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AN ERROR ANALYSIS OF THE MULTI-CONFIGURATION
TIME-DEPENDENT HARTREE METHOD OF QUANTUM DYNAMICS
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Abstract. This paper gives an error analysis of the multi-configuration time-dependent Hartree
(MCTDH) method for the approximation of multi-particle time-dependent Schrödinger equations. The
MCTDH method approximates the multivariate wave function by a linear combination of products of
univariate functions and replaces the high-dimensional linear Schrödinger equation by a coupled sys-
tem of ordinary differential equations and low-dimensional nonlinear partial differential equations.
The main result of this paper yields an L2 error bound of the MCTDH approximation in terms of a
best-approximation error bound in a stronger norm and of lower bounds of singular values of matrix
unfoldings of the coefficient tensor. This result permits us to establish convergence of the MCTDH
method to the exact wave function under appropriate conditions on the approximability of the wave
function, and it points to reasons for possible failure in other cases.
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Introduction

This paper provides an error analysis of the MCTDH method, which is a remarkably successful method for
the approximate solution of the time-dependent multi-particle Schrödinger equation

i
∂ψ

∂t
= Hψ, (0.1)

where the wave function ψ = ψ(x(1), . . . , x(N), t) depends on the spatial coordinates x(n) ∈ R3 of N particles
(nuclei in a molecule), and on time t. In atomic units (� = 1), the Hamiltonian is given by

H = T + V = − 1
2m1

Δ(1) − . . .− 1
2mN

Δ(N) + V (x(1), . . . , x(N)). (0.2)

In the kinetic energy operator T , the Laplacian Δ(n) is taken with respect to the spatial coordinates of the
nth particle of mass mn. The real potential V , which acts as a multiplication operator, will be assumed to
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be bounded. The situation of primary interest here is that of a Schrödinger equation for distinguishable nuclei
moving in a potential given by an (approximate) electronic energy surface, according to the time-dependent
Born-Oppenheimer approximation to the full molecular Schrödinger equation. The assumption of a smooth and
bounded potential is usually a reasonable modelling assumption in these applications.

For computational wavepacket propagation, the multi-configuration time-dependent Hartree method
(MCTDH) has been put forward by Meyer et al. in [1,12–14] and further references therein. It has been
used successfully in a variety of chemical situations such as photodissociation and reactive scattering, for prob-
lems involving 6 to 24 nuclear degrees of freedom and one or several electronic states; see, e.g., [15]. In the
MCTDH approach, the wave function is approximated by a linear combination of Hartree products, that is, of
products of functions each depending on the coordinates of only a single particle, or of a single degree of free-
dom. The Dirac–Frenkel time-dependent variational principle yields equations of motion for the single-particle
functions and for the coefficients in the linear combination of the Hartree products. The ordinary differential
equations for the coefficients are those of a standard Galerkin method with an orthonormal basis of Hartree
products, but here this basis changes in time according to the low-dimensional nonlinear partial differential
equations satisfied by the single-particle functions. The MCTDH method thus replaces the high-dimensional
linear Schrödinger equation by a system of ordinary differential equations and low-dimensional nonlinear partial
differential equations and in this way makes the problem computationally tractable.

It is tempting to think that taking more and more linear combinations of Hartree products should give an
ever better approximation to the wave function. This intuitive expectation is, however, not easily put on firm
ground. Obstructions come from the difficulty to ascertain the approximation properties of the time-dependent
basis of Hartree products and from the fact that the density matrices appearing in the method formulation
become more and more ill-conditioned as more terms are added in the linear combination of Hartree products.
These two obstructions render a standard convergence analysis illusory.

Although a smooth wave function can indeed be well approximated by linear combinations of tensor products
of single-particle functions, it is not clear how this property relates to the approximation provided by the
MCTDH method. The L2 error of the MCTDH method is bounded in terms of the L2 best-approximation
error in [10], but the constants in these estimates grow without bound as the number of linear combinations
increases, due to the growing ill-conditioning of the density matrices.

In the error analysis given here, we suppose that the wave function can be approximated by linear combina-
tions of Hartree products in such a way that the residual in the time-dependent Schrödinger equation is small
(≤ ε) and the singular values of the matrix unfoldings of the coefficient tensor are not too small (≥ δ). We then
obtain, in Theorem 2.1, an O(ε) error bound for the MCTDH approximation on a time interval of length pro-
portional to δ/ε. Moreover, the inverses of the density matrices of the MCTDH method are bounded by O(δ−2)
on such a time interval. It cannot be expected that δ is substantially larger than ε, but the bound δ ≥ cε for
a positive constant c independent of the number of linear combinations appears as a reasonable assumption.
Under a condition that requires smallness of the time derivative of the coefficient tensor in components that
correspond to the small singular values, the error bound of Theorem 2.1 then yields the convergence of MCTDH
approximations to the exact wave function over some fixed time interval, as more and more terms are included
in the linear combinations. It must be noted, however, that our error analysis does not establish convergence of
the MCTDH method in general, but it does show mechanisms that lead to small errors or to possible breakdown
of the approximation.

We mention that multi-configuration Hartree–Fock methods for the Schrödinger eigenvalue problem of elec-
tronic structure theory are analysed in [2,9], where convergence of the ground state and of the energies of excited
states are shown.

In Section 1 we describe the MCTDH method. The main result of our error analysis is stated and discussed
in Section 2. We introduce useful notation for the proof in Section 3, and in Section 4 we reformulate the
MCTDH equations of motion in this compact notation. In Sections 5 and 6 we study tangent space projections
onto the MCTDH manifold as an essential tool of our error analysis. The proof of the main result is then given
in Section 7.
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1. The MCTDH method

In the MCTDH method [1,13], the multi-variate wave function ψ is approximated by a linear combination of
products of uni-variate functions, that is, for x = (x(1), . . . , x(N)),

ψ(x, t) ≈ u(x, t) =
∑

(j1,...,jN )

aj1,...,jN (t)φ(1)
j1

(x(1), t) . . . φ(N)
jN

(x(N), t) ≡
∑

J

aJ (t)ΦJ(x, t). (1.3)

Here, the multi-indices J = (j1, . . . , jN ) vary for jn = 1, . . . , rn with n = 1, . . . , N . The aJ(t) are complex
coefficients depending only on t. The single-particle functions φ(n)

jn
(x(n), t) depend on the coordinates x(n) of

a single particle and on time t. They appear multiplied with each other in the Hartree products ΦJ(x, t) =∏N
n=1 φ

(n)
jn

(x(n), t).
This approximation format is analogous to the Tucker format in tensor approximation (see, e.g., [4,8]). The

computational scaling is exponential in the dimension N , as rN if rn = r for all n, unless a reduced format is
chosen for the coefficient tensor (aJ) as, e.g., in [4,17].

The Dirac–Frenkel time-dependent variational principle yields differential equations for the coefficients aJ and
the single-particle functions φ(n)

jn
. We first recall this variational approximation procedure in its abstract form

and then turn to the MCTDH approximation manifold and the MCTDH equations of motion. The presentation
follows [5,11].

1.1. The Dirac–Frenkel variational approximation principle

The abstract setting is that of the time-dependent Schrödinger equation

i
dψ
dt

= Hψ , ψ(0) = ψ0, (1.4)

where the Hamiltonian H is a self-adjoint linear operator on a complex Hilbert space H with inner product 〈·|·〉
and norm ‖ · ‖. Let M ⊂ H be a submanifold of H on which an approximation to the wave function ψ(t) should
lie, and let TuM denote the tangent space at u ∈ M (i.e., the closed real-linear subspace of H formed of the
derivatives of all paths on M passing through u, or in physical terminology, the space of admissible variations).
We assume that TuM is in fact complex linear, i.e., with δu ∈ TuM also i δu ∈ TuM. The Dirac–Frenkel
principle determines the approximate wave function t �→ u(t) ∈ M from the condition that the time derivative
u̇ = du/dt should satisfy, at every time t,

〈
δu
∣∣∣ u̇− 1

iHu
〉

= 0 for all δu ∈ TuM. (1.5)

With the orthogonal projection P (u) onto the tangent space TuM, this can be rephrased as a differential
equation on M,

u̇ = P (u)1
iHu. (1.6)

From a numerical analysis viewpoint, condition (1.5) can be seen as a Galerkin condition on the state-dependent
approximation space TuM.

