphism.
(i) The homomorphisms q>H, <p>H and <pH are R(NH)- and R(NH/Hyper-

mutation homomorphisms.
(ü) We can represent <pgHg" = R(NgHg~1/gHg~i) 0 R{NH/„) <pH, and we

can represent <p>gHg   and %ng-1 similarly.
(iii) We can represent q>gHg = R(NgHg~x) 0 A(MÏ) <PH, and we can repre-

sent <p>gHg   and %Hg-i similarly.   □

Definition 6. An ÄG-chain complex C is an RG-permutation complex if
each C, and 8, is an .RG-permutation module and homomorphism, respec-
tively. If <p: D -» C is an .RG-chain map between permutation complexes and
each <p, is a permutation homomorphism, <jp is an RG-permutation chain map.
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310 J. A. BAGLIVO

The .R-subcomplexes CH, C>H, and quotient CH are defined in the obvious
way and are clearly seen to be R(NH)-and R(A77/77)-permutation
complexes. These complexes satisfy the short exact sequence

but CH is not, in general, a direct sum of the subcomplexes C>H and CH
since 3 H is not, in general, a direct sum of homomorphisms.

The proof of Proposition 1 will follow from Lemmas 7-9. Since the proofs
of these lemmas are straightforward they will be omitted.

Lemma 7. Let X be a G-complex. The cellular chain complex C(X) is a
ZG-permutation complex.   □

Notice that, as subcomplexes of C(A"), C(A")" = C(XH) and

C(X)H= clx",    U    XH'\ - C(XH,X>").
\ H>H l

Lemma 8. Let X be a connected G-complex such that e° G XG. Letp: X -» A"
be a regular cover such that im(7r,(p)) c irx(X, e°) is invariant under the action
ofG. LetG = ■nx(X)/\m(-nx(p))xaG.

Then C(X) = ZG 0 zâ C(X) as ZG-complexes.    \J

Lemma 9. Let X be a connected G-complex such that XG ¥=0 and let p:
X —* X be its universal cover. Let A be a connected G-invariant subcomplex of
X such that AG ¥=0 and let Â c X be a regular cover. Let G = trl(X)xaG and
G = im irx(i)xaG. Then there is an isomorphism of the chain complexes
C(p~x(A)) =s ZG 0 zô C(Â) as ZG-complexes.   O

Proof of Proposition 1. The first part follows from (2.4) and Lemma 7.
The given representation of C(p~\XH)) follows from Lemmas 8 and 9

above.   □

4. G-equivalence and G-domination. Our objectives in this section are to
show how to extend the "G-connectivity" of a G-domination map by an
equivariant cell-attaching technique (Lemma 5), and to prove

Proposition 1. Let X be a G-complex and G a finite group. If X is
G-dominated by a finite complex then X is G-equivalent to a complex of finite
type, Y. If « is the dimension of the dominating complex, then the complex Y is
G-dominated by its n-skeleton.

These results generalize the constructions in [15]. Note that a complex of
finite type is one containing a finite number of cells in each dimension.

If rp is a G-map and 77 < G is a subgroup, we let <pH denote the restriction
>p\kh: Kh -+Xh and let M(q>H) denote its mapping cylinder. The following
definitions will be needed.
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AN EQUIVARIANT WALL OBSTRUCTION THEORY 311

Definition 2. A G-map <p: K-*X is said to be G-n-connected if
ir¡(M(tpH), K") = 0 for all /' < «, for all 77 < G, and for all choices of
basepoint.

Definition 3. A G-map <p: K-±X is said to be a G-domination if there
exists a G-map s: X -* K and G-homotopy Fx : <ps ~ 1^. In addition, if there
exists a G-homotopy F2: j<p sa 1^, <¡p is said to be a G-equivalence, and ÍT and
A" are said to be of the same G-homotopy-type.

If A" is a G-complex, A" X 7 is a G-complex by defining g(x, t) = (gx, t),
x G X, t G 1. Thus, a G-homotopy F: f0 sa/i between G-maps/o,/!: A*-» y
is a G-map F: X X I ^> Y such that

7-(x,0=/W,   i=0, 1.
Also, if <p: K -» A" is a G-map there is an induced action of G on the mapping
cylinder M(q>), and this action has the property that M(<p)H = M(tpH).

From the definitions it is clear that if rp is a G-equivalence then <pH is a
homotopy equivalence for each 77. Thus, q> is G-«-connected for every «. The
converse, which is an equivariant version of a theorem of Whitehead, is also
true.

Proposition 4. Let <p: K-*X be a G-map. Iftpis G-n-connected for every «
then <p is a G-equivalence.

