
0 AN ERROR ANALYSIS TECHNIQUE
FOR

INERTIAL NAVIGATION SYSTEMS AND KALMAN FILTERS

* by

C. E. Hutchinson and H. M. Wondergem

.- Contract No. ONR-NOOO14-68-A-,O146-6

Report No. THEMIS-UM-68-2

/

September, 1968

0



Fm I

{i Approved for Releas

Reproduction in whole or in part is permitted ;

for any purpose of the United States Govern- !

rnent. In citing this manuscript In a bibliog- |I

raphy, the reference should be followed by the

phrase: UNPUBLISHED MANUSCRIPT. 1

Ch arles E. carver, Jr.
Co-Manager, Project THEMIS
University of Massachusetts

Iii

Ii I
I

L- I

L

L+



w

I
Iil

TABLE OF CONTENTS

LIST OF FIGURES ........ ......................... v

LIST OF SYMBOLS . . . . . . . . . . . . . . ........... vi

LIST OF TABLES ...... . . . ................ ix

Chapter

I INTRODUCTION .................... I

A. Estimation in Optimum Control .. ..... .... 1

B. Criteria for an Estimation Scheme ...... . . 2

II MATHEMATICAL SOLUTION TO THE PROBLEM .. ......... 5

A. Formulation of the System 5........... 5

B. Optimum Kalman Filter ..... .............. 6

C. Sub-optimum Kalman Filter with Control Matrices 11

D. Function of the Control Matrices ........... 16

III DESCRIPTION OF THE PROGRAM ............ 20

A. Introduction ...... ................... 20

B. Data Deck Setup ................. 21

C. Input Formats .... ................. 23

D. General Description of the Program ... ........ 25

E. Explanation of the Subroutines . ......... 27

ESTIM ...... ...................... 27

AINPUT ..... ...................... .. 28

MEXP ........ ....................... 28

ERCOV ...... ...................... .. 31

:7



I!

I iv

FILTER . . ..... .......... ..... 34

OUT . ...... ......................... . .34

DRUK . . . . . . . . . . . . . . . . . . . . . . .. 34

SUM & SUMB .......... .................... 36

AOI .... ........... ............ . 37

ABT ........................ 37

j ABTAC ....................... 37

MATINV . ................... 38

MATSUB . . . . . ................ 39

MATADD ....... ....................... ... 39

MATMPY ..................... ... 39

IV AN INERTIAL ESTIMATION PROBLEM ..... ............. 41

A. Errors Occurring in an Inertial Guidance System .... 41

B. Simulation of an Inertial Guidance System ....... .. 45

C. Analysis of Three Estimation Schemes ... ......... 52

D. Results and Comments .................... .. 56

APPENDIX A . ............................... .. 64

APPENDIX B. .............................. 72

BIBLIOGRAPHY . . . . . . . . . . . . . . . .. .. .. .. .. . .79

[

[

[

[:'

-[



1|

I
IV

LIST OF FIGURES

I Figure

1. Optimum estimationl and control scheme. . ... .......... 2

2. Optimum Kalman estimation scheme .... ............. 8

1 3. Flow diagram of an optimum Kalman estimation program . . 12

4. Sub-optimum Kalman estimation scheme with control matrices 17

5. Flow diagram of a sub-optimum Kalman estimator ..... .... 19

6. Block diagram of the subroutines used in the program . . . 22

7. Propagation of the states, with measurements ........ 6

8. Flow diagram of the MEXP subroutine for the numerical
solution of the matrix exponential and error covariance
equations ........ ........................ 29

9. Flow diagram of subroutine ERCOV ..... ............ 32

10. Flow diagram of subroutine FILTER ..... ........... 35

11. Block diagram of a recalibration scheme .... ......... 44

12. Mathematical model for a random constant ............. 44

13. Stochastic process with exponentially correlated output 44

14. Block diagram of an inertial navigation system, model A 46

15. Block diagram of an inertial navigation system, model B 47

16. Block diagram of an inertial navigation system, model C 48

17. Error in estimation of the position in the x-direction 57

18. Error in estimation of the velocity in the x-direction 58

1i. 19. Error in estimation of the platform tilt, . . ....... 59

20. Error in estimation of the azimuth, z .............. 60

1 A-1. Flow diagram for the numerical solution of the matrix
exponential equation ...... ................... 65

I A-2. Impulse function 6(t - T) ............... 67

A-3. Flow diagram for the numerical solution of the matrix
Ricatti equation .... ........................ 71Riati7



v

I vi

ILIST OF SYMBOLS

AA, Al  an n x n control matrix

AC, C an in x m covariance matrix of the measurement noise of

17 the filter
AE the absolute error used in the MEXP subroutine for the

calculation of the transition matrices and errorV covariance matrices*

AF, F an n x n system matrix for the filter

AK, Kn  an n x m matrix for the filter gain
*

AM, M an m x n measurement matrix of the states in the filter

AQ, Q an n x n covariance matrix of the random driving terms in
7the filter

BA, A2 an nb x n control matrix

BC, C an m x m covariance matrix of the measurement noise of
the system

1 BF, F an nb x nb system matrix for the model of the system

BM, M an m x nb measurement matrix of the states of the system

BPHI, on an nb x nb transition matrix for the system

BQ, Q an nb x nb covariance matrix of the random inputs of
Lthe system

BRK, Rn an nb x nb covariance matrix of the system input error
[propagated one time step

COVU, Cov(U n )an nnb x nnb matrix of the covariance of Un

COVZ, Cov(zn)an nnb x nnb matrix of the covariance of the augmented
states

D the time between updates, D = T/KT

g the gravity of the earth

I the identity matrix I
lOUT a flag used in subroutine OUT to select the print format

of P1 and COVZ

11r



!

KAI a flag used in subroutine AI1PUT to select the read

format of the matrices In the data deck

KMAX the maximum number of iterations in the MEXP subroutine

J KT the number of updates between measurements

KTF the number of measurements to be taken

M, m the number of elements in the output vector

N, n the number of states in the filter

NB, nb the number of states in the system

NNB, nnb the number of states in the augmented state vector z,
nnb = n + nb

OH, 0n an nnb x nnb "transition" matrix for the augmented states

1 P1, Pn an n x n matrix for the error in estimation of the states
in the filter

PHI, &n an n x n transition matrix for the filter

R the radius of the earth

RE the relative error used in subroutine MEXP for the calculation
of the transition matrices and error covariance matrices

'iRK, R n an n x n covariance matrix of the filter input error term
,n propagated one time step

-i S an nb x n transformation matrix

' T the time between measurements

un an nb-vector of the convolution of the random inputs, w,
n with the transition matrix

Un  an nnb-vector of the convolution of the random inputs of the
augmented states with the corresponding "transition matrix"

- v(t) an m-vector representing the random measurement errors

w(t) an nb-vector representing the random inputs to the system

x an nb-vector of the states in the system



3 viii

x an n-vector of the states in the system

x an n-vector of the estimates

x an nb,,vector denoting the error in estimation of the statesrin the system

y an m-vector denoting the outputs of the system

z an nnb-vector of the augmented states

a the reciprocal of the correlation time of a random process

[ V the accelerometer errors

6R the error in position, ft

[ 6R the error in velocity, ft/sec

[ the gyro errors (drift rates)

V the measurement bias error

17. * @y the errors in platform tilt

SOz the error in azimuth

2
the variance of a random process

the angular rate of rotation of the earth

angular velocity

[

I: I



!U

3 ix

I

I LIST OF TABLES

TABLE I System Parameters ........ ... ...... 54

TABLE II Initial Conditions ......... ... ... 55

TABLE III Summary of the Results ... ............ . 61

]
.1

.!

.I



I I

U 4

[ CHAPTER. I
I

INTRODUCTION

A. Estimation in Optimum Control

[ Estimation techniques have become very important in modern control

theory applications. In many cases the need for an estimation schemefI[ l-

arises when optimum control is to be applied to the system. The optimum

f control law is usually a function of all of the states of the system.

However not all of the states are directly available. Therefore it is

necessary to extract information concerning the states from the measure-

ments which are available. This process is referred to as estimation.

I A basic faature of any optimum estimation technique is that the

estimate of the states is updated by continuously observing the output,

so as to minimize some performance index which is generally a function

of the error in estimation [1]. For the Kalman estimator [2, 3], used I

in this thesis, the variance of the error in estimation is minimized.

A block diagram of an estimation process is shown in Fig. 1. The

estimator is employed to determine the optimum estimate of the state

variables from the measured output variables. The controller is used

to generate an optimum control liw on the basis of the estimate of the

state variables [4].

As ir most problems, the optimum solution may not be the most

economical or practical. Often it is not advantageous to estimate all

of the state variables, rather only those states which have the largest

[influence on the control law. By doing this the complexity of the

1.
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Fig. I Optimum estimation and control scheme.

estimator and the number of computations involved arereduced considerably.

IHowever the degree of accuracy will be less when compared to the optimum

estimator.

B. Criteria for an Estimation Scheme

Various properties may be used as comparison criteria for an estima-

tion scheme. The three criteria considered here are:

" 1. accuracy

* 2. speed of the computation

3. complexity.

f All these criteria are closely related. To obtain a high accuracy, the

technique will inevitably be a sophisticated and complex one. Complex

I techniques are limited however, because of the size of the available

digital computer. The higher the required accuracy, the more complex the tech-

nique has to be anu the bigger and more expensive the computer has to be.

5 Besides accuracy, a second important factor to be considered is the time

between measurements. The time it takes to ca culate a new estimateI
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I depends on the compltxity of the technique and the speed of the computer.

Obviously the smaller this time the better. When the measurement time

Idecreases, the discrete case approaches the continuous case, and more

finformation about the states becomes available in a shorter time, yielding
a possibility that the system reaches its steady state much faster.

In many cases such as airborn navigation systems, measurements

must be taken at short intervals because of the speed of the aircraft

[and the short duration of the flight. In marine navigation systems the

[speed of computation is not critical and often accuracy appears to be
less critical too. All considerations call for an estimator which is as

[simple as possible to implement on a special purpose digital computer,
i.e., an estimator that estimates only those states which are necessary

Fto obtain a good control. Though the estimator may not be optimum

1- anymore, and the accuracy decreased, the time of computation may be

decreased sufficiently to allow more measurements. This simplification

of the estimator results in a smaller computer, and possibly an increased

number of measurements which makes up for the lost accuracy, as more

information can be obtainpd in a shorter time. The trade-off between

I. time of calculations and the complexity of the computer, however, has to

be considered for every specific case.