1.2. The MCTDH approximation manifold

The MCTDH method determines approximations to the wave function that, for every time t, lie in the set

M =

{
u ∈ L2(Rd) : u =

r1∑
j1=1

· · ·
rN∑

jN =1

aj1...jN φ
(1)
j1

⊗ · · · ⊗ φ
(N)
jN

with aj1...jN ∈ C, φ
(n)
jn

∈ L2(Rdn)

}
, (1.7)
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with the total dimension d = d1 + . . .+ dN . This set M is not a manifold, but M contains a dense subset M
that is a manifold and is characterised by a full-rank condition.

The representation of u ∈ M by a coefficient tensor A = (aJ )J and single-particle functions φ = (φ(n)
jn

)jn,n

is not unique. We may assume that the φ(n)
jn

corresponding to the same particle n are orthonormal:

〈φ(n)
jn

∣∣φ(n)
ln

〉 = δjn,ln , jn, ln = 1, . . . , rn, n = 1, . . . , N (1.8)

(where δjn,ln is Kronecker’s delta). Consider a differentiable path t �→ (A(t),φ(t)) representing a path u(t)
on M. Then, the derivative δu = u̇(0) is of the form

δu =
∑

J

δaJ ΦJ +
N∑

n=1

rn∑
jn=1

δφ
(n)
jn

ψ
(n)
jn

(1.9)

with the Hartree products ΦJ =
⊗N

n=1 φ
(n)
jn

and with the single-hole functions

ψ
(n)
jn

:= 〈φ(n)
jn

|u〉(n) =
r1∑

j1=1

· · ·
rn−1∑

jn−1=1

rn+1∑
jn+1=1

· · ·
rN∑

jN =1

aj1,...,jN

⊗
� �=n

φ
(�)
j�

(1.10)

where the superscript (n) on the inner product indicates that the L2 inner product is taken only with respect
to the variable x(n), leaving a function depending on all the other variables x(�) with � �= n. Conversely, the
δaJ turn out to be uniquely determined by δu and (A,φ) if we impose the gauge constraints

〈φ(n)
jn

| δφ(n)
ln

〉 = 0, jn, ln = 1, . . . , rn, n = 1, . . . , N, (1.11)

which is a stronger condition than the differentiated condition (1.8), i.e., 〈φ(n)
jn

| δφ(n)
ln

〉 + 〈δφ(n)
jn

|φ(n)
ln

〉 = 0. On
taking the inner product of ΦJ with δu given by (1.9), conditions (1.8) and (1.11) together imply

δaJ = 〈ΦJ | δu〉.

Taking the inner product of ψ(n)
in

with (1.9) gives

rn∑
jn=1

ρ
(n)
in,jn

δφ
(n)
jn

=
〈
ψ

(n)
in

∣∣∣ δu−
∑

J

δaJ ΦJ

〉(¬n)

(1.12)

with the hermitian, positive semi-definite density matrices

ρ(n) =
(
ρ
(n)
in,jn

)rn

in,jn=1
given by ρ

(n)
in,jn

:= 〈ψ(n)
in

|ψ(n)
jn

〉(¬n). (1.13)

The superscript (¬n) indicates that the L2 inner product is taken over all variables except x(n), leaving a
function depending on x(n) in (1.12). The orthonormality relations (1.8) allow us to express the entries of the
density matrices in terms of the coefficients aJ :

ρ
(n)
in,jn

=
r1∑

j1=1

· · ·
rn−1∑

jn−1=1

rn+1∑
jn+1=1

· · ·
rN∑

jN =1

aj1,...,jn−1,in,jn+1,...,jNaj1,...,jN (1.14)

or equivalently
ρ(n) = A(n)A

∗
(n), (1.15)
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where the matrix A(n) ∈ C
rn×

∏
k �=n rk is the nth unfolding of the tensor A, which is the matrix that in its

jnth row aligns the entries aj1,...,jN with fixed jn in lexicographical ordering.
The δφ(n)

jn
are thus uniquely determined from (1.12) under the full-rank condition that the tensor A has rank

(r1, . . . , rN ), which means that its nth unfolding A(n) has rank rn for each n = 1, . . . , N , or equivalently,

ρ(n) is an invertible matrix for each n = 1, . . . , N. (1.16)

With the above construction of the δaJ and δφ(n)
jn

, we obtain local charts on

M =

{
u ∈ L2(Rd) : u =

r1∑
j1=1

· · ·
rN∑

jN =1

aj1...jN φ
(1)
j1

⊗ · · · ⊗ φ
(N)
jN

with aj1...jN ∈ C, φ
(n)
jn

∈ L2(Rdn)

satisfying the orthonormality constraints (1.8) and the full-rank condition (1.16)

}
, (1.17)

making this set an infinite-dimensional manifold, for which the tangent space at u ∈ M consists of the ele-
ments δu of the form (1.9). The MCTDH method is obtained by using the Dirac–Frenkel principle on this
approximation manifold M.

1.3. The MCTDH equations of motion

Using the Dirac–Frenkel principle on the approximation manifold M of (1.17) and imposing, in view of (1.11),
additional orthogonality constraints on the time derivatives of the single-particle functions φ(n)

jn
(x(n), t),

〈
φ

(n)
jn

∣∣∣ ∂φ(n)
ln

∂t

〉
= 0, t ≥ 0, jn, ln = 1, . . . , rn, n = 1, . . . , N, (1.18)

yields a system of coupled ordinary and partial differential equations for the coefficients and single-particle
functions [1,12,13]:

i
daJ

dt
=
∑
K

〈ΦJ |H |ΦK〉 aK , ∀J, (1.19)

i
∂φ

(n)
jn

∂t
= (1 − P (n))

rn∑
mn=1

rn∑
ln=1

(ρ−1
(n))jn,mn〈ψ(n)

mn
|H |ψ(n)

ln
〉(¬n) φ

(n)
ln
, (1.20)

jn = 1, . . . , rn, n = 1, . . . , N,

where the Hartree products ΦJ , the single-hole functions ψ(n)
ln

, and the density matrices ρ(n) are defined as in

Section 1.2, and where P (n) is the orthogonal projector onto the space spanned by φ(n)
1 , . . . , φ

(n)
rn ,

P (n)θ =
rn∑

jn=1

φ
(n)
jn

〈φ(n)
jn

| θ〉(n).

Existence and regularity of solutions to the MCTDH equations of motion are studied in [5]. In the case of a
smooth bounded potential, it is shown that the MCTDH approximation exists with the same Sobolev regularity
as the initial data as long as the density matrices remain invertible.



764 D. CONTE AND C. LUBICH

R
apide N

ot H
ig

hl
ig

ht

2. Statement and discussion of the main result

We assume that the exact wave function ψ(t) = ψ(·, t), which is a solution to the Schrödinger equation (0.1),
can be written in the form

ψ(t) = v(t) + e(t), 0 ≤ t ≤ t, (2.1)

where v(t) = v(·, t) ∈ M is some approximation to the wave function in the MCTDH manifold that has a small
defect in the Schrödinger equation (0.1): with a small ε > 0, the defect is bounded in the L2(Rd) norm by

∥∥∥∥ i
∂v

∂t
(·, t) −Hv(·, t)

∥∥∥∥ ≤ ε. (2.2)

We note that a sufficient condition for this inequality is given by the bound

∥∥∥∥∂e∂t (·, t)
∥∥∥∥+ ‖He(·, t)‖ ≤ ε,

which holds if the error e = ψ − v is small in the C1([0, t], L2) ∩ C([0, t], H2) norm.
We further assume that v(·, t) ∈ M has a decomposition

v(x, t) =
r1∑

j1=1

· · ·
rN∑

jN=1

bj1...jN (t) θ(1)j1
(x(1), t) . . . θ(N)

jN
(x(N), t) (2.3)

with the following properties for 0 ≤ t ≤ t : there are a positive number δ > 0 and non-negative μ, ν such that
the smallest non-zero singular value σrn(B(n)(t)) of the nth unfolding B(n)(t) of the tensor B(t) =

(
bj1...jN (t)

)
satisfies, for n = 1, . . . , N ,

σrn(B(n)(t)) ≥ δ, (2.4)

and ∥∥∥B†
(n)(t) Ḃ(n)(t)

∥∥∥
2
≤ μ, (2.5)

where ‖ · ‖2 is the spectral norm, the matrix B†
(n) = B∗

(n)

(
B(n)B

∗
(n)

)−1 is the pseudo-inverse of B(n), and

˙ = d/dt denotes the time derivative. Note that condition (2.4) is equivalent to the bound ‖B†
(n)(t)‖2 ≤ δ−1.