Proof. See [10].   □
We assume from now on that G is a finite group. Assume that A" is

G-dominated by a finite complex K, with G-dominating map <p: AT-» A", and
right inverse s: X -» K; and that both K and A" are connected. By assumption,
<pH: KH-» X" is a dominating map for each H < G. Although K" and X"
may have more than one component each, since K is a finite complex both
have a finite number of components.

We show that we can increase the G-connectivity of the map by succes-
sively adding a finite number of cells in each dimension. In the following
lemma, let any G-dominating map be "G-(— l)-connected".

Lemma 5. Let X be G-dominated by the finite complex K, with dominating
map <p: K—* X. Suppose <p is G-(i — Yy-connected. Then there exists a finite
G-complex L containing K and a G-i-connected dominating map xp: L—>X
extending <p.

Proof. If xp: L -* X extends q>, and we lety": K —* L represent the inclusion,
then js is a homotopy right inverse of xp. Thus, it is sufficient to construct a
G-i-connected extension of tp.

To do this we proceed by induction on the order |77| of the subgroup H of
G. To simplify notation, assume that <p: K-*X is G-(/ — l)-connected, and
<pH': KH' ~* X"' is /-connected for all 77' where \H'\ > \H\. In the induction
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312 J. A. BAGLIVO

steps below, we add cells to KH and to KgHg~' for all conjugates to extend the
connectivity of <pH and all <pgHg   . There are three cases to consider.

Case 1 (i = 0). By the domination •t0((PH): vo(^H) ~* *bC^*) *s an epimor-
phism. If <pH is one-to-one on components then it is already 0-connected and
there is nothing to do. Suppose not, and suppose components Kx and K2
map to Xo", that is, <pH: K\" u K? -»■ X". Let ex, e2 be zero-ceUs in K? and
K2 respectively. Let u: I -* X" be a path from <pM(ex) to <pH(e2) along the
one-skeleton of X". For each class g G G/77 attach a one-cell eg so that the
characteristic map on the boundary cg: I —> KgHg is cg(0) = gex and cg(l) =
ge2. (This definition is independent of choice of representative for the class in
G/77 since H fixes Kx and K2.) The cells are permuted by g'eg = e¿g. To
extend the map <p to xp define xp"\e = gt^cf1-

Case 2 (i = 1). Consider <pH: K" -> XH. Since <p is 0-connected K" and
X" have the same number of components. Let y": Kq-ïX" be the
restriction to corresponding components. Now since tp" is a domination there
exists a short exact sequence

l^Trx(M{<poH),K»)-.<nx(K0")^trx{X»)-*l.

Also, itx(Xq) is finitely presented, and ttx(M (<p")> K") 1S finitely normally
generated in trx(K") [15, Proof of Lemma 1.3]. Let {a} be a finite set of
generators for ir2(M(tp"), K"). Let a =<(/?„, ya)) where

(ßa,ya)-(D2,Sx)^{M{q>oH),KoH).

We attach 2-cells e(g a) to ir via g ° y0: 51 ^ KgHg'\ To extend the action
over the cells define g'«(g>a) = e(g~g,ay To extend the map q> let u^Ä|e     =

8 °ßa-
Case 3 (i > 1). By [15, Proof of Theorem A] v¡(M(<pf), Kg) is a finitely-

generated Zirx(Ko) = Z(w](A*o'))-module. Let {a} be a finite set of
Zw,(A"^/)-generators and proceed as in Case 2.   □

Proof of Proposition 1. Let tp: AT-* A" be a G-dominating map with right
homotopy inverse s. Using Lemma 5 inductively we can assume that <p is
G-«-connected, where « is the dimension of K. By continuing the
construction of Lemma 5 and by Proposition 4 we obtain a G-equivalence xp:
Y-> X, where y is a G-complex of finite type and the «-skeleton of Y is K.
Let s' be a homotopy inverse of xp. Then the inclusion K "^ Y is a G-
domination with right homotopy inverse s'tpsxp. (Since all maps are cellular
the image of s'<psxp lies in Y" = K.)   □

5. The two G-homotopy type invariants. In this section we prove Theorem
(5.1), as stated in the introduction.

The definitions of the invariants EX(X, G) and E2(X, G) will require a
description of some relative Wall invariants. We first describe briefly the Wall
invariant as it will be needed below. See also [15], [16], [6], and [12]. Let R be
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AN EQUIVARIANT WALL OBSTRUCTION THEORY 313

a ring with unit, and let K0(R) be the reducedprojective class group of R. Let
C be an .R-free chain complex such that C¡ is finitely-generated (f.g.) for each
i. Let C(n) be the «-skeleton of C. If the inclusion C(n) c* C is an .R-domina-
tion of C then

77(C, CM) = H„+1(C,CM)
is a f.g. projective .R-module. The Wall invariant of C is defined by

w(C) = (-l)"+1K+t(C, C<">)] G K0(R).
This invariant vanishes if and only if C is R-chain equivalent to a finite
.R-free complex.