This thesis develops a computer program with which it is possible

to simulate dynamical systems described by linear differential equations

with constant coefficients and random driving terms, and rapidly to compare

and to analyze different estimation techniques with respect to accuracy and

computational complexity.

j Since the equations of the system will be written in state variable

[B



II
4

form, vector notation will be used throughout. Although the estimator

equations can be written in cortinuous as well as discrete form, only

the discrete equations are considered since a digital computer simula-

tion will be used.

I
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CHAPTER II

MATHEMATICAL SOLUTION TO THE PROBLEM

A. Formulation of the Problem

[ In this chapter the necessary equations are presented that provide

a framework by which it is possible to study the performance of the

optimum and sub-optimum Kalman estimator or, as it is sometimes called,

the Kalman filter. The differential equation describing the system is

i(t) = F x(t) + w(t)
y(t) = M x(t) + v(

i. where

x(t) an nb-vector denoting the states in the system, with
- initial condition x(O) - xo .

w(t) an nb-vector of gaussian, white noise processes with zero
Lmean

y(t) an m-vector of the outputs of the system

v(t) an m-vector of the errors (gaussian, white noise sequence)

F an nb x nb system matrix I
V M an m x nb measurement matrix.

The number of states in the system is given by nb, and the number of

outputs by m.

[To solve the problem numerically, Eq. (2-1) can be rewritten as a

difference equation

Xn = n Xn + Un (2-2)

All vectors are considered to be column vectors unless otherwise
indicated.
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5 where t
w Un 1 t  ( t n '  

W() dT 
(2-3)

m where = (tn' tn-l) is the transition matrix, describing the change

of the state vector from time t,-, to time tn . Since w(t) and v(t) are

random, x(t) and y(t) will also be random. Therefore when an estimate

of x(t) is generated based upon the measurements y(t), this quantity

1 will be random. The approach that will be utilized to study these random

quantities will be to investigate their covariance matrices. That is

the matrix defined by

I Cov [x(t)] = E[x(t)xT(t) (2-4)

3 where superscript T denotes matrix transposition and E is the expectatiun

operator. In general, w(t) and v(t) have zero mean, making x(t) and y(t)

3 have zero mean values. Statistically the covariances of w(t) and v(t)

can be described by

E~w(t)wT(r)] = Q6(t -) (2-5)

3 E[v(ti)vT(tj)] = C6ij (2-6)

where -(t - T) is a Dirac delta function for continuous signals arJ

is the Kronecker delta function for discrete signals.

I B. Optimum Kalman Filter

The optimum Kalman filter estimates all the states of the system,

and uses the same mathematical model for the filter as for the system.

3 A block diagram of the optimum Kalman estimator is given in Fig. 2.

Defining the states of the system by x(t) and the estimate of the sute

I

3m m m w m
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5 by x(t), the error in estimation is defined by

I Xk(t) - x(t) - xkt)

If an estimate is provided at some time tnl , and no subsequent measure-

ments are available, the best estimate of the states at all subsequent

times is obtained by solving the deterministic portions of Eq. (2-2)

n n Xn-l (2-7)

5 where tn is the same transition matrix used for updating the states of

g the system. The estimate at tn-1 is used as an initial condition. At

time tn the errors in estimation will have propagated according to

xn xn 4)nXn-l + un - n n-l

or

Xn -nXn-l + u n  (2-8)[
The resulting value for xn can be used as the initial condition for the

following update. However, if a measurement is obtained at time t n , a

new estimate can be calculated. The use of measurements provided at

discrete instants of time causes the error covariance to be discontinuous,

having different values before and after the measurements. For this

reason, the error immediately before a measuren'nt is designated '(-)

[and the same error after the measurement is X(+). The same notation

applies to the estimate and other matrices with a discontinuity at the

measurement time.

With the new estimate, the error in estimation becomes

xn(+) Xn - Xn(+)

I

!
-~'-- n ~ - -

m- ----i- - -I
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I Fig. 2 Optimum Kalman estimation scheme.
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i Hopefully the new estimate will cause the error, or rather its covariance

to be reduced in some way.

To solve the problem statistically, the covariance is taken of

Eq. (2-8)

C[v Ccv ('X1 OnT +Cov (un) (2-9)ov(Xn) = n -iy(n~) C

Using the notation

Rn =Cov (un) and Pn Cov (Xn)

Eq. (2-6) can be written as

p n n Pn-I n + n (

The techniques which yield numerical solutions for on and Rn are derived

in Appendix A, and are given by

[" F(tn-tn'l) M Ft(tn -
t n -l) (. iz(2-i1)

n e (tn 1t

n " tn 'l)i  (2-12)

where Q is given by

[ The initial condition for Qn is given by the covariance matrix for w(t),

see Eq. (2-5). The covariance matrix of the error in estimation is at

[discrete time instances sequentially updated according to Eq. (2-10).
This simulates the dynamic behavior of the covariance of the error in

estimation between the measurements, which can now be observed each time

1 the error is updated. The covariance of the error in estimation will

propagate according to Eq. (2-10) until the time when a measurement is

taken and a new estimate is calculated. The updated estimate is given

- _____ I-
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I by

I n( )  OnR n-l(+) (2-14)

By taking a measuremnt a correction term Ln is found which gives a new

I estimate

SXn(+)=X( ) + Xn (2-15)

According to Ref. [3] the equations to calculate axn can be written as

AN K[Yn - Mn(-)] (2-16)

where

a d n MTEM Pn(,) MT + C] (2-17)Iand

3 Yn M xn + v

Having found the optimum gain Kn, the new estimate is calculated according

I to Eqs. (2-15) and (2-16).

3 njP) = in( ) + K n y n " M n(-)] (2-18)

The new covariance matrix of the error is found by taking the covariance

I of Eq. (2-18) yielding

Pn( + ) = [I -MPn L Kn M]T+ Kn C Kn  (2-19)

This equation is usually used in its simpler but numerically equivalent

form (see Ref. [5])

SPn(+)I= - Kn M] Pn(-) (2-20)

The only drawback of Eq. (2-20) is that algorithmically the equation

does not yield a symmetric matrix. Round off errors in the computer

I cause the matrix to be non-symmetric resulting in errors which can

I



m propagate rapidly, especially with a large number of states. I
r To analyze the accuracy of the optimum Kalman filter it is only i

necessary to study the time behavior of Pn" The equations for this time

history are given by Eqs. (2-10), (2-17) and (2-20). The flow diagram

of an analysis program for this purpose is shown in Fig. 3.[ __________________

C. Sub-optimum Kalman Filter with Control Matrices

[In case of a sub-optimum filt2r, the dynamical model used to up-

date the estimate is different from the dyn¢amical model of the system.

Generally, the transition matrix in the filter is of a lower order
than the transition matrix of the system. This is in order to simplify

and reduce the computations involved in calculating a new estimate. The

fmatrices used in the filter will be specified with an asterisk.

The differential equation used in the filter to simulate the system

I. is given by

x (t) a F* x*(t) + w*(t) (2-21)

which is in discrete form written as

I * * * (2
Xn = 4n Xn-l + Un (2-22)

IThe model of the output process is
y M Xn +v (2-23)

The new estimate calculated at the measurement time is therefore given by

xn -n (-) + KnXYn  M n(-)] (2-24)

w h where

[ Xn(') Xn-l(+) (2-25)

I
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Fig. 3 Flow diagram of an optimum Kalman estimation program.
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I The equations for the sub-optimum estimator are in analogy to Eqs. (2-11),

(2-17) and (2-20) given by

P() = * P (+ ) D* + R* (2-26)

I Kn =P n(-) M*T[M* P n(-) M*T + C*]1  (2-27)

3 Pn(+) =[I - Kn M* IPn(-) (2-28)

In the equations above, C is the covariance matrix of the modeled

measuremeat error v* (Eq. 2-6), which m-,y or may not be the same as C,

5 the true covariance. Likewise, there is a Q used in the calculation of

Rn (Eq. 2-5). It should also be noted that with the sub-optimum filter

I Pn is no longer the true covariance matrix of the error iii estimation.

This fact can be seen using the following development.

I To transform the estimate i into a vector with the same dimension as

I the state vector x, a transformation matrix S is required, such that

x M x - S (2-29)

K The new vector S i represents the estimate of all the states of the system.

The covariance matrix of the error between the system states and the

estimated states is

K Cov( ) = E[(x S i)(x - S )T
[ or

Cov( ) = E(xxT) - E(xT)sT + S E(xT) (2-30)

When solving this equation It is convenient to augment the state vector x

by the estimation vector x, whiz,, yiclds a new column vector z defined by

[ Z~

*The vector z will be referred to in the following sections as the

"augmented state vector."[
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IThe reason for doing this becomes obvious when the covariance of z is
taken.

Cov(z) - E -71(2-31)I__ xxf--;] <-

J By merely partitioning the Cov(z) matrix the auto-correlations and

cross-correlations of x and i are directly defined. If Cov(z) is known,

I the covariance of the error can be calculated by using Eq. (2-30).

However there is another method [6] which does not require the

I partitioning of the Cov(z) matrix. Use is made of two control matrices

A1 and A2 . With these matrices control is applied to the system at the

measurement times, according to the following equations

' jn(+) • Rn(+) -A1 in(+) (2-32)

1Xn a x. - A 2 'n ( *)  (2-33)

where in (+) is the new calculated estimate at the measurement time

1 before control has been applied. The vectors x' and ;n(+) are respectively

Ithe system state, and the estimate after control has been applied.