Condition (2.5) with μ � δ−1 requires smallness of the time derivative of the coefficient tensor in components
that correspond to the small singular values.

The basis functions θ(n)
jn

are assumed to be orthogonal to each other for each n and to satisfy the bounds

rn∑
jn=1

∥∥∥∥∥ i
∂θ

(n)
jn

∂t
(·, t) − T (n)θ

(n)
jn

(·, t)
∥∥∥∥∥

2

≤ ν2, (2.6)

where T (n) = −(2mn)−1Δ(n) is the kinetic energy operator of the nth particle, and the norm is the L2(Rdn)
norm. Moreover, we assume that the potential is bounded:

|V (x)| ≤ β for all x = (x(1), . . . , x(N)) ∈ R
d. (2.7)

We then have the following error bound for the MCTDH approximation u(t) = u(·, t) given by (1.3) and (1.19)–
(1.20).
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Theorem 2.1. Under the above conditions, the approximation error of the MCTDH method with initial value
u(0) = v(0) is bounded by

‖u(t) − ψ(t)‖ ≤ ‖e(t)‖ + 2tε for t ≤ min

(
t,
c

2

(
δ

ε

)
,

1
√
γ

(
δ

ε

)1/2
)
,

where γ = 2C (c1μ+ c2ν + β) with c1 = 3N , c2 = 2N2, C = 8N(N + 3), and c = 1
2C .

Note that the ill-conditioning of B(n) as expressed by the smallness of δ does not affect the error bound on
intervals of a length proportional to δ/ε.

Remark 2.2. (a) The same error bound holds, with essentially the same proof, if conditions (2.4)–(2.6) are
assumed for the MCTDH approximation, i.e., for A(n) and φ

(n)
jn

instead of B(n) and θ
(n)
jn

. The condition
σrn(A(n)(t)) ≥ δ is equivalent to the bound ‖ρ−1

(n)(t)‖2 ≤ δ−2 of the inverse of the nth density matrix (1.15)
which appears in (1.20). We further note that under condition (2.4) on B(n), we obtain σrn(A(n)(t)) ≥ 1

2δ and
‖ρ−1

(n)(t)‖2 ≤ 4δ−2 for t in the interval given in the theorem.
(b) In Theorem 2.1 it is not essential that the operator T is a mass-scaled Laplacian. It is sufficient that

T is a sum of densely defined one-particle operators, which ensures the basic property that Tu ∈ TuM for all
u ∈ M∩D(T ). On the other hand, the boundedness of the potential V appears substantially in our proof. It
is not clear to us how to extend the result to the MCTDHF method of electron dynamics, where unbounded
Coulomb potentials are present.

Relating δ and ε. We describe a situation in which the key quantities δ and ε of Theorem 2.1 are in close
relationship. For ease of notation only, we consider here the case where all ranks rn are equal, r = r1 = . . . = rN .
We are interested in the behaviour of δ and ε as r grows, and therefore write δr and εr in the following.

We expand the wave function into a basis of tensor products of orthogonal functions, e.g., of shifted and
scaled Hermite functions as considered below. We then have

ψ(x, t) =
∞∑

j1=0

. . .

∞∑
jn=0

bj1...jN (t)θj1(x
(1), t) . . . θjN (x(N), t).

We denote by νr the bound (2.6) in dependence of r for these basis functions.
We now make the assumption on the wave function that with respect to this basis, the coefficients bj1...jN (t)

decay with growing indices, in the sense that for some ηr > 0 with ηr → 0 for r → ∞ (e.g., ηr = r−m for some
m > 1),

∑
(j1,...,jN ): jn>r for some n

|bj1...jN (t)|2 ≤ η2
r (2.8)

∑
(j1,...,jN ): jn>r for some n

|ḃj1...jN (t)|2 ≤ α2 η2
r . (2.9)

When we take v(t) as the truncated expansion with r terms in each coordinate, we have the following inequalities:

δr ≤ ηr, (2.10)

and (2.2) holds with
εr = ηr (

√
α2 + ν2

r + β). (2.11)

To prove (2.10), let B[r]
(n)(t) denote the nth unfolding matrix for the tensor with coefficients bj1...jN (t) for

j1, . . . , jN ≤ r. We then have from [3], p. 448, that the difference between the smallest singular value of B[r]
(n)(t)
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and the smallest singular value 0 of the matrix B[r−1]
(n) (t) filled up with zeros, is bounded by the Frobenius norm

of the difference of these matrices, which is bounded by ηr. This yields (2.10). The bound (2.2) with (2.11)
follows by combining the inequalities (2.6), (2.7), and (2.8)–(2.9).

The estimate (2.10) makes it clear that δr must tend to 0 if r → ∞, and the faster the better the exact
wave function is approximated with just a few Hartree products. With (2.10)–(2.11) we have δr ≤ const. εr.
It would be of interest to have also a converse inequality. By replacing the coefficient tensor (bj1...jN ) with a
perturbed one, where all singular values of the unfolding matrices are made greater than ηr, one obtains for
this perturbation δr = ηr and the bound (2.2) with εr = crηr. Unfortunately it does not seem possible to
bound cr independently of r in general, since the number of singular values that need to be increased to ηr may
grow linearly with r. In such a situation we would only get cr = O(

√
r). While this cannot be excluded, an

assumption δr/εr ≥ const. > 0 appears realistic for many cases.

Basis functions with ν = 0. As the following example shows, assuming condition (2.6) with ν independent
of r is not an unreasonable assumption. Consider the kth Hermite function

ϕk(x) =
1

π1/4

1√
2kk!

Hk(x) e−x2/2

with the Hermite polynomialHk of degree k. These functions form an orthonormal basis of L2(R) (see, e.g., [16]).
We choose the basis functions

θjn(x(n), t) = ϕjn

(x(n) − q(n)(t)
a(n)(t)

)
eip(n)x(n)

eiS(n)(t)

as shifted and scaled Hermite functions multiplied with complex exponentials, and expand

ψ(x, t) =
∞∑

j1=0

. . .

∞∑
jn=0

bj1...jN (t)θj1(x
(1), t) . . . θjN (x(N), t).

With the choice q(n)(t) = q(n)(0) + t
mn

p(n), a(n)(t) = a(n)(0) + it
2mn

, S(n)(t) = S(n)(0) + t
2mn

(p(n))2 of the posi-
tion, scaling and phase parameters, respectively, the functions θjn(x(n), t) are solutions of the free Schrödinger
equation, and hence (2.6) holds with ν = 0.

Conditional convergence of the MCTDH method. An interesting theoretical question concerns the
convergence of the MCTDH method to the solution of the Schrödinger equation as the numbers rn of basis
functions tend to infinity. It appears already obvious from the method formulation that such a result cannot
be given without assuming some a priori bounds on ‖ρ−1

(n)(t)‖2, that is, on δ−2 with δ of (2.4). As we have seen
above, such bounds cannot reasonably be assumed independently of r. If we have δr/εr ≥ const. > 0 and if the
bounds (2.5) and (2.6) are uniform in r, then Theorem 2.1 yields convergence of the MCTDH approximations
to the exact wave function over a fixed time interval, as r → ∞.