Now let A" satisfy the hypotheses of Theorem 1. Let <p: K-*X be a
G-dominating map where AT is a finite G-complex. By (4.5) and (4.1) we may
assume that A" is of finite-type, and that the inclusion K °-> A", where K = X"
and « > 2, is a G-domination. (We must assume that « > 2 in order that
mx(KH) ss itx(Xh) for every 77.) If 77 is a subgroup of G, then the inclusion
KH <^ XH is an A77/77-domination. LetpH:XH-> XH be the universal cover.
The spaces KH and XH are A77/77 = ^A"")xaA77/77;Çomplexes by (2.4),
the cellular chain complexes C(KH) and C(XH) are Z(A77/77)-permutation
complexes by (3.1), and the inclusion C(KH)^> C(XH) is a Z(NH/H)-
domination in which all maps are permutation maps. It easily follows that the
induced map

^     C{K^,p^(K>"))^C{Xñ1p£(X>"))
is a_>Z(A77/77)-domination for the_free Z(NH/ H)-chain complexes. Since
C(KH,pï,\K>H)) is finite, w(C(X",p¿l(X>H))) is defined.

Definitions. Let A" satisfy the hypotheses of Theorem 1.
2. The relative Wall invariant of X with respect to 77 is defined by

wH(X) =. w(C(X*,pSl(X>*))) G K0(Z(NH/H)).

3. Define EX(X, G) = 2„<c wH(X) G 1H<C ,rf0(Z(A77/77)).
Definition 4. Let Ä" and A" be G-complexes. Let <p: K-+ X be a G-map.

The map <p is called a G-homology-equivalence if

-*:F(r,(Jr'))-Är(j»-|(JrJr))
is an isomorphism for each subgroup H of G, where q: K—>Kis the pullback
via <p of the universal cover of A".

The invariant for G-equivalence used quotients of the chain complexes
C(XH). For G-homology-equivalence, the invariant will be defined using
quotients of the chain complexes CÇÏP*), where XH c X is the regular cover
of XH which contains the fixed basepoint e° G p ~ 1(XG).

Assume as before that A" is of finite type and the inclusion K ^> X, where
K = X" and « > 2, is a G-domination. Let iH: XH "^ A" be the inclusion and
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let tTx(iH): ttx(Xh)—> irx(X) be the induced homomorphism. Since im(irx(iH))
C trx(X) has a trivial 77-action, there is an induced action of NH/H on
m\(trx(i„)). Hence by (2.4), A^is an NH/H = im trx(iH)xaNH/H-complex.
Analogous to the discussion above, the inclusion

C{KB,p-l(K>s) n &)<+ c(x*,p-\x>H) n Xs)
is a Z(A777/77)-domination for the free Z(A7f/7/)-complexes. Hence, the
invariant w(C(XH,p-\X>H) n A"")) is defined.

Definition 5. Let X satisfy the hypotheses of Theorem 1. We define

£2(A\G)= 2   W{c(xli,p->(x>»)nxa))
H<G

G  2   ®Ko(Z(NH/H)).
H<G

The invariants EX(X, G) and E2(X, G) are related.

Lemma 6. Let X satisfy the hypotheses of Theorem 1. TAe«
(i) There is a homomorphism oH: NH/H -* NH / H,and therefore an induced

homomorphism

**-  2   °h.-   2   © K0(Z(NH/H))^ 2   © K0{Z(NH/H)).
H<G H<G H<G

(ii) TAe* invariants EX(X, G) and E2(X, G) satisfy the relation

E2(X,G) = o,Ex(X,G).

In particular, if each trx(iH) is an isomorphism then E2(X, G) = EX(X, G).

Proof, (i) The homomorphism oH is defined by (y, g) h* (irx(iH)y, g), y G
mx(X")andgG NH/H.

(ii) By a relative form of (3.8)

C(X^,p-\X>H)nX^)^Z(NH~/H)      ®__   C(x",Ph\X>h)).
^_ _ Z(NH/H)

Hence w(C(XH,p~\X>H) r\X")) = oHwH(X). By summing over all
subgroups H we obtain the desired result.   □

It is clear that if <p: À7-» A" is a G-equivalence then it is a G-homology-
equivalence as well. In the context above, EX(X, G) — 0 implies E2(X, G) ■»
0. At the end of this section we will give an example of a G-complex X with
the property that EX(X, G) ¥= 0 but 7î2(A", G) = 0, which implies that we can
construct a G-homology-equivalence between X and a finite complex when a
G-equivalence does not exist.