To simulate and observe the dynamic behavior of both the state of

Ithe system and the estimation of the state, the covariance matrix of z
must be updated at discrete intervals. The covariance of the state is

given by the matrix in the upper left corner of the Cov(z) matrix in

Eq. (2-31), and the covariance matrix of the estimate is in the lower

right corner. From Eqs. (2-2) and (2-25) it is easily derived that

3 between measurements the relation of zn to zn. 1 is described by

I
I
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I Zn n + (3

This equation can be written in the form

[ Zn- On Zn-l + U (2-35)

where on is a transition matrix for the augmented state and Un is an

error vector due to the random driving terms. Taking the covariance of

IEq. (2-35) yields

[ Cov(zn) o CoV(Zn.i) 0T + Cov(Un) (2-36)

where from Eq. (2-34) and (2-11) Cov(Un) is found to be

Cov(Un) - J

At the measurement time a new "optimum" gain Kn is calculated with

[ Eq. (2-27), and a new matrix Pn (+) is obtained from Eq. (2-28). Having

calculated a new gain Kn the estimate is corrected according to

R(+) = (-) + K Yn - M Xn(-) (2-37) [

where yn is given by the system equation

Yn = M xn + v

[The new estimate n(+) is then fed back through the control matrices to

xn and n (+) as described in Eqs. (2-32) and (2-33). By substituting

Eq. (2-37) into the3e two equations the new values for the state and the

estimate are I
xn (I - A2 Kn M)xn - A2 (I - K ) (-) A (2-38)2
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(I-AI N  M xn + (I-A)(I -K X ) + (I-AI)v (2-39)

where the prime denotes that control has been applied. Augmenting xn

with x'will give the new value for zn . The equation describing the

relation between z' and z is of the same form as Eq. (2-35)

Zn n Zn + Un' (2-40)

where 0' and U' are given by

F - 2  K M , A2( - KM ) (I 
(2 41

' ' I- .. . . . - - - - J( -1

IT, I)KnM 1 (1 - A,)(I -K *

=n j (2-42)

Taking the covariance matrix of Eq. (2-40) yields

Cov(zn) = 0n Cov(zn ) OnT + Cov(Un ) (2-43)

where

1n Cov(UKn K BI A T  2. In-A+% C Kn (I-A)T]

I which can also be written in the simpler form

Coy K T[-A T I-A(2-44)

D. Function of the Control Matrices

The fuaction of the control matrices is shown in Fig. 4. With A1

and A2 equal to zero there will be no control, and the normal propagation

J of the state vector x and the estimate x is simulated. With the option

of having A1 and A2 it is possible to propagate the covariance matrix of

I
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Fig 4 Sub-optimum estimation scheme with control matrices.
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the error in estimation

_ Cov(O) - Cov(x - s i)

Making A1  I I and A2 - S, the state vector and the estimate become

-x xn -S n(+) Xn(+) (4-45)

] In(+) - (I - A,)n(+) = 0 (4-46)

In other words, the vector contains the error in estimation in its

upper part. Updating the covariance of z, will simulate the propagatinn

of the error in estimation.

The advantage of this technique is that it is not necessary anymore

J to calculate the covariance of the error separately from the updating of

Cov(Zn). With the option of the two control matrices, the covariance of

the error is obtained, in the upper left corner of Cov(z n) as indicated

J above by making AI - 0 and A2 a S. A block diagram for a sub-optimum

filter is contained in Fig. 4. A flow diagram for an analysis of a

1 sub-optimum filter is contained in Fig. 5.

!
I
I

!
!

I!

I1
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Fig. 5 Flow diagram of a sub-optimum~ Kalman estimator.
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i CHAPTER III

DESCRIPTION OF THE PROGRAM

A. Introduction

.1 This chapter contains an explanation of a computer program developed

for analyzing estimation schemes with a Kalman filter, using state

variable techniques. The program utilizes the equations derived in

Chapter II for the sub-optimum Kalman estimator with control matrices.

A complete listing of the program is contained in the Appendices.

The program was written in Fortran IV for the CDC 3600. Variable

dimensions are used throughout the program except for the dummy arrays,

.1 which are used only for temporary storage to perform certain matrix

operations. These temporary matrices denoted by Tl, T2, etc., are in

COMMON. This is done because every subroutine requires a different

"I. number of dummy arrays of different sizes. The COM4ON can then be

arranged to suit the need of every subroutine. All other arrays have

variable dimensions, which makes it convenient to change the storage

assigned to these matrices by only changing the DIMENSION statement in

the main program. Changing dimensions becomes important when the memory

*space available in the computer is limited. Certain constant matrices

which do not need many computations to compute, are recalculated with

Levery measurement in order to use their storage space for the calculation

of other matrices. This way, without losing much time a great deal of

memory space is obtained. With this program it is possible on a computer

jwith 32k memory locations to analyze estimation schemes with up to 25

_ --
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IJ states, 25 estimates and 10 outputs, or any other combination which

results in an equal amount of storage. However, the DIMENSION statement

in the main-line program (and the COMMON) has to be changed accordingly.

The different subroutines used in the program and how they are linked

together are shown in Fig. 6.

B. Data Deck Setup

S[ The main-line program called ESTIM, starts by reading all the non-

dimensioned variables used in the program. These variables are to be

Kpunched on the first data card which will be read according to the
following read statements

1 FORMAT(815,3EI0.5)
READ 1, N,HB,MKT,KTF,KMAXIOUT,KAI,T,AERE

where

N the number of states in the filter

NB the number of states in the system

H the number of elements in the output

KT the number of updates between measurements

KTF the number of measurements to be taken

KNAX the maximum number of iterations allowed in the MEXP subroutine
for the calculation of the transition matrices and the random
error term of the matrix Ricatti equations

IOUT a flag used in the print routine OUT, and set equal to:
1 when the square root of only the diagonal terms of P1 and
COVZ are to be printed as output, or

2 when the full matrix of P1 and COVZ are to be printed out.

KAI a flag which is used in the subroutine AINPUT, and set equal to:
1 when only the diagonal terms of AQ, BQ, P1, and COVZ are
used is input
2 when the diagonal and sub-diagonal terms of these synnmetric
matrices are to be readIL
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MAI
MEXP _ PROGRAM AINPUT

MATMPY DRUK

DRUK

I
I'

FILTER -- ERCOV OUT

-I -
ABIAC AOI DRUK
MA'ADD ABTAC
MAI INV MATADD
ABT SUM
MATMPY SUMB
DRUK DRUKi bMATMPY

Fig. 6 Block diagram of the subroutines used in the program.
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T the time between measurements, in the same time unit as used
in the system matrices

AE and RE are respectively the absolute and the relative error whichare allowed in the calculation of PHI, BPHI, RK, BRK

The next set of data cards contain sequentially the following mtrices

AF an n x n matrix which is used as model of the system in the
filter

BF an nb x nb matrix representing the model of the system

AQ an n x n covariance matrix of the random driving terms in

the model of the fil ter

I BQ an nb x nb covariance matrix of the random driving terms in
the model of the system

AM an m x n measurement matrix of the states in the filter

BM an m x nb measurement matrix of the states in the system

AC an m x m covariance matrix of the noise at the output of
the filter

BC an m x m covariance matrix of the noise at the output of the
systam

P1 an n x n covariance matrix of the error in estimation

COVZ an (nb+n) x (nb+n) covariance matrix of the augmented vector
of the states in the system and the estimated states in the

filter

AA an n x n control matrix feeding back the estimate after the
measurement according to Eq. (2-32)

BA an nb x n control matrix feeding back the estimate after the[measurement to the states of the system (see Eq. 2-33).

C. Input Formats

The matrices are read in row-wise according to FORMAT(8EO.4).

If the number of elements in a row is greater than the number of fields

specified by the format statement, i.e., eight in this case, the reading

1of the elements is continued on the following data card(s). The next

[
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" row is started at a new data card, which continues until all rows are

_- read. An example of the statements used for reading a matrix A with

dimensions n x m is given by

I FORMAT(8EIO.4)
---- DO 9 1=I.N

9 READ l,(A(I,J),J-I,M)

The reading of AQ, BQ, P1, COVZ is slightly different. Here

advantage is taken of the fact that these matrices are symmetric. There-

fore only the elements of the lower triangle including the elements on

the diagonal are read. Again the reading is done row-wise as was the

case with a non-symmetric matrix. The only difference is that now the

-- diagonal term is considered to be the last element in the row. Inside

the subroutine AINPUT the upper-diagonal terms are equated to their

corresponding sub-diagonal terms. The statements to read a symmetric

matrix B with dinension n x n are

1 FORMAT(8EO.4)
DO 8 I=l,N

8 READ 1, (B(I,J),J-l,I)

A third type of matrix is the diagonal matrix AA. The diagonal

elements are put in order on the same data card, or subsequent data

cards if the number of elements of the diagonal is greater than 8. All

off-diagonal terms are set to zero inside the subroutine AINPUT. The

statements used for reading a diagonal matrix C with dimensions n x n

are

1 FORMAT(8EI.4)

READ 1, (C(I,I),I=I,N)

In most cases the off-diagonal terms of AQ, BQ, Pl and COVZ are also

equal to zero. The flag KAI provides the option to read only the
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I diagonal terms of these matrices, in the same way as for AA.

As a final check if the data was presented and read correctly, all

the variables and matrices that are read as input data, are directly

printed. The printing of the matrices Is done in a separate subroutine

DRUK, so that the print forma, can easily be changed.

D. General Description of the Program

After all the data is read and printed, the transition matrices

and the error covariance matricec a:e calculated in the subroutine MEXP.

A The accuracy desired for these matrices is to be defined by AE and RE,

the absolute and relative error terms respectively. The iterations

continue until all elements in the matrix EXPTA satisfy the inequality

IAEXPTAtji < AE + RE IEXPTAijI (3-1)

where EXPTA is the desired matrix and LEXPTA is the last calculated termI|
of the series. When Eq. (3-1) applies for each element of LEXPTA, theI I
total number of iterations is printed and the final matrix EXPTA is

printed by calling DRUK. KMAX provides a limit on the number of

iterations allowed. In the case a matrix does not converge within the

I allowable number of iterations, an error message will be printed and

further execution of the program terminated.

Following the calling of MEXP, control is transferred to subroutine

ERCOV where the matrices P1 and COVZ are updated and corrected at each

m measurement. The way the system and the filter are updated and measure-

l ments are taken is illustrated in Fig. 7. The initial conditions for P1

and COVZ are specified by the input data. The first update is at t = T/KT,

I the states in the filter and the system are updated without the correction
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KT 4
b4 time

KTF 3

I Fig. 7 Propagation of the states,with measurements.

&r the estimate by the Kalman filter. The number of updates does not

I have any effect on the propagation of the states; it merely provides a

possibility to observe the states at certain times between measurements.

At every update the corresponding time is printed, and PI and COVZ are

I printed in subroutine OUT. According to the value of the flag IOUT, P1

and COVZ are either printed completely or the square root of only the

i diagonal terms is printed.

After KT updates have been calculated and printed out, the time will

be t = T, which is equal to the measurement time. The number of the

Imeasurenent is printed and the control is transferred to subroutine

FILTER. Here, the new optimum gain AK is calculated according to Eq.

i (2-27) and printed. With the new gain, PI is corrected according to

Eq. (2-28). When control returns, COVZ is implemented with the new

estimate as described by Eq. (2-43). The new Pl and COVZ are printed

i
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I again in subroutine OUT. Control returns to the beginning of ERCOV,

r and the procedure of updating and taking a measurement continues.