Road map. The remaining sections of this paper develop the proof of Theorem 2.1. The reader who wishes
to get a quick impression of the ideas and procedure of the proof before entering into technical details, may
proceed directly to Section 7. The proof given there uses bounds that are derived in Sections 5 and 6 using
suitable notation introduced in Sections 3 and 4.

3. Notation and basic estimates for tensor functions

For the proof of Theorem 2.1 it is appropriate to use more compact notation than, say, in (1.3). We collect
some notation of tensors of functions, partly inspired by the tensor notation in [8]. As a general rule in the
following, superscripts refer to variables of a function and subscripts to indices of a tensor.
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Function spaces. For a subset Q of {1, ..., N}, we denote by HQ the space of square-integrable functions
f = f(x(q) | q ∈ Q) depending on the variables x(q) ∈ Rdq with q ∈ Q, i.e., for Q �= ∅ we have HQ = L2(RdQ),
where dQ =

∑
q∈Q dq is the total dimension of variables in Q, and H∅ = C. We write H = H{1,...,N} = L2(Rd).

Tensors of functions. For subsets P and Q of {1, ..., N}, we denote by T Q
P = (HQ)s1×...×sN the space of

tensors of dimension s1 × ...× sN where

sn =

{
rn for n ∈ P

1 for n /∈ P,

and whose elements are functions of the variables x(q) with q ∈ Q, i.e., an element Y ∈ T Q
P is of the form

Y =
(
y
(Q)
JP

)
JP

,

with y(Q)
JP

∈ HQ, where the multi-indices JP = (jp | p ∈ P ) vary for jp = 1, ..., rp.
We consider in T Q

P the norm

‖Y‖2
T Q

P
= 〈Y,Y〉T Q

P
=
∑
JP

∥∥∥y(Q)
JP

∥∥∥2

HQ
, (3.1)

induced by the inner product

〈X,Y〉T Q
P

:=
∑
JP

〈
x

(Q)
JP

, y
(Q)
JP

〉
HQ

, (3.2)

where if Q = ∅ we consider, for x, y ∈ H∅ = C, 〈x, y〉
C

= xy. In particular we have T {1,...,N}
∅ = L2(Rd),

T Q
∅ = HQ, and T ∅

{1,...,N} = Cr1×...×rN , equipped with the Frobenius norm.

Matrices of functions and their products. We denote by MQ
α×β the space of matrices of dimension α× β

whose elements are functions of x(Q) = (x(q) | q ∈ Q). For AQ ∈ MQ
α×β , BR ∈ MR

β×γ and S ⊆ Q ∩ R �= ∅, we

define the matrix AQ •S BR ∈ M(Q∪R)\S
α×γ having elements

(
AQ •S BR

)
ij

=
β∑

k=1

〈
a
(Q)
ik , b

(R)
kj

〉
HS

, (3.3)

where we denote by 〈·, ·〉HS the L2 inner product taken only over the variables x(s) with s ∈ S. If Q ∩ R = ∅,
we define the matrix AQ ⊗BR ∈ MQ∪R

α×γ having elements

(
AQ ⊗BR

)
ij

=
β∑

k=1

a
(Q)
ik ⊗ b

(R)
kj , (3.4)

that is,
(
AQ ⊗BR

)
ij

(x(Q), x(R)) =
β∑

k=1

a
(Q)
ik (x(Q)) b(R)

kj (x(R)).

We consider in MQ
α×β the Frobenius-type inner product

〈
AQ, BQ

〉
MQ

α×β

=
α∑

i=1

β∑
j=1

〈
a
(Q)
ij , b

(Q)
ij

〉
HQ
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which induces the norm ∥∥AQ
∥∥2
MQ

α×β

=
〈
AQ, AQ

〉
MQ

α×β

=
α∑

i=1

β∑
j=1

∥∥∥a(Q)
ij

∥∥∥2
HQ

. (3.5)

Vectors of functions. We denote by VQ
α = MQ

α×1 the space of column vectors of dimension α with entries
depending on x(Q). The norm of a vector ΨQ = [ψ(Q)

1 , ..., ψ
(Q)
α ]T ∈ VQ

α is given by

∥∥ΨQ
∥∥2

VQ
α

=
α∑

i=1

∥∥∥ψ(Q)
i

∥∥∥2

HQ
= (ΨQ)T •Q ΨQ. (3.6)

Lemma 3.1. Let Ψn ∈ V{n}
α , AQ ∈ MQ

β×α, ΦQ ∈ VQ
β . Then,

(1) For n /∈ Q, ∥∥AQ ⊗ Ψn
∥∥
VQ∪{n}

β

≤
∥∥AQ

∥∥
MQ

β×α

‖Ψn‖V{n}
α

. (3.7)

(2) For n ∈ Q, ∥∥Ψn •n (ΦQ)T
∥∥
MQ\{n}

α×β

≤ ‖Ψn‖V{n}
α

∥∥ΦQ
∥∥
VQ

β

. (3.8)

Proof. (1) It follows from (3.6), from the definitions (3.3)–(3.4) and from the fact that the matrix (AQ)T •QAQ

is Hermitian, that

∥∥AQ ⊗ Ψn
∥∥2
VQU{n}

β

=
(
(Ψn)T ⊗ (AQ)T

)
•Q∪{n} (AQ ⊗ Ψn

)
=

β∑
i=1

〈
α∑

j=1

ψ
(n)
j ⊗ a

(Q)
ij ,

α∑
k=1

a
(Q)
ik ⊗ ψ

(n)
k

〉
HQ∪{n}

=
α∑

j=1

α∑
k=1

(
β∑

i=1

〈
a
(Q)
ij , a

(Q)
ik

〉
HQ

)〈
ψ

(n)
j , ψ

(n)
k

〉
H{n}

=
α∑

j=1

α∑
k=1

(
(AQ)T •Q AQ

)
jk

(
Ψn •n (Ψn)T

)
jk

= tr
((

(AQ)T •Q AQ
)T (

Ψn •n (Ψn)T
))

=
〈(

(AQ)T •Q AQ
)T
,Ψn •n (Ψn)T

〉
F
≤
∥∥(AQ)T •Q AQ

∥∥
F

∥∥Ψn •n (Ψn)T
∥∥

F
,

where 〈·, ·〉F denotes the Frobenius inner product. By observing that the matrix (AQ)T •Q AQ is positive
semi-definite, we obtain

∥∥(AQ)T •Q AQ
∥∥

F
=

√
α∑

i,j=1

∣∣∣((AQ)T •Q AQ)ij

∣∣∣2 ≤
√

α∑
i,j=1

(
((AQ)T •Q AQ)ii ((AQ)T •Q AQ)jj

)

= tr((AQ)T •Q AQ) =
∥∥AQ

∥∥2
MQ

β×α

,

and, analogously, ∥∥Ψn •n (Ψn)T
∥∥

F
≤ ‖Ψn‖2

V{n}
α

.

From the above inequalities it follows that

∥∥AQ ⊗ Ψn
∥∥2
VQ∪{n}

β

≤
∥∥AQ •Q (AQ)T

∥∥
F

∥∥Ψn •n (Ψn)T
∥∥

F
≤
∥∥AQ

∥∥2
MQ

α×β

‖Ψn‖2

V{n}
α

,

which completes the proof of the first inequality.
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(2) Let Ψn = [ψ(n)
1 , ..., ψ

(n)
α ]T , ΦQ = [φ(Q)