Also note that since g G G is a homeomorphism it induces isomorphisms
between projective class groups and g^wH(X) = wgHg-i(X) and g*omwH(X)
— a,w H -\(X). We could have defined both invariants as sums over con-

jugacy classes of subgroups instead of as sums over all subgroups.
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Proof of Theorem 1 (i). The element EX(X, G) is an invariant of G-
homotopy type since each w^A") is an invariant of Z(A77/77)-chain
homotopy type.

To prove the condition is necessary, suppose that <p: K -» A" is a G-equiva-
lence. There is an induced Z(A77/77)-chain equivalence

_jpf : C(F, qJi\K>")) -> C{XS,p^(X>")),
where qH : KH -» KH is the universal cover.

Thus, wH(X) = 0 for each 77. By definition EX(X, G) = 0.
To prove the sufficiency we first assume as above that A" is a G-complex of

finite type which is G-dominated by its «-skeleton, K, and that « > 2. By
induction, we assume that AT is an at most (« + l)-dimensional subcomplex of
X and we assume that the inclusion map iH.: KH °* XH' is a homotopy
equivalence for all subgroups 77' such that |77'| > \H\. We let 77 represent a
conjugacy class of subgroups. *-^_^

Consider the short exact sequence of Z(NH/H)-complexes

c{p„\x>»),p-h\k>»))»c(x~z,kZ)

-H>C(X«,p¿1(X>»)uKB).

By a relative form of (3.9),

C(p^(X>H),p^(K>H))^Z(NH/H) |   C(X>^,K>^)

where R = Z(irx(X>H)xaNH/H). By the inductive hypothesis the inclusion
¡>H: K>H^>X>H is a homotopy equivalence. Then C(X>H, K>H) is
acyclic and, therefore, by the universal coefficient theorem, the complex

C(p^(X>»),p^(K>«))

is acyclic. Thus, 77 (X1", K") s 77(ÁTS,p^1(A">'w) u K").
By assumption, the only nonzero homology group for either complex is in

dimension (« + 1). Since wH(X) = 0 by the isomorphism above

[77„+1 (Xs, K*)] = 0 G K^mÑH/H)).
Thus, there exist finitely-generated free Z(A77/77)-modules, Fx and F2, such
that

FlmHm+l(XS,Kj) © F2.
In the following construction we will attach a finite number of cells to the

subspace KH and to its homeomorphic copies KgHg , g G G. We then
replace A" by a G-equivalent space of finite-type with an (n + l)-subcomplex
L satisfying: iH.: LH °* XH is a homotopy equivalence for all subgroups 77'
such that either |77'| > \H\ or H' is conjugate to 77.
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Step I. We define a complex A"' = K V (V(ÍA) S"¡¿) where {/} represents a
finite set of generators of F2, and g ranges over some set of coset representa-
tives of G/H. We extend the action of G to K' by defining g'S£iJs) = S^g),
where g is a representative of G/77 and g' G G.

Define a G-map q>': K' -» A" by q>'\K = inclusion and <p'\s» = x0 where x0
is the basepoint in X. Then <p' is clearly a G-domination extending the
inclusion. By (4.1) we can replace A by a G-equivalent space A" of finite type
in such a way that K'H is a subcomplex of X'H. For this new space we have
the short exact sequence

Ha+i(X!*tPf)>*Hm+l(Xt*,KaS)-r~   ^(F*,**)
which splits. Since the first term is clearly isomorphic to Hn+l(XH, KH) we
have the direct sum decomposition

Hn+x(Pñ,FT})  =77„+1(Ha^) © 77„(A^,A^)
^Hn+X(XH,K") © F2mFv

Step 2. For each generator t of 7", associate an element o, G
"ïï„+x(X'h, K'H) using the following sequence of isomorphisms

7-, Ä 77„+I (P¡, K%) I ^.(j?*. &) 5 *„*,(*'* K'"),
where A represents the Hurewicz map. (These are all Z(A77/77)-maps by
functorial properties.) Let (/?,, y,) G o,.

Define a complex L by L = A"' U (;>ir) e^J where the (« + l)-cell e"*g\
has attaching map g ° y„ g ranges over representatives of G/77, and t ranges
over generators of Fx. (This definition is independent of the choice of
representatives in G/77 since 77 fixes K'H.) We extend the G-action on A"' to
L by defining g'e"*g) = e"*g\y The map xp: L-*X', extending the inclusion
on A" by setting \p\e**¡ = g ° ß,, is a G-dominating map.

By construction, the Hurewicz theorem and Whitehead's theorem, xpH is a
homotopy equivalence. Likewise, since each g is a homeomorphism, it follows
that xpgHg is a homotopy equivalence. Since the fixed-point sets for 77',
where \H'\ > \H\, were not changed in the replacement of A" by A" in Step 1,
then xpH' = iH.: LH *-» X'H is a homotopy equivalence.