After KTF measurements have been taken, control returns to the main-line

[ program.

The program is implemented with a DO-loop to accept up to ten data

[1 decks. An "END OF FILE" (EOF) check is performed and execution of the

[program is terminated when the EOF card is encountered in the case of

less than ten data decks. The first card of the new data deck follows

[. directly after the last card of the preceding data deck.

E. Explanation of the Subroutines

ESTIM: The main-line program, ESTIM, is kept quite simple. A

[DO-loop with a dummy variable, II, gives the possibility of accepting

up to ten data decks. Inside the DO-loop, the first data card with all

t. the variables is read as explained in the beginning of this chapter.

[_ With the following statement, CALL AINPJT, all input matrices are read.

After control returns, the subroutine MEXP is called four times; twice

[with the flag KLM = 1, to calculate the transition matrices PHI and

BPHI, respectively of the filter and the system; and two times with the

.flag KLM = 2, for the calculation of the error covariance terms of the

filter and the system, designated RK and BRK. These call statements are

followed by a call statement for subroutine ERCOV where the rest of the

calculations are performed. After the execution of this statement,

control goes back to the beginning of the DO-loop and reads the first

data card of the next data deck. With the "END OF FILE" check

following the read statement, the program is terminated when the EOF

[

- - * ~ . - - . ~ -,-- ~ - - - - -
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I card is encountered in the case of less than ten date decks.

3Subroutine AINPUT: In this subroutine the following matrices are

read: AF, BF, AQ, BQ, AM, BM, AC, BC, P1, COVZ, AA, BA according to

I the format explained in the beginning of this chapter. This subroutine

3is called with

AINPUT(AF,BF,AQ,BQ,AM,BM,AC,BC,P1 ,COVZ,AA,BA,N,NB,M,NNB,KAI)

where KAI is the flag to select the read format of the matrices and

3 tNNB is the number of states in the augmented state vector, z.

1 Sibroutine MEXP: Referring to the matrix exponential and the error

covariince flow diagrams in Appendix A, it can be rioted that a large

3similarity exists between both diagrams. Consequently, both programs

have been combined into one called MEXP. The flow diagram of this sub-

j routine is shown in Fig. 8. According to the value of the flag KLM,

either the equations for the matrix exponential or the error covariance

routines are used. When KLM = I the transition matrix is computed and

j with KLM = 2 the error covariance matrix is calculated. Both matrices

are required to update the covariance matrix of the states according to

3 Eq. (2-26).

In order to be able to acquire a high accuracy with slowly con-

*verging matrices many iterations are necessary. With large matrices

I this involves many computations which result in an undesirable growth

of the truncation errors In the computer. Double precision ib used

3 for the algorithm to circumvent this problem. The parameter list in

this subroutine isI
I
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MEXP(D,F,A,T1,T2,EXPTA,T3,N,KMAX,AE,RE,KLM)

The following variables are to be specified in the calling program

D the time between updates, D - T/KT

I F the system matrix

A either the system matrix F, when KLM a 1, or the covariance
of the random driving terms Q, when KLM - 2.

N the order of the matrices

KMAX the maximum number of iterations

AE the absolute error

RE the relative error

KLM a flag

TI, T2 and EXPTA are double precision arrays which are used only for

I temporary storage inside the subroutine. EXPTA is the desired matrix

in double precision which at the end of all computations is equated

with the single precision matrix T3 which is transferred to the calling

I program through the parameter list. The call statement for calculating

a transition matrix PHI might, for example, be

I CALL MEXP(D,F,F,TI,T2,T3,PHI,N,KMAX,AE,RE,I)

The equivalent statement for the calculation of the error covariance

term RK would beI
CALL MEXP(D,F,Q,T1,T2,T3,RK,N,KMAX,AE,RE,2)

IGenerally the subroutine operates as follows: The single precision

variable D is equated to the double precision variable T. Next, the

statements for EXPTA - TI z A*T are executed. For KLM = 1 the identity

matrix I is added to this first term of the series. The double precision

I
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I variable K, denoting the number of iterations, is incremented by 1.

The following term of either series is calculated and stored in T1 and

added to the series. All elements of TI are checked according to

(Eq. (3-1). A check follows to determine if the number of iterations K,

has exceeded the limit KMAX. If one of the elements of TI does not

satisfy Eq. (3-1) and K is still below its limit, the iterations continue

[ mand the next term of the series is calculated. In the case that the

series does not converge and the number of iterations reaches its limit

[KMAX, the message "number of iterations exceeded" will be printed and

the execution of the program terminated.

Subroutine ERCOV: In this subroutine P1 and COVZ are updated and

[ after each measurement incremented with a new estimate. The flow

diagram of ERCOV is represented in Fig. 9. The parameter list in the

subroutine is given by

r ERCOV(PHI,BPHI ,RK,BRK,AM,BM,AK,AC,BC,PI ,OH,COVU,COVZ,AA,BA,TA,TC,
N,NB,M,NNB,KT,KTF, IOUT,D) j

Except for AK, OH, COVU, TA and TC all variables and arrays are to be

specified in the calling program. The matrices which have not yet been

C [defined are

OH the transition matrix of the augmented state vector z

COVU the error covariance term for the augmented z-vector

TA and TC two dummy arrays with variable dimension.

The subroutine starts with storing of AA - I in AA, where I is the

identity matrix. This is done because AA appears always in conjunction

Cwith I. After these steps, control comes to the first DO-loop where KTF

[2
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SI denotes the number of measurements to be taken. Inside the DO-loop

0 n and CoV(Un) are defined according to Eq. (2-34) and stored under the

names OH and COVU respectively. Though these two matrices are constant,

Fthey are recalculated at each measurement due to the fact that they

share the same storage locations as onA Cov(U'). ThiswayOHand
nn

COVU can be used for two purposes which saves useful storage space.

Time-wise, this is Justifled as there are hardly any computations

involved In calculating u and Cov(Un ). The following DO-loop updates

P1 and COVZ according to tqs, (1-1) a 1-36). KT denotes the number

of updates between me'rem ts., h each update the propagation time

is printed out. P1 and COVI are printed in subroutine OUT after each

update. With the system updated KT times up to the measurement time T,

a new measurement will be taken by transferring control to subroutine

1 FILTER, where a new AK and PI are calculated. In the statements

following the return of control from FILTER, on and Cov(U,) are calculated

Laccording to Eqs. (2-41) and (2-44) and are stored in OH and COVU. OH

is obtained by first calculating the partitioned matrices, and augmenting

ithese matrices in subroutine SUM. COU is obtained by augmenting BA

with AA - I, and post-multiplying and premiltiplying AK*BC*AKT by the

newly obtained matrix according to Eq. (2-44). As this augmented matrix

contains only two matrices in this rase, there is an entry SUMB provided

in subroutine SUM which augments two matrices instead of four as is

explained in the description oif subroutine SUM. The new matrices P1 and

[ COVZ are printed in subroutine )UT and the whole sequence of updating

and calculating a new estimate is repeated again until the final measure-

[ment KTF is reached.

[
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Subroutine FILTER: This subroutine of which the flow diagram is

3 shown in Fig. 10 calculates the optimum gain AK and the new error in

estimation Pl. The parameter list in the subroutine and in the calling

program is

FILTER(AM,AK,P1,AC,N,M)

The equations used for the Kalman filter are strictly according to the

equations derived in Chapter II, Eqs. (2-27) and (2-28). All variables

except AK are to be defined in the calling program. P1 which is trans-

ferred to FILTER is equal to the error in estimation at the end of the

last update when transferred back to the calling program P1 will be

equal to the new corrected estimate according to Eq. (2-28). The function

of the statements can easily be seen without further explanation.

Subroutine OUT: In this subroutine both Pl and COVZ are printed

after each update and after each measurement. The parameter list in

the subroutine and in the calling program is

OUT(PI,COVZ,T1,N,NB,NNB,IOUT)

TI is a dummy array used for storing the square roots of the diagonal

I elements of PI and COVZ. According to the flag lOUT either the full

I matrix of PI and COVZ is printed when lOUT = 2, or the square root of

just the diagonal terms is printed when lOUT = 1. With merely changing

i this small subroutine the print format can easily be changed without

changing the binary deck of a large subroutine.

Subroutine DRUK: This subroutine is made to print a matrix and

is called by
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START

I Calculate new optimum gain AK

[t
F

I -A 1 Calculate new covariance matrix

PRINT I : AK of the error 
in estimation, 

Pl

f
ENDf

Fig. 10 Flow diagram of subroutine FILTER.
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DRUK(BM,N)

where

B is the matrix to be printed

N the number of columns

M the number of rows.

The matrix A is printed row-wise, or in case the number of rows is

larger than the number of columns, the matrix is automatically printed

column-wise. The message "transpose" is then printed above the matrix.

The print format used with the print statement is

2 FORMAT(IX,12EI1.4)
DO 3 I-l,N

3 PRINT 2, (B(I,J),J-l,M)

The print format or statements are casily changed to suit one's purpose.

Subroutine SUM and entry SUMB: In this subroutine an augmented

matrix is obtained from four smaller matrices according to

A'B

S = [C- D]

The call statement is

4SUM(A,B,CD,S, II,12,Jl ,J2, ll2,Jl 2)

where

II is the number of rows in A and B

12 is the number of rows in C and D

J is the number of columns in A and C

J2 is the number of columns in B and D

112 is the number of rows in S

J12 is the number of columns in S
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I With the entry SUMS tha following type of augmented matrix is obtained

LC

FThe same parameter list is used for SUMB as for SUM, only B, D, and J2

do not have any significance.

Subroutine AOI: In this subroutine all elements of a matrix B

[are equated to zero when tha flag KK - 1. Otherwise, the matrix B is

equated to the identity matrix. The call statement is

AOI(B,N,M,KK)

Iwhere

N is the number of rows in B

M is the number of columns in B

m KK is a flag.

Subroutine ABT: This subroutine performs the following matrix

[T
product . = A*BT. The call statement Is

ABT(A,B,S,K,L,M)

where

K is the number of rows in A and S-

[ L i- the number of columns in A and B

M is the number of rows in B and the number of columns in S.

Subroutine ABTAC: This subroutine performs either of the following

I two matrix operations

S - A*B*AT when the flag KK = 2

I S = A*B*CT when the flag KK = 3.