1 , ..., φ
(Q)
β ]T . We have from the definition (3.3),

∥∥Ψn •n (ΦQ)T
∥∥2
MQ\{n}

α×β

=
α∑

i=1

β∑
j=1

∥∥∥(Ψn •n (ΦQ)T
)
ij

∥∥∥2

HQ\{n}

=
α∑

i=1

β∑
j=1

∥∥∥〈ψ(n)
i , φ

(Q)
j

〉
H{n}

∥∥∥2

HQ\{n}

≤
α∑

i=1

β∑
j=1

∥∥∥∥∥∥ψ(n)
i

∥∥∥
H{n}

∥∥∥φ(Q)
j

∥∥∥
HQ

∥∥∥2

HQ\{n}

=
α∑

i=1

β∑
j=1

∥∥∥ψ(n)
i

∥∥∥2

H{n}

∥∥∥φ(Q)
j

∥∥∥2
HQ

= ‖Ψn‖2

V{n}
α

∥∥ΦQ
∥∥2
VQ

β

. �

Unfolding a tensor. Let Y ∈ T Q
P , α :=

N∏
n=1

sn, βn :=
∏

k �=n

sk. We denote by vec(Y) ∈ VQ
α the vector that carries

the entries y(Q)
JP

of Y in lexicographical order, and by

Y(n) = [Y](n) ∈ MQ
sn×βn

the nth unfolding matrix of the tensor Y, i.e., the matrix that aligns the entries y(Q)
JP

of Y with fixed jn in the
jnth row of the matrix, ordered lexicographically. Clearly the tensor Y can be reshaped from its unfolding Y(n).
Note that if n /∈ P , then sn = 1 and hence Y(n) = vec(Y)T . We further note

‖Y‖T Q
P

= ‖vec(Y)‖VQ
α
, (3.9)

and, for each n = 1, ..., N ,

‖Y‖T Q
P

=
∥∥Y(n)

∥∥
MQ

sn×βn

=
∥∥∥Y T

(n)

∥∥∥
MQ

βn×sn

. (3.10)

Tensor products. Let Y ∈ T Q
P , Ψn ∈ V{n}

rn . For n ∈ P \Q we define the nth-mode raising product Y×n Ψn ∈
T Q∪{n}

P\{n} by the relation

[Y ×n Ψn](n) := (Ψn)T ⊗ Y(n) , (3.11)

that is, Z = Y ×n Ψn is the tensor of functions given by summing over the nth index via

zj1...jn−1jn+1...jN (x(Q), x(n)) =
rn∑

�n=1

ψn
�n

(x(n)) yj1...jn−1�njn+1...jN (x(Q)).

For n ∈ Q \ P we define the nth-mode lowering product Y ◦n Ψn ∈ T Q\{n}
P∪{n} by the relation

[Y ◦n Ψn](n) := Ψn •n Y(n) , (3.12)

that is, W = Y ◦n Ψn is the tensor of functions obtained by integrating out over x(n) via

wj1...jN (x(Q\{n})) =
∫

Rdn

ψn
jn

(x(n)) yj1...jn−1jn+1...jN (x(Q\{n}), x(n)) dx(n).
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Lemma 3.2. In the situation of the previous definition, we have

‖Y×n Ψn‖T Q∪{n}
P\{n}

≤ ‖Ψn‖V{n}
rn

‖Y‖T Q
P

‖Y ◦n Ψn‖T Q\{n}
P∪{n}

≤ ‖Ψn‖V{n}
rn

‖Y‖T Q
P
.

Proof. By the definition (3.11) and the properties (3.10), (3.7) we obtain

‖Y×nΨn‖T Q∪{n}
P\{n}

=
∥∥∥Y T

(n) ⊗ Ψn
∥∥∥
VQU{n}

βn

≤ ‖Ψn‖V{n}
rn

∥∥∥Y T
(n)

∥∥∥
MQ

rn×βn

= ‖Ψn‖V{n}
rn

‖Y‖T Q
P
,

where βn =
∏

k �=n

sk, and thus the first inequality is proved.

By the definition (3.12) and the properties (3.9), (3.8) we obtain

‖Y ◦n Ψn‖T Q\{n}
P∪{n}

=
∥∥Ψn •n vec(Y)T

∥∥
M

Q\{n}
rn×βn

≤ ‖Ψn‖V{n}
rn

‖vec(Y)‖V{n}
βn

= ‖Ψn‖V{n}
rn

‖Y‖T Q
P
,

which concludes the proof. �

For a subset K = {k1, . . . , km} of P with K ∩Q = ∅ we denote

Y X
k∈K

Ψk = Y ×k1 Ψk1 . . .×km Ψkm ∈ T Q∪K
P\K ,

and similarly, for a subset L = {�1, . . . , �n} of Q with L ∩ P = ∅ we write

Y ©
�∈L

Ψ� = Y ◦�1 Ψ�1 . . . ◦�n Ψ�n ∈ T Q\L
P∪L .

Tensor products with vectors of orthogonal functions. In the following, let Φn ∈ V{n}
rn be such that the

components are mutually orthogonal functions:

Φn •n (Φn)T = Irn , n = 1, ..., N, (3.13)

where Irn is the identity matrix of dimension rn. For Y ∈ T {n}
P with n /∈ P , we consider the projections

Pn(Y) = (Y ◦n Φn)×n Φn, Pn
⊥(Y) = Y − Pn(Y). (3.14)

Lemma 3.3. Let Y ∈ T Q
P . Then,

(1) For K ⊆ P , K ∩Q = ∅, ∥∥∥∥Y X
k∈K

Φk

∥∥∥∥
T Q∪K

P\K

= ‖Y‖T Q
P
.

(2) For L ⊆ Q, P ∩ L = ∅, ∥∥∥∥Y ©
�∈L

Φ�

∥∥∥∥
T Q\L

P∪L

≤ ‖Y‖T Q
P
.

(3) For Q = {n}, n /∈ P,

‖Pn(Y)‖T {n}
P

≤ ‖Y‖T {n}
P

, ‖Pn
⊥(Y)‖T {n}

P

≤ ‖Y‖T {n}
P

.



ERROR ANALYSIS OF THE MCTDH METHOD 771

R
ap

id
e 

N
ot

eH
ighlight

Proof. (1) By the definition of norm (3.1) and by the orthonormality conditions (3.13) we obtain

∥∥∥∥Y X
k∈K

Φk

∥∥∥∥
2

T Q∪K
P\K

=
∑

JP\K

∥∥∥∥∥
∑
JK

y
(Q)
JP

⊗
k∈K

φ
(k)
jk

∥∥∥∥∥
2

HQ∪K

=
∑

JP\K

∑
JK

∥∥∥y(Q)
JP

∥∥∥2
HQ

= ‖Y‖2
T Q

P

(2) Let X ∈ T Q
P defined by having elements

x
(Q)
JP

=
∑
JL

〈⊗
�∈L

φ
(k)
j�
, y

(Q)
JP

〉
HL

⊗
�∈L

φ
(k)
j�

∈ HQ.

From the orthonormality conditions (3.13) it follows

∥∥∥x(Q)
JP

∥∥∥2
HQ

=
∑
JL

∥∥∥∥∥
〈⊗

�∈L

φ
(k)
j�
, y

(Q)
JP

〉
HL

∥∥∥∥∥
2

HQ\L

,

i.e.,

‖X‖T Q
P

=
∥∥∥∥Y ©

�∈L
Φ�

∥∥∥∥
T Q\L

P∪L

,

and

〈X,Y〉T Q
P

= 〈Y,X〉T Q
P

=
∥∥∥∥Y ©

�∈L
Φ�

∥∥∥∥
2

T Q\L
P∪L

.

Thus it follows ∥∥∥∥Y ©
�∈L

Φ�

∥∥∥∥
2

T Q\L
P∪L

= ‖Y‖2
T Q

P
− ‖Y − X‖2

T Q
P

≤ ‖Y‖2
T Q

P
.

(3) It follows from the definition (3.14) of Pn
⊥ that the elements of Pn

⊥(Y) ∈ T {n}
P have norm

∥∥(Pn
⊥(Y))JP

∥∥2
H{n} =

∥∥∥y(n)
JP

∥∥∥2
H{n}

−
∑
jn

∣∣∣〈φ(n)
jn
, y

(n)
JP

〉
H{n}

∣∣∣2

‖Pn
⊥(Y)‖2

T {n}
P

=
∑
JP

∥∥(Pn
⊥(Y))JP

∥∥2
H{n} = ‖Y‖2

T {n}
P

− ‖Y ◦n Φn‖2
T ∅

P∪{n}
≤ ‖Y‖2

T {n}
P

. �

4. Reformulation of the MCTDH method

The MCTDH manifold and its tangent space. With the notation of the previous section, we can rewrite
the MCTDH manifold M defined by (1.17) as

M =
{
u ∈ L2(Rd) : u = A

N

X
n=1

Φn, Φn ∈ V{n}
rn , Φn •n (Φn)T = Irn , n = 1, ..., N,

A ∈ Cr1×...×rN has full rank (r1, . . . , rN )
}
.