Finally, by (4.1) we can now assume that L is a subcomplex of X, and our
induction step is complete.

The induction will end in a finite number of steps since G is finite. When
77 = 1 Steps 1 and 2 and (4.4) imply that xp: L -* A", is a G-equivalence.   □

Proof of Theorem 1 (ii). It is clear that the element E2(X, G) is an
invariant of G-homotopy type.

To prove necessity, suppose that <p: A" —» X is a G-2-connected, G-
homology-equivalence, where A" is a finite G-complex. Let 77 be a subgroup
of G. Considering X as an A77-complex, by (2.5) and (3.9)
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C(p-l(XH))^Z(ÑH)   0    C(X")
Z(tf/?)

where NH = -rrx(X)xaNH and A77 = im(irx(iH))xaNH. Since Z(NH) is a free
Z(A77)-module, the universal coefficient theorem imphes that

H(p-l(XH))szZ(ÑH)   0    H(X").
Z(ÑH)

A similar argument shows that H(p-\X>")) = Z(A77) 0 ztfjfo H(X>").
By replacing A" by the mapping cylinder M(<p) we can consider KH as a

subspace of XH. Applying the above analysis we see that

0 = H(p-\XH),p-\K»)) = Z(NH)    ®    H{X",K").ZtNIÎ)

Since the last term is a direct sum, we have H(XH, KH) = 0. Similarly,
H(X>»,Kp))iszeio.

Since XH n p~l(X>H) is a union of components each homeomorphic to
X>", it follows that

77(Á^,p-'(A">/í) n A^) ^ 77(Á^,p-1(A">") n A^)

as Z(A7Y)-modules and as Z(KHjjll=Z(im(vx(iH))xaNH/Hymodmes.
Since these chain complexes are Z(NH/ H)-fiee they are also chain equiva-
lent. Hence, w(C(XH,p-\X>H) n A^)) = 0. It then follows that E2(X, G)
= 0.

Now assume that E2(X, G) = 0. Assume that A" is of finite type and the
inclusion K^-* X is a G-domination, where A" = A"" and « > 2. Since the
proof that A" is G-homology-equivalent to a finite complex is similar in part to
the proof of G-equivalence from part (i) of this theorem, we will omit many
details.

The induction hypothesis states: A" is a subcomplex of X of dimension (at
most) (« + 1), and iHr. KH «-» X" induces a homology isomorphism

77(p-'(A-"'))^77(p-'(A-"'))

for all subgroups 77' such that |77'| > |77|. We let H represent a conjugacy
class of subgroups.

From our inductive hypothesis and the previous discussion,

c(p-'(A->") n Á^,p-'(A->") n K^)

is acyclic. Thus, H (Xs, K") = 77(^£ru (p~l(X>H) n Xs)). Since
£2(A\ G) = 0 there exist f.g. free Z(A7f/77)-modules, Fx and F2, such that
FX^H„+X(XH,KS)®F2.

In our construction we attach orbits of cells to Ug KgHg '. We then replace
A" by a G-equivalent space of finite type containing an (« + l)-subcomplex L
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satisfying: the inclusion induces isomorphisms

H{p->{L»'))mH{p-\X»'))
for 77' conjugate to H or |7f'| > |77|._

S/ep 1. Follow Step 1 of part (i). The last line becomes Hn+X(X'H, K'H) s
77n+ X(X", KH) © F, where F is Z(ÎŒ~[H)-fiee and has the same rank as£2.
But now applying [Z(NH/H) 02<NH/H^to both sides yields Hn+X(X'H, K'H)
mFx.

Step 2. The Hurewicz homomorphism

A: trn +, (Á^, Á^) _ 77n+, (^ #*)

is onto by the Hurewicz theorem. Hence there is a Z(A77/77)-
homomorphism a: Fx -» trn+x(X'H, K'H). Use this correspondence in Step 2
of part (i) to construct L and xp: L->X. Assume L c A" by (4.1). By
construction we have the required homology isomorphisms.   □

Example 7. We will construct a Z2-complex A" of finite type which is
Zj-dominated by its 2-skeleton. For this complex EX(X, Z^ =£ 0 but E2(X, Z^
= 0. Thus X is not Z2-equivalent to a finite complex, but there does exist xp:
L -> X where L is finite and xp is a G-homology-equivalence.

The group K^HZ^)) s Z3 [12, p. 30]. Let w0 be a generator. Define a
2-complex A" = S ' U 23 e2, by adjoining a 2-cell to S ' by a map of degree
23. Then fl-,(A") s Z^. By [15, Theorem F] there exists a complex y of finite
type such that K c Y2, Yl = A"1, y2 dominates y and w(Y) = w(C(Y)) =
w0 G Âf/ZiZ^)). The space Y will be A" ̂ in our example.