[
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The call statement is

I F! I ABTAC(A,B,C,T,S,K,L,M,NKK)

where

wr T is a duniy array used to store the product of A and B

K is the number of rows i n A, T, S

L is the number of rows in Band the number of columns in A

3 M is the number of columns in B, C, T

N is the number of rows in C and the number of columns in S.

I In the case that KK = 2, the calling sequence is

J ABTAC(A,B,A,T,S,K,L,L,K,2)

Advantage has been tak'en of the fact that S is symmetric in this case.

Therefore only the upper-diagonal terris including the diagonal terms

I are calculated, and the sub-diagonal terms are equated to the correspond-

ing elements above the diagonal. This way calculation time is saved.

3 The following matrix subroutines were implemented on the computer

as library subroutines. Therefore, these subroutines are not contained

I in the listing and only the calling sequence is explained-

3 Subroutine MATINV: This subroutine is used to take the inverse of

a matrix. Jordan's method is used to reduce a matrix A to the iaentity

matrix I through a succession of transformations. With this method, the

3 matrix equation A*X = B is solved, where A is a square coefficient matrix

and B is a matrix of constant vectors. The inverse and the determinant

3 of A are also computed. The calling sequence is

I CALL MATINV(A,N,B,NB,DET,MA)

where

I
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A is a square matrix of which the inverse has to be taken, as

output it contains A-1

I N is the order of A

B is a two-dimensional array (not usually square), as output
contains X

NB is the number of columns in B; if NB - 0, the routine is
used only for the inversion

DET is the determinant of A callhulated by MATINV

[ MA is the dimension of A in the calling program.

[ Subroutine MATSUB: In this subroutine two matrices are subtracted

according to C - A - B. The calling sequence for this matrix routine is

Call MATSUB(A,B,C,N,NX,M)

[ where

N is the number of rows in A, B, and C

NX is the row dimension of the matrices in the calling program

M is the number of columns of A, B, and C

Subroutine MATADD: In this subroutine two matrices are added

1.. according to C = A + B. The calling sequence is given by

CALL MATADD(A,B,CNiNX,M)

where

[N is the number of rows in A, B, and C

NX is the row dimension of the matrices in the calling program

M is the number of columns in A, B, and C

(Subroutine MATMPY: In this subroutine two matrices are multiplied

according to C = A*B. The calling sequence is given by

I:I

-- - -I



40

SI CALL MATMPY(A.B.C,N,NX,MMX.L)

whereN is the number of rows in A and C

1 NX is the row dimension of A and C in the calling program

M is the number of rows in B

MX is the row dimension of B in the calling program

L is the number of columns in B and C

i
II'
I

I

I
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CHAPTER IV

[ @N INERTIAL ESTIMATION PROBLEM

A. Errors Occurring in an Inertial Guidance System

In vehicles navigated by an i. :'rtijl system it is desirable that

the system computes the position and velocity with respect to earth

very accurately. However, several types of errors occur in an inertial

[guidance system. These errors fall Into two categories

1. deterministic

F2. random -

The deterministic errors are usually simple in form and quite easy to

Udescribe mathematically, such as errors with constant coefficients or

with sinusoidal characteristics. These errors are generally compensated

for, i.e., effectively subtracted out of the system. The random errors

are treated statistically based upon a mathematical specification. Gyros,

accelerometers, initial alignments, servos, digital or analog computers

and geographical data are some examples of error sources that arise either _

[within the inertial system or with outside data used by the inertial
system. When dealing with errors in an error analysis it is necessary to

[describe these errors mathematically in order to study their propagation.
Generally, these errors do not consist of pure white noise, but are

I correlated in time. This problem will be solved by adding states to the

state vector x, and simulating the errors as being the outputs of

stochastic processes with white noise inputs.

[ It is impossible to implement inertial guidance systems without

I
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errors. These errors will grow very large after a period of time if

- they are not corrected. In order to keep the errors generated in an

inertial system within acceptable bounds it is necessary to recalibrate

3 lthe system periodically. The correction of the system errors is achieved

by the use of independent sources of information. These external measure-

I ments can include position, velocity, attitude and combinations thereof.

Tse external measurements are compared to corresponding quantities

indicated by the inertial system. The Kalman filter uses the differences

J between indicated and measured quantities to provide the optimum estimate

of the errors in the system. A block diagram of a recalibration scheme

Iis contained in Fig. 11.

As well as estimating the states of the system, it is also important

to obtain with the Kalman filter an estimate of those error sources which

are correlated in time. If the error sources contain only white noise,

estimating the errors would not assist in predicting the error at the

next time of interest due to the fact that white nuise Is not correlated

in time. However, when the disturbances and the measurement errors

I are not changing rapidly compared with the system state and measure-

Iments, the filter accuracy can be enhanced by estimating these errors.

The estimation of the system disturbances a . reasurement errors which

Ihave significant correlation time, increases the number of state
variables to be estimated. This is frequently described as "state

vector augmentation." 

I In the navigation problem to be considered, three types of random

variables are used

S1. white noise

*1o
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2. random constant

3. exponentially correlated random variable.

Of the three types of random signals, only the white noise is uncor-

related in time.

The white noise is denoted by w. The characteristics are: an

( expected value E(w) - 0, and an autocorralation R(t) - a2 6(T).

1A random constant can be generated with the use of one additional

state. This is illustrated in Fig. 12. The sta e differential equation

[can be written as

-0

[The initial condition is chosen according to the nature of the error.
The autocorrelation is e0.

The exponentially correlated random variable is frequently a use-

ful representation of errors in inertial navigation systems. The auto-

correlation function of the random signal is a declining exponential
2 R(t2- t )

E[e(t 1 ) e(t2)] = t e - (4-2)

Lwhere Y2 is the variance and 0 is the reciprocal of the correlation time.

An exponentially correlated random variable can be generated by passing

Ian uncorrelated signal, i.e., white noise, through a linear first-order

(feedback system. A block diagram for this stochastic process is shown

in Fig. 13. The differential equation of the additional state variable

is

= - e + w (4-3)

where

[:
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Navigatio Measurement

IDifference between System

3] Fig. 11 Block diagram of a recalibration scheme.

I

I
3Initial 

Conditions

3 Fig. 12 Mathematical model for a random constant.

II.C.

Sw + e

Fig. 13 Stochastic process with exponentially correlated output.

I



I | 45

E(w) 0. E[w(t) w(t+ 2 a 6(T) t

B. Simulation of an Inertial Guidance System

The model of the system contains seven states, not including the

~augmented states for the errors. The block diagram of the system is

shown in Fig. 14, see [7]. This system is called a coupled model As all

states are coupled resulting in a rather complicated F-matrix. For the

optimum Kalman filter the same model is used in the filter as in the

system. In order to obtain a less complicated Kalman filter, the

equations are simplified, resulting in two other models of the system

[as shown in Figs. 15 and 16. The reference frame used is: x-north,

y-east, z-down.

It Is assumed that the accelerometer and gyro errors can be repre-

sented by an exponentially correlated random variable, Eq. (4-3). For
~this example only velocity measurements are considered, with measurement

errors consisting of white noise with a random bias term, Eq. (4-1). The

state vector used in all systems therefore is given by
T[6 x ,-A , A x ,. p ,,. x9 ,. Vx 9 VY9Cx, t, C 9z,0 x, V (4-4)

[ where R indicates position, *the platform tilt, v the position error,

e the tilt error, and v the measurement error. The differential

equations for the errors [8] are given by

V- v v +w V  
(4-5)

E + w (4-6)

= 0 (4-7)
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I For computational simplicity, the F-matrix is assumed to be non-

varying with time, since the change in F(t) is negligible over the time

interval studied. This means that the radius f the earth, R, and the

rgravity vector, g, are constants, and motion relative to the earth is
neglected. The model shown in Fig. 14 is used for the dynamical simula-

rtion of the system. The F-matrix of this model with the augmented

states for the simulation of the errors, is given by

0 0 1 0 0 0 0 0 0 0 0 0j 00

0 0 0 0 0 0 0 0 0 0 0l 0 0

0 0 0 2w~ 0 g 0 1 0 0 0 0 0 0
0 0 -2W z  0 -g 0 0 j 1 0 0 0 0 0

-/R 0 0 lx 0 0 0 1 0 0 0 0

0 -/R 0 -w 0 0 0 0 1 0 0 0

I/ 0 0  tan 0  0- 0 0 0 0 0 01 0 0

0 0 0 0 0 0 0 00 0 0 00 0Vy
0 0 0 0 0 0 0l 0 0B 0 0 0l 0

0 0 0 0 0 0 0 0 0 0 010 0

0 0- 0 0 0 0 0 O 0 0 0 0
0 0 0 0 0 0 0 0 0 0~ -'0--0~

0 0 0 0 0 0 0 0 0 0 0 0 0 0

where wx = Q cos L and =z -o sin L, with Q the angular rate of rotation

of the earth; L is the latitude; and p represents the expression

W Wx tan L
z R The system consists of three channels: the x-, y- and

RJ
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Iz-channel, as shown by the dotted lines in Fig. 14. These channels are

g coupled by terms containing functions of the angular velocity, w, and/or

the latitude, L. These cross-coupling terms between the different

channels of the system (Fig. 14) are generally much smaller than the

other terms. This fact is used for a simplification of the Kalman

filter equations. If all cross-coupling terms are ignored, the model

in Fig. 15 is obtained. The upper left part of the new system matrix

F becomes

03 001 0 00 0

O0 0 0 1 0 0 0

0 0 0 0 0 g 0

Fll= o 0 -: 0
0 0 0 hR 0 0 0

0 0 -fIR 0 0 0 0

O 0 0 0 0 0 0

J The order of the states in the state vector is changed to

x=[Ry 9 Ry x # 6R x 6X y I z (4-9)

A new F 1-matrix is obtainPA by rearranginn th- rw a,,d c lunns

I accordingly.

0 1 0 0 0 0 0

0 0 -g 0 0 O 0

0 1/R O 0 0 0 0

F 0 0 0 0 1 0 (4-10)

0 0 0 0 0 gl 0

I 21 01142 040

0 0 0 0 0 0 t0

I
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The state vector matrix quation can now be decomposed into three

independent sets of differential equations. If the states to simulate

the errors are included, the three state vectors for thecd thre.

independent systems are

T

x = [6R ,z]  (4-11c)IX 3  DzpEz1(-1
The states to simulate the velocity measurement errors, vx and vy, are

coupled to their corresponding channel through the measr-.ment 7atrix.