(4.1)

We recall that V{n}
rn denotes the space of column vectors of length rn of functions of the variable x(n). In the

definition of the manifold M we may as well just require that for each n, the components of Φn = (φ(n)
jn

) are
linearly independent functions, since we can then always do an orthogonalisation without changing u ∈ M.
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The tangent space at u ∈ M consists of the elements u̇ of the form

u̇ = Ȧ
N

X
n=1

Φn +
N∑

n=1
A×n Φ̇n X

k �=n
Φk, (4.2)

with arbitrary Ȧ ∈ Cr1×...×rN and Φ̇n ∈ V{n}
rn . We obtain that Ȧ and Φ̇n are uniquely determined by u̇ and the

chosen A and Φn in the representation of u if we impose the gauge conditions (1.18), viz.,

Φn •n (Φ̇n)T = 0. (4.3)

In fact we obtain, by multiplying (4.2) by
N

©
n=1

Φn and by ©
k �=n

Φk,

⎧⎪⎨
⎪⎩

Ȧ = u̇
N

©
n=1

Φn

(Φ̇n)T =
[
Pn
⊥
(
u̇ ©

k �=n
Φk
)]

(n)
A†

(n),
(4.4)

where the projection Pn
⊥ is defined by (3.14) with the above Φn, and A†

(n) = A∗
(n)(A(n)A

∗
(n))

−1 is the pseudo-
inverse of the nth unfolding matrix A(n) of A. Note that the second equation in (4.4) is equivalent to

A×n Φ̇n = Pn
⊥
(
u̇ ©

k �=n
Φk
)
,

since [A×n Φ̇n](n) = (Φ̇n)TA(n).

The MCTDH equations of motion. The variational approximation (1.5) on the MCTDH manifold (4.1) is
given by

u(t) = A(t)
N

X
n=1

Φn(t),

where the coefficients and the single-particle functions are solutions of the system of differential equations (1.19)–
(1.20). In the present notation these equations turn out to simplify to

⎧⎪⎨
⎪⎩

Ȧ = 1
iHu

N

©
n=1

Φn

(Φ̇n)T =
[
Pn
⊥
(

1
iHu ©

k �=n
Φk
)]

(n)
A†

(n),
(4.5)

which are formally obtained by equations (4.4) with u̇ replaced by 1
iHu.

Rederivation of the MCTDH equations. For the convenience of the reader, we give the derivation of

equations (4.5) directly from the Dirac-Frenkel principle (1.5). Choosing in (1.5) δu = S
N

X
n=1

Φn ∈ TuM with

arbitrary S ∈ Cr1×...×rN , and using (4.4), we have

〈
S

N

X
n=1

Φn
∣∣∣ u̇〉 =

〈
S, u̇

N

©
n=1

Φn
〉

=
〈
S, Ȧ

〉
,

〈
S

N

X
n=1

Φn
∣∣∣ 1iHu〉 =

〈
S, 1

iHu
N

©
n=1

Φn
〉
.
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Since this holds for every S ∈ Cr1×...×rN , the first equation of (4.5) follows. We now choose δu = A×nΛn X
k �=n

Φk

in TuM, where Λn ∈ V{n}
rn is arbitrary. We then have〈

A×nΛn X
k �=n

Φk
∣∣∣ u̇〉 =

〈
A×nΛn, u̇ ©

k �=n
Φk
〉
T {n}
{¬n}

=
〈
A×nΛn, Ȧ×nΦn + A×nΦ̇n

〉
T {n}
{¬n}

, (4.6)

where we have used (4.2) and (4.3) in the second equality, and〈
A×nΛn X

k �=n
Φk
∣∣∣ 1

iHu
〉

=
〈
A×nΛn , 1

iHu ©
k �=n

Φk
〉
T {n}
{¬n}

. (4.7)

Then, by subtracting the two equations (4.6) and (4.7), using the first equation of (4.5) and recalling the
definition (3.14) of the projection Pn

⊥, we obtain〈
A×nΛn, Pn

⊥
(

1
iHu ©

k �=n
Φk
)
− A×nΦ̇n

〉
T {n}
{¬n}

= 0.

Unfolding the tensors in T {n}
{¬n} to vectors in V{n}

βn
with βn =

∏
k �=n rk, this is the same as the inner product

〈
(Λn)T

A(n),
[
Pn
⊥
(

1
iHu ©

k �=n
Φk
)
− A×nΦ̇n

]
(n)

〉
V{n}

βn

= 0,

from which 〈
(Λn)T ,

[
Pn
⊥
(

1
iHu ©

k �=n
Φk
)]

(n)
A∗

(n) − (Φ̇n)TA(n)A
∗
(n)

〉
V{n}

rn

= 0,

with arbitrary Λn ∈ V{n}
rn , and then the second equation of (4.5) follows. This completes the derivation of the

MCTDH equations (4.5).

Reformulation of (2.3) and (2.6). In (2.3), we have the decomposition

v(t) = B(t)
N

X
n=1

Θn(t) , 0 ≤ t ≤ t, (4.8)

with Θn(t) ∈ V{n}
rn satisfying the orthogonality relations Θn •n (Θn)T = Irn . Condition (2.6) can be rephrased

as ∥∥∥ iΘ̇
n
(t) − T (n)Θn(t)

∥∥∥(n)

≤ ν.

5. Tangent space projection

The orthogonal projection onto the tangent space of the MCTDH manifold M at u is given by the following
explicit formula.

Lemma 5.1. Let u = A
N

X
n=1

Φn ∈ M. Then, the orthogonal projection P (u) onto the tangent space TuM of
ϕ ∈ H is given by

P (u)ϕ =
(
ϕ

N

©
n=1

Φn

)
N

X
n=1

Φn +
N∑

n=1
Qn X

k �=n
Φk,

where Qn ∈ T {n}
{¬n} is given by its nth unfolding matrix Qn = [Qn](n) as

Qn =

[
Pn
⊥

(
ϕ ©

k �=n
Φk

)]
(n)

A†
(n)A(n).
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Proof. The equations of motion (4.5) give an expression of u̇ determined by u̇ = P (u)1
iHu. With ϕ in place

of 1
iHu, by noting that the second equation of (4.5) is equivalent to

[
A×n Φ̇n

]
(n)

=

[
Pn
⊥

(
ϕ ©

k �=n
Φk

)]
(n)

A†
(n)A(n),

the result immediately follows. �
We denote by P⊥(u) = Id−P (u) the complementary projection. The following lemma is analogous to bounds

of tangent space projections of manifolds of low-rank matrices and tensors given in [6,7].

Lemma 5.2. Let v = B
N

X
n=1

Θn ∈ M with smallest singular value σrn(B(n)) ≥ δ > 0 for n = 1, ..., N . Let u ∈ M
such that ‖u− v‖ ≤ cδ with c = 1

2C , C = 8N(N + 3). Then, for all ϕ ∈ H, we have∥∥(P (u) − P (v)
)
ϕ
∥∥ ≤ Cδ−1 ‖u− v‖ ‖ϕ‖ (5.1)∥∥P⊥(v) (u− v)
∥∥ ≤ Cδ−1 ‖u− v‖2

. (5.2)

We note that (5.1)–(5.2) further yield the bound∥∥P⊥(u) (u− v)
∥∥ ≤ 2Cδ−1 ‖u− v‖2

. (5.3)

Proof. We decompose the functions on the straight line connecting v and u as

v + τ (u− v) = y(τ) + z(τ) (5.4)

with y(τ) ∈ M and z(τ) ⊥ TvM. This decomposition exists at least for small τ but the argument below shows
that in fact it exists for 0 ≤ τ ≤ 1. Let us denote

w = P (v)(u − v) ∈ TvM.