Let A" = y u ef u e\ where the 2-ceUs are attached via 1: S1 -* S1 c Y.
Clearly irx(X) = 1. Let Z2 act on A" by switching the 2-cells.

Let j: Y2<^> Y be the inclusion, let s: Y-* Y2 be a right homotopy inverse
such that s\Y< is the identity and let F: js = ly(rel Y1) be a homotopy. We
will extend these to Z2-maps as follows: extend s to s': X -» A"2 be defining it
to be the identity on the 2-cells; extend F to F': X X I -* X by (x, t)^x,
x G e2 u e2 and t G I. Let i:X2<^>X. Then j' is a right Z2-homotopy inverse
of i. Therefore, X2 Z2-dominates X.

The invariant

Ex (X, Z2) = w^(X) + wx(X) = w(Y) + wx(X) - w0 * 0.

(*v,(A") = >v(C(A, y)) G K0(Z(Z2)) = 0.) The invariant £2(A", Z2) =
w(C(Xz*)) + w(C(X, X2*)) G K0(Z) © K^Z^Z^) = 0. Hence, E2(X, ZJ =
0.   □

The results of this section suggest a related problem: Let G be a finite
group. Define a Wall invariant in the category of ÄG-permutation complexes
and maps. We note here that such an invariant can be defined, but we omit
the details.
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6. Further results. Let <p: K —» X be a G-dominating map where A" is a finite
G-complex. In the previous sections we have studied the problems of replac-
ing <p by either a G-homotopy equivalence or a G-homology equivalence xp:
L —* X where L is a finite G-complex. Since we can always assume that a
G-domination is G-2-connected, a positive solution to either of these prob-
lems would show that it is possible to replace <p by a G-map xp: L -» X which
is an ordinary homotopy equivalence.

It is the object of this section to investigate the problem of the existence of
a G-homology equivalence further, with the additional necessary assumption
that there exists a G-map which is an ordinary homotopy equivalence. We
note that, by [8, Theorem 1.1] any finite complex whose reduced homology
with Zp -coefficients is trivial, can be the fixed-point set of finite contractible
Zp -complex. Therefore, a G-map which is an ordinary homotopy equivalence
(in this case a contraction) need not be a G-homology-equivalence.

Our main results are Theorems 1 and 2.

Theorem 1. Let X be a G-complex such that X" is connected and XG =£0.
Suppose that ttx(X) is finite and that either G acts semi-freely on X or G is
solvable. Let <p: A"-» A" be a G-dominating map where K is a finite G-complex,
the dimension of K is n, and « > 2. 77ze« the following statements are equiva-
lent:

(i) The invariant E2(X, G) = 0.
(ii) There exists a G-n-connected, G-dominating map \p: L—>X where L is a

finite complex and dim(L) = « + 1 such that xp is an ordinary homotopy
equivalence.

In Theorem 2 we let <pc: KG -* Xe be the restriction of <p: ÂT-» X to the

regular cover of KG in AT. Also, we let <pG: A"^-> A"G be the restriction to the
complete inverse image of KG in K. The inclusion of Xe into A" is denoted by
*G-

Theorem 2. Let X be a G-complex and let G act semi-freely on X. Suppose
that Xa is connected and not empty. Let <p: A"-»A" be a G-2-connected
G-domination which is also a homotopy equivalence.

(i) If each Ht(M(<pG), Kc)has a finite Z(im(irx(iG)))-free resolution of length
2, then E2(X, G) = 0.^^  __

(ii) If each 77,(Af (y°), K^) has a finite ZG resolution of length 2, then
E2(X, G) = vv(C(A"G)). 7« addition, if X is simply connected then E2(X, G) =
0.

Some special cases of Theorem 2 are of interest.
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Corollary 3. Let X, G and tp: A" -» A" be defined as in Theorem 2. Suppose
that tT\(XX Jâ^Jtnite. Then the finite resolutions of H¡(M(<pG), KG) and
H¡(M(^), K ) in parts (i) and (ii) may be taken to be of any finite length.

Proof. It is sufficient to show that either module has a finite resolution of
length 2.

Let it be a finite group and Fn -» Fn_x -> • • • -* F0 -** Af be a finite
Zv-fiee resolution of Af. There exists a finite projective resolution of Af of
length 2, Px -» 7*0 -»-> Af, by [13, Theorem 4.12]. We may assume that P0 is
free. There exists a chain map <p: P -» F such that the algebraic mapping cone
Af (<p) is acychc. By Schanuel's Lemma [1, p. 36] applied to M(<p) and the
zero complex, it follows that Px is stably-free. Thus, there exist f.g. free
modules F[ and F'2 such that F¡ s F[ 0 Px. Then F{ © P'x -*F{ ©
P0 -»-» M is the desired resolution.   □

Corollary 4. Let X be a Zn-complex which is simply connected. Let K be a
finite Zn-complex and <p: A"—» A" be a Zn-dominating 2-connected map which is
a homotopy equivalence. Suppose that 77(M(qpz"), A"z") is finite and prime to n.
Then X is Zn-homology equivalent to a finite complex.