I[ The F-matrices corresponding to the three state vectors are

0 1 0 0 0 0I

o I/R 0 0 1 0
F I (4-12a)

0 0 0 -6 0 0 I

0 0 0 0 0 

0 -1/R 0 0 1 0

SF 2 = (4-12b)
200 0 0 0 0

0 0 0 0 0 0

F (4-12c)3 r3 
'1tI
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I The computer time and memory requirements are considerably reduced when

9 the system in Fig. 14 is decomposed into a set of thrce indepenJent

systems. The equations for the Kalman filter can be programmed much more

efficiently this way on a special-purpose computer.

A third model for the system is shown in Fig. 16. This model can be

decomposed into a set of two independent systems. Without the augmented

states to simulate the errors, the state vector and the corresponding

system matrix Fl1 are given by

T = [6R A 6 R , Ax, x y IZI (4-13)

0 0 1 o0 0 a 0 0

0 0 -g g 0 0 0 0

0 llR 0 0 0 0 0

Fl1 = 0 0 0 0 1 0 0 (4-14)

0 0 o 0 0 g 0

o 0 0 0 -I/R 0 x
0 0 0 (-"x/R 0 -x 0

The system matrix can be decomposed along the dotted lines. The states

I to simulate the random inputs can be added to the appropriate channel

in analogy to Eq. (4-8) to obtain a full system matrix.

C. Analysis of Three Estimation Schemes

I The models of the system in Figs. 14, 15 and 16 will be referred to

as models A, B and C. Model A simulates the actual dynamics of the system

i very closely and will therefore be used to simulate the system. The

following three estimation schemes have been used

I
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1 1. Optimum Kalman, using frdel A for the simulation of the system

g and for the Kalman filter;

2. Sub-optimum Kalman, using model B for the filter; and

3. Sub-optimum Kalman, using model C for the filter.

The reference information for the estimaticn schemes is assumed to

consist of velocity measurements only. The filter system matrix of

model A is stored according to Eq. (4-8). The filter system matriceq

for model B and C are stored the same way, i.e., as a 14 x 14 matrix

[ with the states in the same order as in Eq. (4-4). The change in the

order of the states mentioned in the previous section is merely a way

[to illustrate how the F-matrix can be decomposed into smaller matrices

in order to be programmed more efficiently on a special-purpose digital

computer. For example, model A contains fourteen states, all of which I
are coupled, either through the system matrix or the measurement

matrix, and therefore all the states have to be estimated simultaneously.

1. However, model B contains only twelve states to be estimated. The two

states in the z-channel, *z and rz$ are not affected by the optimum gain

as they are uncoupled from the observable states, Rx and 6Ay. The

[resulting twelve-state system can be decomposed Into two uncoupled
systems each with six states, of which the system matrices are given by

I Eqs. (4-12a) and (4-12b). The optimum gain and the estimate can then

be calculated for each of these systems separately. This results in

Lstoring more matrices, but of smaller size, than with the system composed
of all the states as would be done for model A. Model C contains

fourteen states to be estimated since the z-channel is coupled with the

[x-channel. The x- and y-channels are uncoupled, so that the system can

t I
l
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l I be decomposed into two systems, one with six states for the y-channel,

3 1an( the other with eight states to simulate the x- and z-channels.

Here also the new estimate and the optimum gain can be calculated

3 separately for each of the two systems.

The external measurements used are the velo. s in the x- and

y-dlrections, 6Rx and 
6Ry. Realizing that the measurement errors have

1 to be added to the output also, Eq. (2-1b) becomes

A y + VX y IV-Y-

where v and Vy are the "white noise" components of the measurement

errors and v and vy are the bias terms of the measurement errors. The

I measurement matrix M for the system will be

[0 M 1 " 0 0 0 01] (4-16)

0 0 0 1 0 0 0 0 0 0 0 0 0 ] (

I The output vector for the filter in Eq. (2-23) is likewise obtained and

results in the same measurement matrix as for the system in Eq. (4-16).

ITable I contains the values for the different parameters used and

their values when converted into the units of feet, seconds and radians.

TABLE I System Parameters

R g L E

15*/hr 450 1/4 hrs 1/2 hrs

32.2 ft/sec 2 2.lxlO ft 944xlOI4rad/sec .785 rad -6.95l05sec"I .139 secl I

x t / cos L .666xi0
4 sec/e

Iz a -i sin L -. 666xI0 4 sec I
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The initial conditions for the error in estimation, x, are contained

in Table II in addition to their values In the unitr- feet, sec!,Ids

and radians.

TABLE II Initial Conditions

Rxy kxsy . xy z VXy Ex,yz 0 vX,y

3000 ft 1. ft/sec 10 min l0 20 sec .1/hr .3 ft/sec

3.xlO 3  1. 2.916x10"3  .175 3.12-10 3 4.925x10- B  .3
ft ft/sec rad rad rad ft/sec2  rad/sec ft/sec

The initial condition for the covariance matrix of the error in estimation

I. P(O) is obtained by squaring the values in Table II. The covariance of

the random driving terms is

Cov(w ) = 2B a -. 2.711I0 " rad ft
2/sec 4

[i Civ(w ) 2so2 . 3.37x10-19 rad/sec3

The values for 8.., 6', o r, an are obtailied from Tables I and II. The

diagonal of both the covariance matrix for the system and the filter is

[obtained from the above values for the random driving terms, and all the

off-diagonal terms are zero as these random signals are uncorrelated.

The covariance of the "white noise" error components of the measure-

ments is given by

Cov(v x) Cov(Vy) - 1/4 ft2 /sec 2

The covariance matrix of these errors is given by

C .25 0j 0 I
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For the control matrices A1 and A!, the identity matrix ts used. The

1 initial conditions for Cov(z) can, with Eq. (4-45) and Eq. (4-46), be

represented by

ICov(z 
0) -

1 0
IThe first half of the diagonal terms are equal to the diagonal elements

ii of P(O). The terms in the second half of the diagonal and all off-diagonal

terms are equal to zero.

J For the simulations, a measurement time T - 60 sec was used. The

number of updates KT x 2. The number of measurements KTF - 30, correspond-

I ing to a final time of t = 1/2 hour.

D. Results and Comments

The results of the simulations with the different models are plotted

in Figs. 17 through 20. The figuroc contain the estimation errors in

I 6Rx, 6A X, y and Z for all three models. The y-channel results were

not plotted since they are for all three models very much like the

I results for the x-channel of the optimum case. One can notice that

model A gives the best estimate, closely followed by the results with

I model C. The estimate obtained with model B is far worse. However, it

Iis misleading in this case to compare the three estimation schemes when

the measurement time is the same for all three cases. The calculatlon

1 of the optimum gain takes much longer with the complicated model A than

with the far less complicated model B. Therefore with rrodiels B and C

I more measurements can be taken and more estimates calculated in the same

period of time than with model A. The more measurements taken, the

I
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I faster the steady state is reached, and due to the small correlation

3 time of the errors, the steady state may be smaller.

In order to get a better idea about the trade-offs, Table III

Icontains for each of the three models:
1. The amount of storage necessary for the matrices;

2. The time involved to calculate a new estimate; and

3 3. The steady state for the states of the system after 30 minutes.

The amount of storage given in Table III does not include the mer, ry

3necessary for the instructions. The matrices include: AF, AQ, PHI, RK,

AM, AC, Pl, AK, TI and T2.

TABLE III Sumary of the Results

Model A Model B Model C

Memory necessary to store 1432 484 728
all matrices (words)

Time of calculations 1. .16 .26

I Steady state after 30 minutes

6 x in 10 ft 3.02 17.5* 3.05

6Ry in 10 ft 3.05 3.10 3.05

6Ax in ft/sec .394 21.4 .395

6Ry in ft/sec .373 .811 .374

[ x in 'Tn .192 .407 .338

Cy in iTn .245 16.6 .362

Oz in degrees .058 9.9 .060

[ *

This state does not reach steady state, but will continue to
grow (see Fig. 17) due to velocity error.

[:
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I In Chapter IV, Section C it was already shown that by ignoring the cross-

I coupling terms of the system the system could be decomposed into two

different uncoupled models of the system, resulting in a smaller storage

space required for the various matrices. Besides gaining a considerable

amount of storage space, especially with large systems, there is also a

great amount of computer time gained. Most of the calculations consist

of multiplications of matrices. To multiply two n x n matrices, there

are n3 multiplications needed. If the dimension of the matrices is

SI reduced by a factor 2, the amount uf calculation is reduced by a factor

23 = 8.

Besides the fact that some matrices are reduced in size by

decomposing the system matrix, the transition matrix, PHI, and the

covariance matrix of the error term for the random input of the filter,

3 RK, usually converge more rapidly. This is an important factor when

these two matrices have to be re-calculated at every time a new estimate

I is calculated. This is the case when the measurerae't time is not constant,

and/or when the system matrix in the filter is time-varying, it should

be noted here that the convergence of PHI and RK depends highly on the

3 arrangement of the rows and columns. The order of the states in the

state vector should be arranged in such a way that all elements of the

I system matrix are as close as possible to the diagonal in order to

obtain rapid convergence.

The calculation of the tine involved to calculate a new estimate

3 is derived by assuming that most of the computer time is taken up by

multiplying matrices - in particular, the matrices with the largest

I dimensions. These are: AF, AQ, PHI, RK, P1, TI and T2. By

I
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decomposing the system matrix, AF, all these matrices are reduced in

i Isize in the same way a AF. With model A, the multiplication of two

matrices will Involve 143 - 2744 calculations. The system matrix of

Imodel B is split into two 6 x 6 matrices, therefore the equivalent
multiplication takes 2x63 . 432 calculations. The system matrix of

[model C is split into an 8 x 8 matrix and A 6 x 6 matrix. The equivalent

[ multiplication here involves 83 + 63 . 728 calculations. It is assumed

that the number of these calculations is proportional to the time of

[calculating a new estimate. In Table III, the time to calculate a new

estir.Ate for model A is taken to be 1.0, and all other times are relative

[to this model.

[Apparently an estimator using model C in the Kalman filter is the
most desirable, as it can be programmed quite efficiently by decomposing

[it into two uncoupled systems, And still the system reaches steady state

in a short time. The reason that model B exhibits a strong growth of the

errors in the x-channel is because the azimuth, OP' has been uncoupled in

( this model which makes 0z unobservable. Therefore 0z is unaffected by

the optimum, gain. Model B may be better suited for use when more states

[ are observable.