Applying P (v) to (5.4), we obtain
τw = P (v)(y(τ) − v),

and then

∂y

∂τ
(τ) = P (y(τ))

∂y

∂τ
(τ) = (P (y(τ)) − P (v))

∂y

∂τ
(τ) + P (v)

∂y

∂τ
(τ) = (P (y(τ)) − P (v))

∂y

∂τ
(τ) + w.

So, as long as the operator norm of P (y(τ)) − P (v) is bounded by 1/2, we have, with ω = ‖w‖,∥∥∥∥∂y∂τ (τ)
∥∥∥∥ ≤ 2ω. (5.5)

Let y(τ) ∈ M have the factorization

y(τ) = A(τ)
N

X
n=1

Φn(τ)

with Φn •n
(

∂Φn

∂τ

)T
= 0. Then, by (4.4), we have⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dA

dτ
=
∂y

∂τ

N

©
n=1

Φn(τ)

A(τ)×n
∂Φn

∂τ
= Pn

⊥

(∂y
∂τ

©
k �=n

Φk(τ)
)
.
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Hence, by Lemma 3.3 and (5.5), we obtain ∥∥∥∥dA

dτ

∥∥∥∥ ≤ 2ω

∥∥∥∥A(τ)×n
∂Φn

∂τ

∥∥∥∥
(n)

≤ 2ω.

Moreover, since
‖A(τ) − B‖ = ‖A(τ) − A(0)‖ ≤ 2ω ≤ 2cδ ≤ 1

2δ, 0 ≤ τ ≤ 1,

it follows from Lemma 5.3 below that ‖A†
(n)(τ)‖2 ≤ 2δ−1, and then, using (3.10),

∥∥∥∥∂Φn

∂τ

∥∥∥∥
(n)

≤
∥∥∥∥∥∂Φn

∂τ

T

A(n)

∥∥∥∥∥
(n) ∥∥∥A†

(n)

∥∥∥
2
≤ 4ω δ−1. (5.6)

By Lemma 5.1 and writing ‖(P (y(τ)) − P (v))ϕ‖ =
∥∥∫ τ

0

(
∂

∂σP (y(σ))ϕ
)
dσ
∥∥, we obtain

‖(P (y(τ)) − P (v))ϕ‖ ≤
∫ τ

0

∥∥∥∥ ∂∂σ
[(
ϕ

N

©
n=1

Φn(σ)
)

N

X
n=1

Φn(σ)
]∥∥∥∥dσ

+
N∑

n=1

∫ τ

0

∥∥∥∥∥∥∥∥
∂Qn

∂σ
X

k �=n
Φk(σ) +

N∑
j=1
j �=n

[
Qn(σ)×j

∂Φj

∂σ
X

k �=n,j
Φk(σ)

]∥∥∥∥∥∥∥∥
dσ, (5.7)

where
[Qn(σ)](n) =

[
Pn
⊥

(
ϕ ©

k �=n
Φk(σ)

)]
(n)
A†

(n)(σ)A(n)(σ).

By Lemmas 3.2–3.3 and by (5.6) we obtain

∥∥∥∥ ∂∂σ
[(
ϕ

N

©
n=1

Φn(σ)
)

N

X
n=1

Φn(σ)
]∥∥∥∥ ≤ N∑

n=1

∥∥∥∥∥
(
ϕ ◦n ∂Φn

∂σ
©

k �=n
Φk

)
N

X
k=1

Φk(σ)

∥∥∥∥∥
+

N∑
n=1

∥∥∥∥
(
ϕ

N

©
k=1

Φk(σ)
)
×n

∂Φn

∂σ
X

k �=n
Φk(σ)

∥∥∥∥
≤ 8Nω δ−1 ‖ϕ‖ ,

and analogously we obtain ∥∥∥∥∥ ∂∂σPn
⊥

(
ϕ ©

k �=n
Φk(σ)

)∥∥∥∥∥ ≤ 4(N + 1)ω δ−1 ‖ϕ‖ .

Using the product rule for ∂
∂σ

(
A∗

(n)(A(n)A
∗
(n))

−1A(n)

)
and the estimates of

∥∥dA
dτ

∥∥ and
∥∥∥A†

(n)

∥∥∥ by 2ω and 2δ−1

respectively, we find that ∥∥∥∥ ∂∂σ
(
A†

(n)(σ)A(n)(σ)
)∥∥∥∥ ≤ 16ωδ−1.

Hence we obtain∥∥∥∥∂Qn

∂σ

∥∥∥∥ =

∥∥∥∥∥
[
∂Qn

∂σ

]
(n)

∥∥∥∥∥ ≤
∥∥∥∥∥ ∂∂σPn

⊥
(
ϕ ©

k �=n
Φk(σ)

)∥∥∥∥∥+ ‖ϕ‖
∥∥∥∥ ∂∂σ

(
A†

(n)(σ)A(n)(σ)
)∥∥∥∥

≤ 4(N + 5)ω δ−1 ‖ϕ‖ .
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Substituting in (5.7) the above bounds it follows

‖(P (y(τ)) − P (v))ϕ‖ ≤ 8N(N + 3)ω δ−1τ ‖ϕ‖ = Cωδ−1τ ‖ϕ‖ . (5.8)

Thus, as we have Cωδ−1 ≤ Cc = 1/2, the norm of the operator (P (y(τ)) − P (v)) does not exceed 1/2 for
0 ≤ τ ≤ 1.

By considering (5.8) at τ = 1 we obtain (5.1). Using (5.8) and (5.5) we get

P⊥(v) (u− v) = P⊥(v)
∫ 1

0

∂y

∂τ
dτ =

∫ 1

0

P⊥(v)
∂y

∂τ
dτ

=
∫ 1

0

(
P⊥(v) − P⊥(y(τ))

) ∂y
∂τ

dτ =
∫ 1

0

(P (y(τ)) − P (v))
∂y

∂τ
dτ,

and with (5.5) and (5.8) we then obtain

∥∥P⊥(v) (u− v)
∥∥ ≤ 2Cω2δ−1

∫ 1

0

τdτ = Cδ−1 ‖u− v‖2
,

which is the desired bound (5.2). �

It remains to give the linear algebra lemma to which we referred in the above proof.

Lemma 5.3. Let A, B ∈ Cr1×...×rN be such that the nth unfolding matrix B(n) has smallest singular value
σrn(B(n)) ≥ δ > 0 for n = 1, ..., N and ‖A − B‖ ≤ 1

2δ. Then, the pseudo-inverse A†
(n) of the nth unfolding

matrix of A is bounded in the spectral norm by ‖A†
(n)‖2 ≤ 2δ−1.

Proof. From the chain of inequalities∣∣σrn(A(n)) − σrn(B(n))
∣∣ ≤ ∥∥A(n) −B(n)

∥∥
2
≤
∥∥A(n) −B(n)

∥∥
F

= ‖A − B‖ ≤ 1
2δ,

where the first inequality holds by [3], p. 448, we obtain

σrn(A(n)) ≥ σrn(B(n)) −
∣∣σrn(A(n)) − σrn(B(n))

∣∣ ≥ 1
2δ,

and hence ‖A†
(n)‖2 = 1/σrn(A(n)) ≤ 2/δ. �

6. A further projection bound

The following lemma, which takes up the arguments of the proof of Lemma 5.2, provides a key estimate for
the proof of Theorem 2.1. It bounds the expression

P⊥(u)
(
v̇ + iTv

)
=
(
P⊥(u) − P⊥(v)

)(
v̇ + iTv

)
= −

(
P (u) − P (v)

)(
v̇ + iTv

)
,

where the first equality results from the fact that both v̇ and Tv are in the tangent space TvM. Note that in
contrast to a direct application of Lemma 5.2, no factor δ−1 appears in the following bound.