Proof of Corollary 4. By [8, Lemma 1.1] each 77,(Af (<pz-), A"z") has a
finite free Z(Z„)-resolution of length 2. The rest follows from Corollary 3 and
(6.1).   □

The proofs of the main theorems will follow from Lemmas 5-7.

Lemma 5. Let G be a finite group. Then G is solvable if and only if for each
subgroup H of G there exists a maximal proper subgroup M of H which is
normal in 77.

Proof. Recall that a finite group is solvable if and only if the factor groups
in a composition series are cyclic of prime order [7, p. 139].

Let G be a solvable group. Since each subgroup of a solvable group is
solvable, it suffices to prove that a solvable group has a maximal proper
subgroup which is normal. Let G = G0D>G,> • • • > <?a «■ 1 be a
composition series for G. Then G/Gx is cyclic of prime order and thus G, is
maximal in G.

Suppose that G is not solvable. Let G>GX>G2> - ■ ■ t> G„ = 1 be a
composition series for G. Then there exists an i such that the order of
G¡/Gi+X is the formpq wherep is prime and q j* 1. Hence G¡/Gi+X contains
a subgroup of order p. It follows that although G,+, is maximal among the
normal subgroups of G„ it is not maximal among the subgroups of G¡.   □

Lemma 6. Let G be a finite group. Let P be a finitely-generated projective
ZG-module, and T be a finitely-generated free abelian group with trivial
ZG-module structure. If P ss T as ZG-modules, then P = T = 0.
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Proof. Let H(G, M) represent the complete derived homology and
cohomology sequence of G with coefficients in the ZG-module Af [4, Chapter
XII]. For a projective P, H(G, P) = 0 [4, p. 236]. If the trivial module T ¥* 0,
then there are finite direct sums T = 2 © Z and H(G, T) s 2 © 77(G, Z) j=
0 by [4, p. 237] and thus P and T are not isomorphic as ZG-modules.   □

Lemma 7. Let P be a finitely-generated projective Z-n-module where it is a
finite group. If Z 0Z„ P = 0, then P = 0.

Proof. Suppose P#0. By a theorem of Swan [5, p. 556] P = F © P0
where F is a free Zir-module and T^ is a projective ideal in Zir. Since the
tensor product commutes with direct sums it follows that if Z 0Zm P = 0 then
F = 0 and P = P0.

By [5, p. 557] P 0Z Q = Zir 0Z Q s Qir where Q is the field of rational
numbers. Now we have

0 = (z ® P ) <8> Q = Z0(P0 q)seZ® Qit > Z0 ZttsZ.
v     Zir      '  Z ZirX      Z        ' Zir Zir

Thus, we have a contradiction.   □
Proof of Theorem 1. (i) => (ii) by the proof of (5.1). (ii) => (i): By (4.1) we

assume that <p: K -+ X is inclusion, A" = X" and « > 2.
Suppose first that G is solvable.
By assumption C(X,K) is acyclic. Suppose that for all H' such that

|77'| < |77|, C(A*"', K") and C(XH', KH) are acyclic, and let 77 be a
subgroup of G. By Lemma 5 there exists a proper normal subgroup Af of 77
such that 77/Af is a cyclic group of prime order. Thus H/M acts semi-freely
on XM. Note that its fixed-point set is (XM)H'M = X". To simplify notation
letXS~=p-l(XH)n X".

(1) Consider the short exact sequence of Zfimiw^z'^-modules. (We ignore
the action of H/M on the spaces in this step.)

C(X",K")>-^C(X^r,KKr)-^   C(HPuF).

By the inductive assumption C(X**, KM) is acyclic. Thus Hi+X(XM, X" u
KM) s H;(XH, K") for all i. By assumption <pH is (« - l)-connected, and

thus H^X^Q) = 0 = H^^lJoi i <(n- 1), where « = dim(A").
Since C(A"W, A79) dominates C(X^, Xs),

77,.(A^,A^U A^) = 0
for /' > « + 1. Thus, the only nonzero groups are Hn+x(X*r, XH u K**) a
77„(P,P). _^    ̂

The  module  H„+X(XM, XH u KM)   is  finitely-generated  Ziim^O'^))-
projective.
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(2) By relative forms of (3.8) and (3.9) C(A"", KH) s Z 0 C(XH, A^),
where we tensor over Z(im tr2(iM)).  By Step 1 the only nonzero homology

group of C(XH, KH) is a f.g. projective. Hence, by the universal coefficient
theorem, 77„(A"", KH) a Z 0 H„(X^, K"), which is a f.g. Z-free module.