[

[
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i APPENDIX A

The Matrix Exponential Equation

An important subroutine in the program is the matrix exponential

(MEXP) subroutine. This routine utilizes the system matrix F to calculate

j the transition matrix which is defined by

(At) eFt (A-1)

To evaluate this equation, is put in a series form which can be

I written as

2(t) I + F Att+ F n- 3 + T + (A-2)

This series converges [9] and can easily be programmed on a digital

3 computer. The flow diagram of this subroutine is shown in Fig. (A-i).

The Error Covariance Equation

From the system equation

Ii(t) a F x(t) + w(t)

3 where w(t) is a random noise process, a relation has to be obtained

describing x(t) at any instant of time as a function of an initial

I condition x(O). Due to the randim noise, a statistical description of

the system is necessary. The covariance matrix of the states is given

by

I P(t) = E[x(t) xT(t)]

with E[x(t)] = 0 if E[x(0)] = 0.

l
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Fig. (A-i) Flow diagram for the numerical solution of the matrix

[exponential equation.
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8 To generate the covariance matrix P(t) as a function of time and an initial

5 condition, its differential equation is to be examined as follows

P(t) - ECx(t) xT(t)] + ECx(t) T(t)] (A-3)

Substituting the system equation yields

E[i(t) x T(t)] - E[{F x(t) + w(t)) xT(t)

- F P(t) + E~w(t) xT(t)• I Likewise,

E[x(t) xT(t)] _ P(t) FT + E~x(t) wT)T (A-4)

Noting that x(t) can be written as

x(t) = (t0. t) x(to) + f s(T, t) W(T) dT

and substituting into Eq. (A-4) yields

I E[x(t) wT(t)] - E[{f(t t) X(to0) WT(t)] +

+ EC(ft *(T, t) w(T) d } wT(t)]

t ItT
E[t 0 (l. t) w(T) wT(t) dT]

a t O(T, t) E[W(T) WT (t)] di (A-5)
It 0

According to Eq. (2-5)

E[W(T) wT(t)] - Q 6(t -T)

Substituting into Eq. (A-5) yields
ExtwTt) O t  

(T. t) Q 6(t - T) di (A-6)

Fig. (A-2) shows the impulse function 6(t -

I

II



i

1 67

| _

t
time

l Fig. (A-2) Impulse function 6(t - T).

K With a pulse width c, the impulse function Is only non-zero between

t - 1/2 c and t + 1/2 e. Therefore, the lower integration limit in

Eq. (A-6) can be changed from to to t - 1/2 c without changing the

rresult, Because E is infinitely small,

O(T, t) - O(t, t) • I

As the impulse is only integrated over half its area, from t - 1/2 c

{ to t, the final result of Eq. (A-5) contains the factor 1/2.

E[x(t) wT(t)] a 1/2 Q

Substituting this result into Eq. (A-3) yields a simplified matrix

IRicatti equation
A (t) - P(t) FT + F P(t) + Q (A-7)

The solution to this differential equation is obtained by the

[following method. By direct substitution It can be shown that

f P(t) - [o21 + E22 P(O)][Oll + e12 P(O)W "  (A-8)

where

I 6(t) - z o(t) (A-g)

I
m
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0(0) U 2Ii!-2 j(-a

L021(0) 022(0)]

z Q - U F] ,

Proof: Rearranging Eq. (A-8) and taking the time derivative yields:

i1P(t)[ll + 0l e(O)] -[az + 0~ P(o)3
Pt(11  012 P() 21 ~22P()

Pkt)CGll + e12 P(o)l + p(t)6 1 1 + 012 P(0)) [ (021 + 22 P(O)] (A-12)

From Eq. (A-9)

Ii, aI " 11 °1l

"t 3~12-o
01230(A-i3

;21 z21 Oil + 222 
021

u22 Z 22 022

I where z12 0 according to Eq. (A-11), and o12 - 0 which becomes apparent

later on in Eq. (A-16) when the expression for e(t) is found. Substituting

I these results into Eq. (A-12) yields

SA(t) - -P(t) Z)z 21 + z221021 + 022 P(o)J oil

Inserting the values for z from Eq. (A-11)

A(t) - P(t) FT + Q + F P(t) (A-14)

which proves that both equations are equivalent.

i In order to find an algorithm to program Eq. (A-8), the series method

is used. From Eqs. (A-9) and (A-11)

I
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o(t) a F (A-5)

Using the matrix exponential method to solve for (t) yields

[ o Ft a 
43 23e 4] 1+Lq 3~

: [ Performing the matrix multiplications yields[- L F. )fl 0 t2
I~ ~ ~ ~~ , 2(, T+) [ pEm,.,;

o[t) - ,)2 [FF t Q7

[ +[,T .. . . . .. o+.l +" 3 "+FQTQT) QTQFT) FT IQ

[By noting how the series progresses, one can easily obtain simple

expressions for o[1, 012 and 022 as follows

+( :F::: -FTt T (,1)T

022(t) - e t

e12(t) -o

[ With these results, Eq. (A-8) can be written In a simpler form

P(t)- 0 P(O) ,T + a2 e (A-17)

021 can be easily found by using the matrix exponential method for

solving o - ezt. This method, however, takes a substantial amount of

time on the computer due to the large dimension of z; therefore another

method will be used. In the following derivation it turns out that for

012 001 a rither simple-to-program expression can be found. Multiplying

[i



I

170

the series of 021 and oil gives the result0 Q-+ t2  T TT T T T _

21011u Qt + (QFT + FQT) + [QF + FTQ)F + F(QF + FQ)T 3T
This equation can be written in arother form, realizing that Q is
symmetric, or Q - QT, which makes QFT - (FQ) T , so that FQT T

J I again symmetric.
-1t2

021 o11 Qt + (FQ + (FQ)T) r- + CF(FQ + (FQ)T) +
3 

T
(F(FQ + (FQ)T)}T] t (A-l8)

This series is easy to program with a simple iteration routine shown in

Fig. (A-3), with 21 ('11 Rn"

]

I

I

3

• I
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Rn TI
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I Fig. (A-3) Flow diagram for the numerical solution of the matrix

Ricatti equation.
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3 APPENDIX B

This appendix contains a listing of the sub-optimum Kalman filter

estimation program explained in Chapter III.

I PROGRAM ESTIm
DIMENSION AFEZ201.BoEF(25.25).AQ(2O.20).8Q(25.25).PMI (20.20).
ISPMI(25.251.R((20.20).BR'((25.25',,AM(1O.2O).BM(10.25).A((20,I0).

ZAC( IO9iO).P1(20.20).BC(IO. tO).COVU(45.45).COVZ(45,45).AA(2O.2O~.

38A(25.20).TA425;25)TC(25;25);0H(45;45)

3 EOUIVALENCE (AF.BPH!).(AQ.BR'().(BF,74),(BQ.T5I.(TI.TA).(T2.TC)

IFORMAT (815. 3E 10 51
3FORMAT(/* PHI*)

4FORMAT(/* SPHJE)I5 FORMAT(/* R'(*)
6 FORMAT(/* SRK.)

7 FORMAT(fl N NB M K(T KTF '(MAX lOUT K(AI T AE RE*)1 DO 222 Jis1*lO
PRINT 7
READ IN.NS.M.KT.'(TP,'MAX.IOU)T.KAI.T.AERE

IF(FOP960) Z23028
28 PRINT 1.NNB.MKT.'(TF.'MAX.IOUT.'(AIT.AE.RE

0 7/FLOAT (1T)

NNSMN*N8I CALL AINPUT(AFBPAOBQ.AmBM.AC.BC.PICOVZ.AA.OANNBN.NN.'(AI,
PRINT 3
CALL MEXP(D.AFAF.TI.T2.T3.PIN'(MAX.AE.RE* 1)
PRINT 5
CALL MEXP(0.AF.AQ.T1,T2oT3.RKN'(MAX.Ae.RE* 2)

PRINT 4

CALL MEXP(D.BF.6FTIT2T3BPhINB.KMAX.AE.RE9 1)I PRINT 6
CALL MEXP(D0BGTO.T2.T3.BRK.NB.KMAXAE.RE9 2)
CALL ERCOV (PHI .BPHI .RK.BRK.AMBM.A'(.AC.BC.PI .ONCOVU.COVZ.AA~eATA
l.TCqPN9NS.MsNNBiKTvKTFIOUT*O)

22 CONTINUE52 ONIU
EN



.3 SUVROUTINE AI.NPuT(AP.BPAOB0,AMZNACUC.PI .COVZ.AA.BA*t4.NOM.
1NN89KAI)
DIM4ENSION AF(N.N)eBP(N8.NB) .AQ(NN).80(NB.NB).AM(MN1sBM4M9NB).I; IAC(M.M),P1 (NN),COVZ(NNBNNBkBC(MM)AA(NN)eANSN)

I FORMAT(8E 10.5)

2 FOQMAT(1Xsl2EII94)

3 PORMAT(/* Af*)[ F ORMAT(/* 8F*)

5 FORMAT(/'* A0*)

6 FORMATI/* 50*)
7 FORMAT(/.* AM*)
8FORMATI,'# BM*3
9 ORMAT(/* AC*)

2 FORMAT(/'* BC*)
10 to ORMATI/* P*
11 FORMAT(/* COVZ*)

13 FORMATII'* AAf

14 FORMAT4/* BA*)
20DO 20 IsIoN

[ CALL DRUKCAFsNvN)
00 21 IsNB

21 READ 1# (BF(1.J)#Ju1,NB)
PRINT 4

CALL DRUK(8FsNB.jNO)

GO TO(22,23)KAI
22 CALL AOI(AO.N*N. 1)

READ I *(AQ( I * ).lot oN)
PRINT2. (AO( 1* 1).let oN)

PRINT 6
CALL AOl (80sNB9NO# 1)
READ aaSO0(I.1.sls.NB)
PRINT2. (8Q( I * )e I-I NBI
GO To 29

23 00 24 11e#N
24 READ 1.(AO(I.J)oJwt.1)

00 25 tu29N

00 25 Jutl1[25 AQ(J~l)mA0(IaJ)
CALL 0RUK(A~oN4N)
PRINT 6I DO 26 foloNS

26 READ 1.(OQ(IqJ)9Js1Il)
00. 27 toaoNS
liaJl-I

DO 27 Jul.11
27 SQ(Je1)=BO(I.J)[ CALL DRLJKI8sON8oNO)



3 29 DO 30 IuI.M 
730 READ to (AM(IJ),Jnl.N)