Lemma 6.1. Under the assumptions of Theorem 2.1 and as long as ‖u(t) − v(t)‖ ≤ cδ with c of Lemma 5.2,
we have ∥∥P⊥(u(t))

(
v̇(t) + iTv(t)

)∥∥ ≤ (c1μ+ c2ν) ‖u(t) − v(t)‖ (6.9)

with c1 = 3N and c2 = 2N2.
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Proof. From the proof of Lemma 5.2 we observe that there exists an homotopy

y(t, τ) = A(t, τ)
N

X
n=1

Φn(t, τ) with y(t, 0) = v(t), y(t, 1) = u(t),

such that the orthogonality relations Φn(t, τ) •n Φn(t, τ)T = Irn hold for all (t, τ), and∥∥∥∥∂A

∂τ
(t, τ)

∥∥∥∥ ≤ 2 ‖u(t) − v(t)‖
∥∥∥∥A(t, τ)×n

∂Φn

∂τ
(t, τ)

∥∥∥∥
(n)

≤ 2 ‖u(t) − v(t)‖ (6.10)

∥∥∥∥∂Φn

∂τ
(t, τ)

∥∥∥∥
(n)

≤ 4 ‖u(t) − v(t)‖ δ−1 ≤ 4c.

We thus obtain, with Λn(t, τ) = Φ̇n(t, τ) + iT (n)Φn(t, τ) (where ˙ = d/dt),

P⊥(u(t))
(
v̇(t) + iTv(t)

)
=P⊥(u(t))

(
Ȧ(t, 0)

N

X
n=1

Φn(t, 0) +
N∑

n=1
A(t, 0)×nΛn(t, 0) X

k �=n
Φk(t, 0)

− Ȧ(t, 0)
N

X
n=1

Φn(t, 1) −
N∑

n=1
A(t, 1)×nΛn(t, 0) X

k �=n
Φk(t, 1)

)
,

where we could add the last line because it belongs to the tangent space Tu(t)M, see (4.2). We note A(t, 0) =
B(t), and with Lemma 3.3 we obtain the bound

∥∥∥∥Ḃ(t)
N

X
n=1

Φn(t, 0) − Ḃ(t)
N

X
n=1

Φn(t, 1)
∥∥∥∥ =

∥∥∥∥
∫ 1

0

∂

∂τ

(
Ḃ(t)

N

X
n=1

Φn(t, τ)
)

dτ
∥∥∥∥

≤
N∑

n=1

∫ 1

0

∥∥∥∥Ḃ(t)×n
∂Φn

∂τ
(t, τ) X

k �=n
Φk(t, τ)

∥∥∥∥ dτ ≤
N∑

n=1

∫ 1

0

∥∥∥∥Ḃ(t)×n
∂Φn

∂τ
(t, τ)

∥∥∥∥
(n)

dτ.

Using (3.10) and (3.11), we estimate

∥∥∥∥Ḃ×n
∂Φn

∂τ

∥∥∥∥
(n)

=

∥∥∥∥∥
[
Ḃ×n

∂Φn

∂τ

]
(n)

∥∥∥∥∥
(n)

=

∥∥∥∥∥
(
∂Φn

∂τ

)T

Ḃ(n)

∥∥∥∥∥
(n)

≤
∥∥∥∥∥
(
∂Φn

∂τ

)T

B(n)

∥∥∥∥∥
(n)

‖B†
(n)Ḃ(n)‖2 =

∥∥∥∥B×n
∂Φn

∂τ

∥∥∥∥
(n)

‖B†
(n)Ḃ(n)‖2.

Writing B(t) = A(t, 0) and

A(t, 0)×n
∂Φn

∂τ
(t, τ) = A(t, τ)×n

∂Φn

∂τ
(t, τ) −

∫ τ

0

(
∂A

∂σ
(t, σ)×n

∂Φn

∂τ
(t, τ)

)
dσ

we have, using Lemma 3.2 and the bounds (6.10),

∥∥∥∥B(t)×n
∂Φn

∂τ
(t, τ)

∥∥∥∥
(n)

≤ (2 + 8c) ‖u(t) − v(t)‖ ≤ 3 ‖u(t) − v(t)‖ .
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Combining the above estimates and using condition (2.5), we thus obtain, with c1 = 3N ,

∥∥∥∥Ḃ(t)
N

X
n=1

Φn(t, 0) − Ḃ(t)
N

X
n=1

Φn(t, 1)
∥∥∥∥ ≤ c1μ ‖u(t) − v(t)‖ .

We have analogously, using Lemmas 3.2–3.3 and condition (2.6),

∥∥∥∥∥
N∑

n=1

(
A(t, 0)×nΛn(t, 0) X

k �=n
Φk(t, 0) − A(t, 1)×nΛn(t, 0) X

k �=n
Φk(t, 1)

)∥∥∥∥∥
≤

N∑
n=1

∫ 1

0

∥∥∥∥ ∂∂τ
(

A(t, τ)×nΛn(t, 0) X
k �=n

Φk(t, τ)
)∥∥∥∥ dτ ≤ c2ν ‖u(t) − v(t)‖ ,

with c2 = 2N2. These bounds yield (6.9). �

7. Proof of Theorem 2.1

With the estimates of the preceding sections, we are finally in the position to prove Theorem 2.1. We start
from (1.6) (omitting the argument t here and in the following),

u̇ = −P (u)iHu.

We write, decomposing Id = P (u) + P⊥(u) and H = T + V ,

u̇− v̇ = −P (u)iH(u− v) − P (u)iHv − P (u)v̇ − P⊥(u)v̇

= −iH(u− v) + P⊥(u)iT (u− v) + P⊥(u)iV (u− v) − P (u) (v̇ + iHv) − P⊥(u)v̇.

Since Tu ∈ TuM, we have P⊥(u)iT (u− v) = −P⊥(u)iTv, and hence we obtain

u̇− v̇ = −iH(u− v) + P⊥(u)iV (u− v) − P⊥(u) (v̇ + iTv) − P (u) (v̇ + iHv) .

Taking the inner product of u̇− v̇ with u− v and considering the real part, we then have

‖u− v‖ d
dt

‖u− v‖ =
1
2

d
dt

‖u− v‖2 = Re 〈u− v, u̇− v̇〉

and

Re 〈u− v, u̇ − v̇〉 = Re
〈
P⊥(u) (u− v) , iV (u− v)

〉
− Re

〈
P⊥(u) (u− v) , P⊥(u) (v̇ + iTv)

〉
− Re 〈u− v, P (u) (v̇ + iHv)〉 .

We now bound the expressions on the right-hand side. Using Lemma 5.2 and the bound (2.7) of the potential V
after applying the Cauchy–Schwarz inequality, we obtain

|
〈
P⊥(u) (u− v) , iV (u− v)

〉
| ≤ 2Cδ−1β ‖u− v‖3

.
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Using Lemmas 5.2 and 6.1, we estimate

|
〈
P⊥(u) (u− v) , P⊥(u)(v̇ + iTv)

〉
| ≤ 2Cδ−1 (c1μ+ c2ν) ‖u− v‖3 .

The defect bound (2.2) yields
| 〈u− v, P (u) (v̇ + iHv)〉 | ≤ ε ‖u− v‖ .

In total we thus obtain

Re 〈u− v, u̇− v̇〉 ≤ 2Cδ−1 (β + c1μ+ c2ν) ‖u− v‖3 + ε ‖u− v‖ ,

and hence, with γ = 2C (β + c1μ+ c2ν), we arrive at the quadratic differential inequality

d
dt

‖u− v‖ ≤ γδ−1 ‖u− v‖2 + ε.

Therefore, ‖u− v‖ is majorized by the solution of the initial-value problem

ẏ = γδ−1y2 + ε, y(0) = 0,

which equals y(t) =
√

ε
γδ−1 tan

(
t
√
γδ−1ε

)
and is bounded by 2tε for t

√
γδ−1ε ≤ 1, that is, for t ≤ 1√

γ

(
δ
ε

)1/2
.

So we obtain
‖u(t) − v(t)‖ ≤ 2tε

as long as Lemma 5.2 remains applicable, i.e., as long as ‖u(t) − v(t)‖ ≤ cδ, which is satisfied for t ≤ c
2

(
δ
ε

)
.

The triangle inequality for u− ψ = (u− v) + (v − ψ) finally yields the result.
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