(3) Consider the sequence of Z(77/Af)-complexes
C(Xa, KH)^>C(XM,KM)^> C(XM, X" U KM ).

By the inductive assumption and Step 2, the only nonzero groups are
Hn+X(XM,XH u KM) s H„(XH, K"). Since C(KM, K") dominates
C(XM, XH) as free Z(77/Af Complexes, Hn+X(XM, X" u KM) is a finitely-
generated projective Z(7f/Af)-module.

(4) Since the action of 77/Af on C(XH, KH) is necessarily trivial, Lemma 6
implies that

77„+, (XM, XH u KM ) = 77„ (XH, KH) = 0.

By Lemma 7, since
77„(XH, KH)^Z0Hn(Xs, K")   and   77„(XH, KH) = 0,

77„(A"", K^) - 0 and thus 77n+1(X", X^ u K1*) = 0.
The induction step is complete.
Now suppose that G acts semi-freely on X. Since we only need to consider

C(X, XG u K) and C(A"G, KG) to check for G-homology equivalence, just
consider G and Af = 1 in the above induction step.   □

The proof of Theorem 1 can be applied more generally if we know
something about the action of G on A". Namely, if for each nontrivial
subgroup H of G there exists a subgroup M of G such that Af is normal in 77,
Af # 77 and 77/Af acts semi-freely on XH, then the proof of Theorem 1 goes
through. Lemma 5 shows that the proof cannot be extended to any larger
class of subgroups without some extra conditions on the action.

The next lemma is used in the proof of Theorem 2.

Lemma 8. Let C be a free R-complex, and let <p: D -» C be an R-dominating
map, where D is a finite free R-complex. Suppose that each H¡(M(<p)) has a
finite free R-resolution of length 2. Then C is R-chain equivalent to a finite free
R-complex.

Proof. We assume by induction that the map <p: D -» C has the property
that Hj(M(<p)) = 0 fory' < i. To prove the lemma it is sufficient to construct a
finite free chain complex E and chain map xp: E —» C such that H(M(tp)) — 0
for j < i + 1 and Hj(M(xp)) = Hj(M(tp)) for y > / + 1. The construction will
terminate in a finite number of steps since <p is a domination and D is finite.

The construction will be in two steps. Let F'=—» F —>* Hi+x(M(<p)) be a
finite free resolution of Hi+x(M(<p)).
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(1) Use the map A: F-*» Hi+X(M(<p)) and [3, Lemma 3] to construct a
finite free complex D and map <p: D-> C. Then Hj(M(<p)) ss 77,(Af (ç>)) for
j ¥= i + I, i + 2. By construction, Hi+x(M(y)) = 0 and Hi+2(M(y)) m
Hi+2(M(xp)) © F'.

(2) Use the map A': F' «=+ 77,+2(Af (<p)) 9F'« Hi+2(M(y)) and [3, Lemma
3] to construct a finite complex F and map xp: E -» C which satisfy the
properties listed above.   □

Proof of Theorem 2. Since G acts semi-freely on A",
F2(A", G) - w(C(P)) + w{c(X,p-l(XG)).

By assumption C(Af (<p), Ä) is acyclic and

H0(M(Ç^), P) = 770(Af (<p), Af (£*) u A") = 0.
We also have the following isomorphisms:

77,+ 1(Af(<p), M(P) UK)^ Ht(M(P),p-l(KG))
^ZG0H¡(M{yG),KG).

In the last term we tensor over Z(im trx(iG)). Let <p%: C(KG) ->■ C(XG) and
<p#: C(K,p~l(KG))-> C(X,p-\XG)) be induced chain maps, and let
M(<p#) and M(<p#) be the algebraic mapping cones. Then H(M(tp%)) m
H(M(ÍG), K5) and 77(Af (<p#)) s 77(Af (<p), Af (J^) u #).

(i) By assumption and Lemma 8, w(C(X°)) = 0.
Let  Fj-f—» F,0 -*»   H¡(M(<p#))  be  a  finite  Zinn^^i^-resolution.  By

tensoring with ZG over ZiinuV,^)) we obtain an induced ZG-resolution

F^ra-+*   77/+I(Af(<p#)).
Since Ho(M(tp#)) = 0 we can apply Lemma 8 to obtain w(C(X,p~1(XG))) =
0.

(ii) By the assumption, the isomorphisms above and Lemma 8,
w(C(X,p-\XG))) = 0. Hence, F2(A", G) = w(C(A"G)).

If A" is simply-connected, then w(C(XG)) = w(C(XG)) G K0(Z) = 0. Thus,
F2(A", G) = 0.   □
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