PRINT 7J CALL ORUK(AM*,N)
00 31 Iui.ei

31 READ to (BM(!oj),jul 9NI3
PRINT 8
CALL 0RUK(8M,M,N81

32 READ i A(~)jjMI PRINT 9
CALL DRUKIAC.M,M)

33 READ 1, 8(ej)J~~
PRINT 12
CALL DRUK(SC*M,M)Il PRINT 10
GO T0(35140)KAI

35 CALL AOI(PIO,NN, 1
READ ipjj)I1N

CALL AOICOvZ.e#M,NNS, 1)
READ 1. 'covZ 1.!). ml NNB)3 PRINT 11

GO To 49
40 00 4t I*l,N
41 READ (P(J)aj)

f DO 43 ImI.,NN8
43 READ ,CV(j*wqI

00 45 njo2.N

5PU(JOI)RPI(14j)
CALL DRUIK(PI.N.N)
00 47 Ift2.NNB

j 00 47 jul.11
47 COVZCJoZ)*COVZ(I,J)

PRINT 11
CALL DRUK(COyZ,NS~,Ne

49 CALL AOI(AA*N*N. 1)
READ 1' (AA 11I,1)*IwI N)
PRINT 13
PRINT 2. (AACJ,j I.lN
00 50 I1N8

$0 READ 1* CBAC,jjo,N)
PRINT 14
CALL DRUK(BAONB.N)
RETURN S END
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SUBROUTINE MEXP(D.FA.T1 ,T2.EXPTA.T3.N.IKMAX.AERE.KLM)I DIMENSION A(N.N,.F(N.NI.EXPTA(N.N),TI (NN).T2(N.NPT3(NN)
DOUBLE PRECISION Ti ,T2.EXPTA*PK*TTK

2 FORMAT(* NUMBER OF ITERATIONS Ku*14)[5 FORMAT(/* MAX* NUMBER OF ITERATIONS EXCEEDED*)
Tuo

PK s 1 .

DO 10 J.Iv1N
DO00 I IoN
TI (I.j)-T*A( I J)

10 EXPTA(I9J)uTI(I.J)
GO TO (14v18) KLM

14DO 15 101;N

DO 30 11.#N

DO 30 LsIoN

r 30 T2( I J)=T2( 1 'J)+F( lL)*?l 4LsJ)

F' 36 00 20 J1NI
00 20 11.oN
GO TO(38*39) KLM

38 T1l.J)uT2(1*J)*TK S GO TO 20

39 T1I9IJ)w(T211.J) + T2(Jol))*TKI
20 EXPTAfI,,j)mEXPTA(IsJ) + T1(1,J)
68 DO 70 J=19N

DO 70 IzIgN
EPsDABS(TI (I .J)/(AE+RE*DABS(EXPTA( I .4)))

73 CONTINUE

GO TO 110
80 IF(PK.sLT9KMAX) GO TO 18

PRINT 5 S STOPI
110 KaPK

PRINT 29K

D0 120 11,iN

DO 120 J-19N

[120 T(e)EPAIJ
[ RETURN S ENDSUBROUTINE ERCC(PMI.BPHI.PI(.BRK.AM.BM.AKoAC.BC.PIOICOVUCOVZAA

1 .BA.TA.TC.N.NS.M.NNBKTICTP. OUTeT)[ DIMENSION PHI (N.N).BPHI (NBNB,.TA(NBNB,.TCIN.NB)
I .RK(NN),BRK(NBNB),AM(MN,.8M(MNB).A1((N.M).AC(MM).Bc(M.m)

2,AA(N.N.8AN~NOH(N.B.NNB.COVU(NN.NNB)CVZ(NN.NNB).P1(N.NI[COMMON TI(25.25.9T2(2i,,Zl ,T3c25025.T4(2525)T(2525)T5(5,50)
l#T7(5O,25)oT9(50,25)vT6'5sO50)
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EQUIVALENCE (TIsT5)v(T6sT79TS)
2 FORMAT(//* MEASUREMENT NUMBER*14)U3 FORMAT(///* TIME n*Fll.4)

C MAK~E AAwAA-1
DO 5 IwIsN3 S AA (1,1 uAA (1.1)-i.
00 25 IIw1I#KTF

TIMEmT*FL0AT( II)*FL0AT(IKT)

CALL AOI(OHeNNS*NNBo 11ICALL AOI(COVUsNNBNNBs 1)
DO 10 I.! .NB
00 10 jutqNa
QH( Is.J3EBPHICI ,JJ

1 0 COVV(J JaBRK( 7.8

00 15 1=14N

15ON(I+N89J+N8)PHIfIsJJ
00 IS K1I.KT

C UPDATE P1I CALL ABTACPHIPI.PHITl*TZN*NqNNo 2)
CALL MATADDfT29RPI91NsNsN)

C UPDATE COVARIANCE(Z)
CALL ABTAC(OHCOVZ,0H. T5.T6.NN8,NNB.NN8oNNB. 2)
CALL MATAOO(T6.COVU.COVZ.NNBNNB.NNB)
TIMEA=TIME-T*FL0AT(KT-,(1,

PRINT 39TIMEAN17 CALL OUT(Pt*COVZvT1.NNS#NN89ZOUT)
18 CONTINUE

PRINT 2.1!I CALL FILTER(AMAKsPIACsNeMI
CALL MATMPY (AK9BMsTSoNNNMMN8)
CALL MATMPY(BAT8oTAmNB9NB#N#N*N8)
CALL MATMPY(AKAM. TC9N9N*MaM#N)
00 65 ts1,Ne

65 TA(Isi )=TA(I. 11-1.
00 70 Iul.N
TCf 1,1 sTC( 1,1)-I.

D0 70 JisiN
70 TC(I*J)u-TCCI*J)

CALL MATMPY(8A9TC9TZoNB9NBNsN#N)
CALL '4ATMPY(AA9TC9T4sN.NoN*NoN)
CALL MATMPY(AATSTCNN*N*NNB)

CALL SUM( TA.T2 .TC.T4,0iH4N8.N.NB.NNNBNNB)I CALL ASTAC(AI(BCAKT*TI.N$M#M$N. 2)
CALL SUMB(BAoAA.,T79NBsNNNN~sN)

CALL ABTAC(T7,Tl.T7.T9,COVU.NN~.NN.NN8. 2)

CALL ABTAC (OH.COVZOH.TST6,NNB.NNB.NNB.NNB9 2)
CALL MATADO(T6,COVUCOVZNNBNNB.NNB)
CALL OLT(PI*COVZTI#N#NB*NNS*IOUT)

25 CONTINUE

RETURN S END

I
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if SUBROUTINE FILTER(ANAK*PI*ACN*Ml
DIMENSION AMfMsN),AK(N9M)9PI (NvN)vAC(MsM)
COMMON TI(25925)oT2(25o25)9T3(75t5OI

9 FORMAT(/* AK*)[C CALCULATE K
20 CALL ABTAC(AM#P1,AMTI*TZ*MtNoNeMt 2)

CALL MATADo(T29ACTLMvMoM)

CALL MATINV(T1*M*T1.NO*DET*M3
CALL ABT4Pl.AMvT2%N9N9MI
CALL MATMPY(T2tTIvAK9NsNsM9M9M)

c CALCULATE P3
CALL ABTAC(AK9AM9PIsTl.T2vN9MNNN 3)
CALL MATSUB(PlqT2,PIN*N#Nl

40 PRINT 9
CALL DRUIKiAK*N*M)
RETURN S END

SUBROUTINE OUT(P1,COVZ*T*N.NB.NNB.IOUTR
DIMENSION P1(NsN),COVZ(NNBsNNBI.T(NBNBl

2 FORMATI/* COVZ*)

3 FORMAT(/'* SQUARE ROOT OF UPPER DIAGONAL TERMS OF COVZ.**
5 FORMATCIX*12E11.4)

a FORMAT(/* Pl*)r IFldOUToLEo1) GO TO 19
PRINT a
CALL DRLDK(PI#NN)
PRINT 2

CALL DRUK(COVZ4NN BsNNB)
19 PRINT 3

DO 20 lml*NB
20 T( 1.1)nSQRTFfC0VZ( Iv*I))

m PRINT 5.(T( 1,13.131 NBI
RETURN 0 END

SUBROUTINE DRUK(AsNsM)
DIMENSION A(NoMl

101o FORMAT(* TRANSPOSE*)

IF(NoGT*M) GO TO 2
DO 1 IS1.NK I PRIjTlO2. (A( I .)o.431 M)
RETURN

2 PRINT 101
DO 3 Islom

3 PRINT 1029(A(J9I)%JnIvN)

REUNK N
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3 SUBROUTINE SUM(A.BC.D.1Tt,12.Jl.J2,112,J12)
DIMENSION A(1 .(11.elj2I.C(12.j1 ).D(12..J2).T(II2.jl2
00 20 JUioj2

00 15 131,11I 15 T( I J+Ji )&B(ej *J
00 20 1=1*12

20 TtI+II.J.J1)OD(I,.j)
ENTRY SUMB

5 T(IJ.JwA(I.J)
00 10 112

10 Tt1+11oJ)=C (I 'jI3 RETURN S END

SUBROUTINE AOl (ANsM, KK)
DIMENSION A(N*MI
00 10 luleON

00 10 Julom
10 A(I.j)*0.0

IF(K.EQ*) RETURNI DO 20 I11N
20 A(1*1)z1.0

RETURN S END

SUBROUTINE ABT(AsB.T.IKL9M)
DIMENSION A(K*L) .B(MOL) .T(K*M)
DO I J.1.m
DO I 1819K
T( I .)aO*O

00 1 K~liL
ITtI.j)aT(ItjI.A(1,K1 )*B(.KI)
RETURN S END

3 SUBRO0UTINE A6TAC(A*BsC, T*Y*K.L9M9NKK)
DIMENSION A(K.L),B(L.M) ,C(N.M).T(KOM).Y(K.N)

C A5AT KK*2 YuA*B*AT

C ABCT KKs3 YwA*8*CT

CALL MATMPYCA*B*T*K*K*L*L*M)
GO TO(94p2*5) KKI

2 00 4 IatK
DO 4 JuI.N
Y( I .j)WO40

DO 3 (1.1 eM13 Y419J)OY(I*J)+T(IqK1)*C(J*KI)
4 Y(JI, I)OY( I*.J)

GO TO 9
5 CALL ABT(T*CoY*K*MvN)

9 RETURN S END
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